
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3768573
.

.

RESEARCH-ARTICLE

Tree Containment above Minimum Degree Is FPT

FEDOR V. FOMIN, University of Bergen, Bergen, Hordaland, Norway
.

PETR A GOLOVACH, University of Bergen, Bergen, Hordaland, Norway
.

DANIL SAGUNOV, Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics University ITMO, Saint
Petersburg (ex Leningrad), Russia
.

KIRILL SIMONOV, University of Bergen, Bergen, Hordaland, Norway
.

.

.

Open Access Support provided by:
.

University of Bergen
.

Saint Petersburg National Research University of Information
Technologies, Mechanics and Optics University ITMO
.

PDF Download
3768573.pdf
28 December 2025
Total Citations: 0
Total Downloads: 189
.

.

Published: 10 November 2025
Online AM: 18 September
2025
Accepted: 07 September 2025
Revised: 18 June 2025
Received: 05 March 2024
.

.

Citation in BibTeX format
.

.

ACM Transactions on Algorithms, Volume 22, Issue 1 (January 2026)
hps://doi.org/10.1145/3768573

EISSN: 1549-6333

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3768573
https://dl.acm.org/doi/10.1145/3768573
https://dl.acm.org/doi/10.1145/contrib-81100282175
https://dl.acm.org/doi/10.1145/institution-60029622
https://dl.acm.org/doi/10.1145/contrib-81100024466
https://dl.acm.org/doi/10.1145/institution-60029622
https://dl.acm.org/doi/10.1145/contrib-99659940038
https://dl.acm.org/doi/10.1145/institution-60072485
https://dl.acm.org/doi/10.1145/institution-60072485
https://dl.acm.org/doi/10.1145/institution-60072485
https://dl.acm.org/doi/10.1145/contrib-99659689945
https://dl.acm.org/doi/10.1145/institution-60029622
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60029622
https://dl.acm.org/doi/10.1145/institution-60072485
https://dl.acm.org/doi/10.1145/institution-60072485
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3768573&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3768573&domain=pdf&date_stamp=2025-11-10

Tree Containment above Minimum Degree Is FPT

FEDOR V. FOMIN and PETR A. GOLOVACH, Universitetet i Bergen, Bergen, Norway
DANIL SAGUNOV, ITMO University, Saint Petersburg, Russia
KIRILL SIMONOV, Universitetet i Bergen, Bergen, Norway

According to the classic Chvátal’s Lemma from 1977, a graph � of minimum degree X (�) contains every tree
on X (�) + 1 vertices. Our main result is the following algorithmic “extension” of Chvátal’s Lemma: For any
=-vertex graph � , an integer : , and a tree) on at most X (�) + : vertices, deciding whether � contains a
subgraph isomorphic to) can be done in time 5 (:) · =O(1) for some function 5 of : only. The proof is based
on an intricate interplay between extremal graph theory and parameterized algorithms.

CCS Concepts: • Mathematics of computing→ Graph algorithms; • Theory of computation→ Pa-
rameterized complexity and exact algorithms;

Additional Key Words and Phrases: subgraph isomorphism, tree containment

ACM Reference format:
Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. 2025. Tree Containment above Minimum
Degree Is FPT. ACM Trans. Algor. 22, 1, Article 9 (November 2025), 44 pages.
https://doi.org/10.1145/3768573

1 Introduction
In the Tree Containment problem, we are given an =-vertex graph � and a tree) . The task is to
identify whether� has a subgraph isomorphic to) .1 For the very special case of) being an =-vertex
path, solving Tree Containment is equivalent to deciding whether� contains a Hamiltonian path
and thus is NP-complete. Our work on Tree Containment aligns with the recent advances in
algorithmic extensions of classic theorems in extremal combinatorics [20–22, 26, 32, 35, 37, 50].

For example, the classic theorem of Dirac states that every 2-connected graph contains a cycle
(and thus a path) of length at least min{2X (�), =}, where X (�) is the minimum degree of � . In
[20], we gave an FPT algorithm for parameterization “above Dirac’s bound”—an algorithm that

1Let us remark that in computational biology the name tree containment is used for a different problem of deciding whether
a phylogenetic network displays a phylogenetic tree over the same set of labeled leaves.

A preliminary version of these results appeared in the Proceedings of SODA 2024.
Work was performed while Kirill Simonov was at Hasso Plattner Institute, University of Potsdam, Germany.
D. Sagunov was supported by the Ministry of Economic Development of the Russian Federation (IGK 000000C313925
P4C0002), agreement No. 139-15-2025-010.
Authors’ Contact Information: Fedor V. Fomin, Universitetet i Bergen, Bergen, Norway; e-mail: fedor.fomin@uib.no; Petr A.
Golovach (corresponding author), Universitetet i Bergen, Bergen, Norway; e-mail: Petr.Golovach@uib.no; Danil Sagunov,
ITMO University, Saint Petersburg, Russia; e-mail: danilka.pro@gmail.com; Kirill Simonov, Universitetet i Bergen, Bergen,
Norway; e-mail: kirill.simonov@uib.no.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1549-6333/2025/11-ART9
https://doi.org/10.1145/3768573

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

https://orcid.org/0000-0003-1955-4612
https://orcid.org/0000-0002-2619-2990
https://orcid.org/0000-0003-3327-9768
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.1145/3768573
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3768573

9:2 F. Fomin et al.

for any : ≥ 1, decides whether a connected � contains a path of length at least 2X (�) + : in time
5 (:) · =O(1) for some function 5 of : only.

The question of how to impose conditions on vertex degrees of the host graph � to guarantee
that it contains a certain tree) as a subgraph is fundamental in extremal graph theory. However,
compared with path and cycle containments, tree containment is much more challenging. For
example, the theorem of Erdős and Gallai [15] from 1959 asserts that every graph of average degree
> 3 contains a cycle with at least 3 + 1 vertices. Similarly, Erdős and Sós [13] conjectured in 1963
that every graph with average degree > 3 contains any tree on 3 + 1 vertices. This conjecture
remains open.

The starting point of our algorithmic study of Tree Containment is the following cute result
first published by Chvátal.

Lemma 1 (Chvátal’s Lemma [7]). If � is a graph of minimum degree X (�), then � contains every
tree on X (�) + 1 vertices.

From the combinatorial point of view, the result of Lemma 1 is tight: a X-regular graph does not
contain a star of degree X (�) + 1. The proof of Lemma 1 is constructive, and it yields a polynomial
time algorithm computing a subtree in � isomorphic to a tree) on X (�) + 1 vertices. Whether
Lemma 1 is tight from the algorithmic point of view, that is, whether it is possible to decide in
polynomial time if a tree on X (�) + : vertices, for some fixed constant : > 1, is in � , was open
prior to our work. Our main result is the following “algorithmic extension” of Chvátal’s Lemma.

Theorem 1. For any =-vertex graph� , integer : , and a tree) on at most X (�) +: vertices, there is a
randomized algorithm deciding with probability at least 1

2 whether� contains a subgraph isomorphic to
) in time 2:

O(1) ·=O(1) . The algorithm is a one-sided error Monte Carlo algorithm without false-positives.

In other words, Tree Containment Above Minimum Degree admits a randomized FPT al-
gorithm. We state Theorem 1 for the decision variant of the problem. However, the proof of the
theorem is constructive and if it exists, the corresponding subgraph isomorphism can also be
constructed in the same running time.

It is useful to compare and contrast Theorem 1 and the algorithm “above Dirac” from [20] that
decides whether a connected graph contains a path of length at least 2X (�) +: in time 5 (:) ·=O(1) .
On the one hand, the statement of Theorem 1 holds for any tree, not only paths. On the other hand,
the “combinatorial threshold” in the “above Dirac” algorithm is 2X (�), and in Theorem 1, it is X (�).
While in the statement of Chvátal’s Lemma the value X (�) cannot be replaced by (1 + Y)X (�) for
Y > 0, it is not clear a priory that the threshold X (�) in Theorem 1 cannot be increased. Our next
theorem rules out this option.

Theorem 2. For any Y > 0, Tree Containment is NP-complete when restricted to instances (�,))
with |+ ()) | ≤ (1 + Y)X (�).

Related Work
Tree Containment plays an important role both in graph theory and in graph algorithms.

Extremal Graph Theory. According to Stein [53]: “One of the most intriguing open questions in the
area is to determine degree conditions a graph � has to satisfy in order to ensure it contains a fixed
tree) , or more generally, all trees of a fixed size.” While the conjecture of Erdős and Sós [13] about
the average degree remains open, various other conditions have been suggested that might ensure
the appearance of all trees or forests of some fixed size [3, 6, 14, 34, 39, 42]. We refer to the survey
of Stein [53] for a comprehensive overview of the area.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:3

Our work is also closely related to stability theorems in extremal combinatorics. Informally,
a stability theorem establishes that an “almost nice” extremal structure can always be obtained
by slightly modifying a “nice structure.” For example, coming back to Dirac’s and Erdős–Gallai
theorems, there is a significant amount of literature devoted to sharper versions of these classic
results [23, 24, 40, 41, 44, 55]. The typical statement of such results is that when we weaken the
condition on the minimum vertex degree or an average degree of a graph, the graph contains a
long cycle (or path) unless it possesses a very specific structure. To prove Theorem 1, we have to
establish several stability variants of Chvátal’s Lemma.

More generally, the identification of tree substructures within graphs constitutes a broad con-
cept with diverse applications, particularly in Artificial Intelligence, where numerous learning
systems and agent architectures are grounded in tree representations. In multi-agent systems, tree
subgraph identification underpins stability guarantees [11, 12], supports structured knowledge
representation for agent communication [5], and facilitates path planning in cooperative navigation
tasks [38]. For instance, tree similarity enables agents to align preference hierarchies and negoti-
ate agreements [9], while junction-tree organizations in multi-agent graphical models promote
efficient joint inference and decentralized decision-making [54]. Furthermore, with the increasing
prominence of LLM-based agents, tree-based methods have assumed a central role in structuring
dialogues, reasoning over hierarchical contexts [46], and coordinating distributed decision-making
processes [56].

Algorithms. Tree Containment is the special case of Subgraph Isomorphism, where the guest
graph) is a tree. Matula in [49] gave a polynomial time algorithm for Tree Containment when
the host graph � is also a tree. According to Matoušek and Thomas [48], Tree Containment is
NP-complete when all vertices of) but one are of degree ≤ 3 and � is a treewidth 2 graph and all
vertices of� but one are of degree ≤ 3. The result of Matoušek andThomas shows a sharp difference
in the complexity of Tree Containment and the Longest Path, which is FPT parameterized by
the treewidth of � . The exhaustive study of Subgraph Isomorphism by Marx and Pilipczuk [47]
establishes several hardness results about Tree Containment for different classes of graphs� and
trees) . There is a broad literature in graph algorithms on a related problem of finding a spanning
tree in a graph with specified properties, see e.g. [25, 29, 52].

The seminal work of Alon et al. on color coding [2] shows that Tree Containment is FPT
parameterized by the size of) . In other words, deciding whether� contains a tree) of size C could
be done in time 2O(C)=O(1) . Let us remark that in the setting of Theorem 1, the color coding method
provides an algorithm of running time 2O(X (�)+:)=O(1) , which is not FPT in : .

Several results in the literature provide FPT algorithms for long paths, and cycles parameterized
above some degree conditions. Our work is an extension of this line of research to more general
subgraph isomorphism problems. Fomin et al. [17] gave FPT algorithms for computing long cycles
and paths above the degeneracy of a graph. The tractability of these problems was extended by
the authors in [21] above the so-called Erdős–Gallai bound, which is above the average vertex
degree of a graph. In [19, 20], we established that finding a cycle above Dirac’s bound is FPT. In
other words, we gave an algorithm of running time 2O(:) · =O(1) deciding whether a 2-connected
graph� contains a cycle of length at least min{2X (�) + :, =}. The ideas and methods used to prove
all the above results about cycles and paths are quite different from those we use in the proof of
Theorem 1.

From a more general perspective, Theorem 1 belongs to a rich subfield of Parameterized Com-
plexity concerning parameterization above/below specified guarantees [1, 8, 28, 30, 37, 43, 45]. We
refer to the recent survey of Gutin and Mnich [31] for an overview of this area. In particular, the

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:4 F. Fomin et al.

parameterized complexity of finding an (B, C)-path above the distance between vertices B and C , the
Detour problem, attracted significant attention recently [4, 16, 18, 33, 36].

2 Definitions and Preliminaries
For a positive integer C , we define [C] = {1, . . . , C}.

We use standard graph-theoretic notation and refer to the textbook of Diestel [10] for undefined
notions. We consider only finite simple undirected graphs. We use + (�) and � (�) to denote the
sets of vertices and edges of a graph � , respectively; = and< are used to denote the number of
vertices and edges if this does not create confusion. A vertex E is a non-neighbor of D if E ≠ D and
DE ∉ � (�). For a graph� and a subset- ⊆ + (�) of vertices, we write� [-] to denote the subgraph
of � induced by - . We use � − - to denote the graph obtained by deleting the vertices of - , that
is,� −- =� [+ (�) \-]; we write� − E instead of� − {E} for a single-element set. For a vertex E ,
#� (E) = {D ∈ + (�) | ED ∈ � (�)} is the open neighborhood of E and #� [E] = #� (E) ∪ {E} is the
closed neighborhood. For a set of vertices- , #� (-) =

(⋃
E∈- #� (E)

)
\- and #� [-] =

⋃
E∈- #� [E].

We use deg� (E) = |#� (E) | to denote the degree of a vertex E ; Δ(�) = maxE∈+ (�) deg� (E) is the
maximum degree of� and X (�) =minE∈+ (�) deg� (E) is theminimum degree. In the above notation,
we may omit subscripts denoting graphs if this does not create confusion. We write % = E1− · · · −E:
to denote a (simple) path in a graph � with : vertices E1, . . . , E: of length : − 1; E1 and E: are the
end-vertices of � and we say that % is an (E1, E:)-path. The diameter of � , denoted diam(�), is the
maximum length of a shortest (D, E)-path in � over all D, E ∈ + (�). Two vertices D and E compose
a diametral pair if the distance between them, i.e., the length of the shortest path, is diam(�).

An isomorphism of a graph � into a graph � , a bijective mapping i : + (�) → + (�) such that
DE ∈ � (�) for D, E ∈ + (�) if and only if i (D)i (E) ∈ � (�). A subgraph isomorphism of � into
� is an injective mapping f : + (�) → + (�) such that DE ∈ � (�) for D, E ∈ + (�) if and only if
i (D)i (E) ∈ � (�). In other words, this means that � contains � as a subgraph. We use Im f to
denote f (+ (�)).

Throughout our article, we use the following specific notions:

Definition 1 (Maximum Leaf-Degree ld(T)). The leaf-degree of a vertex E in) is the number of
leaves of) that are neighbors of E . The maximum leaf-degree of) , ld()), is the maximum of the
leaf-degrees over all vertices of) .

Definition 2 (Neighbor Deficiency a: (v)). For a graph � , an integer : ≥ 0, and a vertex E ∈ + (�),
we define the neighbor deficiency of E as

ak (E) =max{(X (�) + : − 1) − deg� (E), 0}.

If ak (E) = 0, we say that E is non-deficient.

Definition 3 (@-Escape Vertex). For a graph � and integer @, a vertex E in � is an @-escape vertex,
if deg� (E) ≥ X (�) + @ or the maximum matching size between # [E] and + (�) \ # [E] in � is at
least @.

Definition 4 (Size-@-Separable). We say that a tree) is size-@-separable if there is an edge in)
whose removal separates) into two subtrees consisting of at least @ vertices each.

The following simple lemma about the relation between the size of the tree, its diameter, and the
number of leaves will be useful.

Lemma 2 (Folklore). Let) be a non-empty tree with |+ ()) | ≥ @ · diam()), for some integer @.
Then,) has at least @ leaves.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:5

Proof. We show the statement by induction on @. For @ = 1, any non-empty tree has at least one
leaf. Assume the statement already holds for @, and consider a tree) with |+ ()) | ≥ (@+1) ·diam()),
we argue that it has at least (@ + 1) leaves. Let ℓ be an arbitrary leaf of) , and let % be a maximal
path in) that starts with ℓ and contains only degree-two vertices of) as internal vertices; let E be
its other endpoint. Now consider the tree) ′ obtained by removing the vertices of + (%) \ {E} from
) . Clearly, |+ (%) \ {E}| ≤ diam()), thus |+ () ′) | ≥ |+ ()) | − diam()) ≥ @ · diam() ′). By induction,
) ′ has at least @ leaves. Observe that E is either the only vertex of) ′, or not a leaf of) ′, otherwise
the path % is not maximal. Therefore, all leaves of) ′ remain leaves in) , and) has at least @ + 1
leaves, including ℓ . �

Finally, we give here the following extension of Chvátal’s Lemma (Lemma 1). While Chvátal’s
Lemma indeed provides the guarantee of X (�) + 1 for Tree Containment Above Minimum
Degree, throughout the proof of the main theorem, we often need a more general statement. Its
proof repeats the original proof of Chvátal, and we provide it here for completeness.

Proposition 1 ([7]). Let � be a graph and let) be a tree on at most X (�) + 1 vertices. Let
f ′ : + () ′) → + (�) be a subgraph isomorphism mapping a connected subtree) ′ of) into � . Then,
there is a subgraph isomorphism f : + ()) → + (�) mapping) into � such that f is an extension
of f ′.

Proof of Proposition 1. The proof is constructive. Let)0,)1, . . . ,)@ be a sequence of trees such
that @ = |+ ()) | − |+ () ′) |,)0 =) ′,)@ =) , and for each 8 ∈ [@],)8−1 =)8 − ℓ8 , where ℓ8 is a leaf of
)8 that is not present in) ′. One way to construct the sequence in reverse order is to start from
)@ :=) . Then, to obtain)8−1 from)8 for each consecutive 8 in {@, @ − 1, . . . , 1}, we just delete a leaf
of)8 that does not belong to) ′. Since) ′ is a connected subtree of)8 , such a leaf always exists in)8 .

We then construct a series of subgraph isomorphisms f0, f1, . . . , f@ , such that for each 8 ∈
{0, . . . , @}, f8 is a subgraph isomorphism of)8 into � . We start from f0 = f

′. Then, consecutively
for each 8 ∈ [@], f8 is obtained by extending f8−1 on ℓ8 . The leaf ℓ8 has only one neighbor B8 in
)8 . Then, the image of ℓ8 in f8 should be the neighbor of f8−1 (B8). Since |Im f8−1 | ≤ X (�), and
f8−1 (B8) ∈ Im f8−1, Im f8−1 contains at most X (�) − 1 neighbors of f8−1 (B8) in � . Then, at least one
neighbor of the image of B8 is not occupied by f8−1. We obtain f8 from f8−1 by extending mapping
ℓ8 to such a neighbor.

The procedure produces the subgraph isomorphism f@ of)@ =) into � . �

3 Main Ideas and Structure of the Proof of Theorem 1
In this overview, we will provide some intuition on how several various structural cases for � and
) guarantee that � contains) . In several situations, we push the structural analysis to the limit. In
the remaining cases, when the structural analyses (or stability theorems) cannot be pushed further,
the obtained structural properties allow us to design algorithms. Such a WIN/WIN approach results
is a randomized FPT algorithm running in time 2:O(1) · =O(1) . The order of presentation of the case
analysis in the overview slightly disagrees with the order of the section in the main part of the
article. In the overview, we aimed to make the presentation more intuitive while in the main part
of the article, we put parts using the same techniques and ideas closer to each other. The summary
of the case analysis in the main part is given in Section 9.

The natural way to proceed above the Chvátal’s X (�) + 1 guarantee is to ask whether� contains
an arbitrary) of size at most X (�) + 2. The answer to this question appears to be quite simple,
yet it settles the starting point of our work. We state it as Proposition 2. While this result is not
explicitly used in the proof of the main theorem, its proof exposes the key ideas we use to prove
the main theorem.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:6 F. Fomin et al.

Proposition 2. Every connected graph � contains every tree on at most min{|+ (�) |, X (�) + 2}
vertices, unless� is X (�)-regular and) is isomorphic to the star graph 1,X (�)+1 with X (�) + 1 leaves.

Proof of Proposition 2. Note that the only case that has to be proved above Chvátal’s Lemma
is when |+ ()) | = X (�) + 2.

We have that � is connected and has at least X (�) + 2 vertices. Let) be an arbitrary tree on
exactly X (�) + 2 vertices. Clearly, if) has a vertex of degree X (�) + 1, but the maximum degree of
� equals X (�) then � does not contain) as a subgraph. This is equivalent to) being isomorphic
to 1,X (�)+1 and � being X (�)-regular. It is left to show that in any other case, � contains) .

Assume first that � has a vertex of degree at least X (�) + 1. Denote this vertex by D. Since)
has at least two vertices, there is a vertex in) adjacent to a leaf. Denote this vertex by C and its
adjacent leaf by ℓ . We start constructing a mapping of) into � by mapping C to D. Since) − ℓ is a
tree consisting of exactly X (�) + 1 vertices, we apply Proposition 1 and extend mapping C → D to
a subgraph isomorphism f of) − ℓ into � . The size of #� [D] is at least X (�) + 2. Hence, at least
one vertex in #� [D] is not used by f . We extend f by mapping ℓ to this vertex. Then, f becomes a
subgraph isomorphism of) into � . That is, if � has a vertex of degree at least X (�) + 1, then �
contains) .

The remaining case is when all vertices of � are of degree X (�), but) is not isomorphic to a
star. Again, we take a leaf ℓ and its neighbor vertex C in) . Since) is not a star, there is a neighbor
of C in) that is not a leaf. Denote this neighbor by G . Then, G has at least one neighbor distinct
from C , denote it by ~.

We have a path on three vertices C −G −~ in the tree) − ℓ , and we map this path into� as follows:
Take an arbitrary vertex D in � . Since � is connected and |+ (�) | > X (�) + 1 = |#� [D] |, there is at
least one edge EF ∈ � (�) such that E ∈ #� [D] andF ∈ + (�) \ #� [D]. We have that D − E −F is a
path in � where D is not adjacent toF . We initiate the construction of a subgraph isomorphism
of) into � by mapping C, G,~ into D, E,F , respectively. Then, by making use of Proposition 1, we
extend this mapping into a subgraph isomorphism f of) − ℓ into � .

In contrast to the previous case, the closed neighborhood of D, #� [D] is of size X (�) + 1. But we
ensured that f uses at least one vertex outside #� [D] by mapping ~ toF initially. Hence, #� [D] \
Im f is not empty. Therefore, we can extend f by mapping ℓ to an arbitrary vertex in #� [D] \ Im f .
The obtained mapping is a subgraph isomorphism of) into � . The proof of the proposition
is complete. �

Let us highlight and discuss the key ideas of the proof above.

Idea I. Saving space for mapping leaves starts from mapping their neighbors.
In the proof of Proposition 2, we cut off a leaf ℓ of) and decide where it will be mapped later. Since
the pruned tree has exactly X (�) + 1 vertices, we can map it into� by Lemma 1. However, we have
to make sure that the removed leaf can be mapped to a free vertex. To achieve that, we initially set
the image of its neighbor C to a specific vertex in � . If � has a vertex of degree more than X (�),
then any such vertex will do as an image of C . This is because the isomorphism can occupy at most
X (�) of its neighbors, so one of them is always vacant to host ℓ . The other case occurs when � is
regular and hence has no vertex of a large degree. This brings us to the next key idea.

Idea II. Saving space for leaves is achieved by mapping outside specific sets.
When we deal with the case of a regular graph� , we map C to an arbitrary vertex D of degree X (�).
Now, a subgraph isomorphism of) − ℓ into � can occupy all X (�) neighbors of D. If this happens,
then the isomorphism uses no vertex outside #� [D] since X (�) + 1 vertices are already occupied.
Thus, if we force the subgraph isomorphism to use at least one vertex outside #� [D], then at least

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:7

one vertex in #� [D] would be saved. This is exactly what we do in the proof of Proposition 2.
We initially map a path of three vertices in) starting in C into a path of three vertices in� starting
inD making sure that the last vertex of this path in� is not a neighbor ofD. When this isomorphism
is extended onto) − ℓ , it automatically leaves at least one neighbor of D in� unused. This neighbor
finally becomes the image of ℓ .

These two ideas bring to a polynomial time algorithm for finding trees of size X (�) + 2 in a graph
� . It appears that we can push the applicability of these ideas further. However, it does not come
without additional effort. Let us provide some intuition on how the two ideas could be extended to
the case when) is a tree on X (�) + : vertices for : ≥ 3.

3.1 Saving Neighbors of a Single Vertex
Let) be a tree on X (�) + : vertices for : ≥ 3. The first question arising when we try to adapt
Proposition 2 to) is the following: If there is a vertex C in) with at least : − 1 adjacent leaves, can
we shave off : − 1 leaves C and repeat the same arguments to map the shaved tree and save : − 1
neighbors of the image of C? This would allow us to map the shaved leaves into the saved neighbors
and obtain the subgraph isomorphism of) into � . According to the notion of the maximum-leaf
degree (see Definition 1), the existence of a vertex C in) is equivalent to the condition ld()) ≥ : − 1.
Section 4 of our work is devoted to this particular case. We continue the current subsection with a
discussion of this case as well.

Note that different possible images of C can require different numbers of saved neighbors. For
example, if deg� (D) ≥ X (�) +: − 1, where D is the image of C , then saving neighbors is not required
at all, as : − 1 neighbors of D remain vacant after mapping the shaved tree of size X (�) + 1. The less
the degree of D is, the more vertices are required to be mapped outside #� [D]. We use ak (D), the
neighbor deficiency of D, to denote the number of vertices to map outside #� [D] (see Definition 2).

In the proof of Proposition 2, we initially mapped a path of three vertices in order to map one
vertex outside #� [D]. Lemma 6, the major auxiliary result of Section 4, pushes the applicability
of this method further. It shows that mapping a path of length 3: (starting from C in)) initially
can save ak (D) neighbors of some vertex D in � . This is achieved by mapping the path in) into a
path in � starting in D that has roughly every third vertex outside #� [D]. The choice of D depends
drastically on the structure of � . The sufficient requirement for D is having enough vertices in
#� [D] that have more than : − 1 neighbors outside #� [D].

If such a choice of D is not possible, the regular “map every third outside” procedure is not
possible. In this case, we show that the minimum vertex degree of graph � − #� [D] is at least : .
For any vertex G of such a graph, we can greedily construct a path of length at least : starting in G
by appending new vertices. Then, we construct a path in� that starts in D, goes to some vertex E in
+ (�) \ #� [D] through an intermediate vertex in #� (D), and ends by following a path of length
: − 2 inside � − #� [D]. This path is of length : and has its last : − 1 vertices outside #� [D]. It is
easy to see that mapping the first : + 1 vertices of the path in) into the constructed path in �
saves : − 1 ≥ ak (D) neighbors of D. This concludes the overview of Lemma 6.

However, Lemma 6 is not applicable when (i)) has no path of length at least 3: starting in C
or (ii) the minimum degree of � is in O(:2). In each of these cases, containment of) in � is not
guaranteed and requires an algorithmic approach. We handle each case separately. The second
case is easier than the first: It guarantees that the size of) is bounded by O(:2). Since Tree
Containment can be solved in 2O(|+ ()) |) · =O(1) running time using the color-coding technique of
Alon et al. [2], we achieve a time 2O(:2) · =O(1) algorithm for the case X (�) = O(:2). We highlight
this idea for further use in the overview.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:8 F. Fomin et al.

Idea III. Color-coding applies for graphs of minimum degree bounded by :O(1) .
It remains to discuss case (i) when) has no path of length at least 3: starting in C . The algorithm
for this case also involves color-coding. The initial step toward the algorithm here is to note that)
has a bounded diameter and so does every subtree of) . For the previous cases, we constructed a
path-to-path isomorphism that hits enough vertices in + (�) \ #� [D], where D is the fixed2 image
of C . In this case,) has no path of enough length starting in D. However, we know that if) is
isomorphic to a subgraph of � , then the subgraph isomorphism of) into � occupies at least ak (D)
vertices outside #� [D]. Thus, solving the problem is equivalent to finding an isomorphism of a
connected subtree of) containing C into� that maps C to D and also maps at least ak (D) vertices of
) to vertices in � that are outside #� [D].

We aim to find such a subtree of minimum size, the existence of such a tree is equivalent to the
containment of) in� . By minimality, the leaves of such a subtree are necessarily mapped to either
C or into + (�) \ #� [D]. Then, by the minimality, this tree should have at most ak (D) + 1 leaves,
so the size of any minimal subtree is at most diam()) · (ak (D) + 1) ≤ : · diam()). The obtained
bound allows us to use color-coding to find the required subtree in� . We color� with : · diam())
colors uniformly at random and use the coloring to find a subgraph of � that is (a) isomorphic
to the required subtree of) , (b) the isomorphism maps C to D, and (c) the isomorphism occupies
ak (D) vertices in+ (�) \#� [D]. This is done via dynamic programming in time 2O(: ·diam())) ·=O(1) .
As there is no vertex at a distance at least 3: from C in) , we have that diam()) = O(:). Hence,
similarly to case (ii), the overall running time of the algorithm is 2O(:2) · =O(1) .

This algorithm is important not only for the particular case ld()) ≥ : − 1—we shall recall it once
again in the overview in a slightly more general setting. Section 4.1 is dedicated to the corresponding
problem which we call Annotated Hitting Subtree Containment. In this problem, it is allowed
to have an arbitrary starting mapping from) into � and have multiple sets in � that are required
to be hit by the isomorphism. Our algorithm for this problem works in time 2:O(1) ·diam()) · =O(1) if
the total number of vertices to hit by the isomorphism is bounded by :O(1) .

The above arguments bring us to an algorithm for Tree Containment running in time 2O(:2) ·
=O(1) , where : = |+ ()) | − X (�), for the special case ld()) ≥ : − 1. This is the main result of
Section 4 formulated in Theorem 3.

3.2 Filtering out Yes-Instances
We still have to consider the case of the maximum-leaf degree ld()) < : − 1. As in the case
ld()) ≥ : − 1, we first filter out some structural properties of� and) that guarantee� containing
) . Taking the success of the complement case into account, a good candidate for being filtered out
first is the case of) having less than : − 1 leaves (that actually stops us from applying Idea II by
shaving leaves).

In this case,) can be covered by at most : − 3 (the number of leaves minus one) paths starting in
the same arbitrary leaf of) and ending in pairwise distinct leaves of) . Each of these paths consists
of at most diam()) + 1 vertices. Since these paths share at least one common vertex, we obtain
|+ ()) | ≤ 1 + (: − 3) · diam()) < : · diam()). It follows that diam()) is at least X (�)/: . As we
can handle small values of X (�) by making use of Idea III, we need to look only at trees of large
diameter.

Up to this point, we still have not introduced any mechanism of constructing isomorphisms of)
into � other than mapping outside a neighborhood of a specific vertex. To avoid keeping track of
this, we discover that it is possible to save neighbors of all vertices of � simultaneously. Moreover,

2The choice of the vertex D in� is fixed in the outer loop of the algorithm. Thus, the algorithm considers every possible
vertex in� as a candidate for the image of C .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:9

path-to-path isomorphisms are very suitable for this purpose. This is the next idea in the proof of
the main result.

Idea IV. Shortest paths are very good for saving neighbors.
Assume that � has a shortest (B, C)-path that consists of at least : + 2 vertices. On the one hand,
each vertex of� that does not belong to this path cannot have more than three neighbors belonging
to this path (otherwise we can make the (B, C)-path shorter). On the other hand, each vertex of the
(B, C)-path cannot have more than two neighbors inside the path for the same reason. Then, every
vertex in � has at least : − 1 non-neighbors in the path. Hence, if we map a path of) into the
(B, C)-path initially, we can extend this mapping to a subgraph isomorphism of) into � without
any additional work following Idea II. Due to that for each D ∈ + (�), we have at least : − 1 ≥ ak (D)
non-neighbors in the isomorphism initially.

The idea above is the basis for an alternative mechanism that is the core part of Section 6. Idea
IV allows to deal with � for the case diam(�) ≥ : + 1 automatically and the additional work is
required only to deal with the case diam(�) ≤ : . We turn this upper bound on the diameter of �
into our advantage. In fact, we are able to take any set (of size > (X (�)) and construct a path of size
O(: · |(|) that traverses all vertices of (. We do this iteratively by connecting consecutive vertices
in (by a shortest path in � . Since we do not want such segments to intersect, we have to remove
the prefix of the path from � before finding the shortest path to the next vertex of (. If during this
process the diameter of � becomes even greater than 2: , we make good use of it (following Idea
IV with additional arguments) and construct a path that contains enough non-neighbors of each
vertex of � .

The rest of Section 6 is devoted to finding the appropriate set (in � . This set is required to
contain at least ak (D) non-neighbors for every vertex D ∈ + (�). If the size of the graph is slightly
above X (�), that is, |+ (�) | ≤ (1 + n) · X (�), the existence of a small (is hardly possible. For this
reason, we dedicate a separate Section 7 that especially deals with this case for arbitrary n ≤ 1

4: .
The main result of this section, Theorem 6, states that if X (�) = Ω(:2), |+ (�) | ≤ (1+ n) · X (�), and
ld()) < : , then� contains) as a subgraph. The proof is based on extending a partial isomorphism
of) into � using unoccupied vertices. This is always possible to do because the vertices outside
the partial isomorphism in � should have many neighbors inside it. It grants many options for an
outer vertex to be inserted between the vertices of the isomorphism, and at least one option will
always suffice for extension.

By achieving the lower-bound |+ (�) | ≥ (1 + n) · X (�), we are able to construct the set (
of bounded size. We use the probabilistic method here. For simplicity, we slightly increase the
lower bound for the number of vertices up to |+ (�) | ≥ (1 + n) · X (�) + :Ω (1) · logX (�). (The
increase is achieved by lowering the value of n .) Each vertex D in � with ak (D) > 0 has at least
|+ (�) | − X (�) > n · X (�) non-neighbors in� . For a fixed D ∈ + (�), a random choice of a vertex in
+ (�) gives a non-neighbor of D with probability at least n

1+n . Then, the expected value of deficient
vertices D ∈ + (�) that are not neighbors of a random vertex of � is at least n

1+n · |+ (�) |, so there
should be a single vertex in � that is non-neighbor to at least n

1+n ratio of all deficient vertices.
We find such vertex in � and put it inside (. With a careful analysis, we show that repeating this
step for O(logX (�)/n) times results in a set (having at least one non-neighbor for each deficient
vertex of � . We have to repeat the whole process : − 2 times and obtain the required set (of size
O(: · logX (�)/n). Note that the additive part of the lower bound is required for maintaining the
probability n

1+n during the consecutive choices of distinct vertices into (. The value of n we use
throughout Section 6 is of the form 1

:Θ(1) , so the final bound on the size of (is :O(1) · logX (�).
The vertices of (are finally tied into a path in � of length at most :O(1) · logX (�) as discussed

above, and a path of sufficient length in) is mapped to the path in � . The discussion sums up into

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:10 F. Fomin et al.

the main result of Section 6, Theorem 5. It filters out trees of diameter :Ω (1) · logX (�), and the gap
between this bound and the desirable :O(1) still remains.

3.3 Shaving off Leaves from Distinct Neighbors
The results discussed above leave us with a tree) satisfying ld()) < : − 1 and diam()) ≤
:O(1) ·logX (�). The number of leaves in) , in this case, is at least :Ω (1) (following the X (�)/diam())
lower bound discussed before). Then, we can choose at most : − 1 vertices in) , such that in total
they have at least :−1 adjacent leaves. We denote this set by, . The strategy we want to implement
in this case is to use Idea II and to construct a mapping of a connected subtree of) containing the
vertices of, into � such that at least ak (F) non-neighbors of eachF ∈, are occupied by this
mapping. This is done in Section 8. The formal proof encapsulates several methods of constructing
a mapping that hits non-neighbors of, by exploiting the structure of) and � . This is the final
step of filtering out yes-instances before applying the last (and the most involved) of the algorithms
we use to prove the main theorem.

The first obstacle encountered here is that the mapping we require to construct should map all
vertices of, (as we should know their respective images in � in order to collect non-neighbors).
To our advantage, the choice of, can vary (while #) (,) has at least : − 1 leaves), and we will
make this choice depending on the structure of) .

The initial step here (in Section 8.1) filters out the case of) with diam()) ≥ Ω(:4). First,, is
chosen in a way that it contains two vertices on distance exactly diam()) − 2. Then, we consider
the minimum spanning tree), of, in) . Its leaves form a subset of) , so the number of leaves
in), is at most : − 1. Since), is of large diameter, there exist long paths in), consisting of
degree-2 vertices, which we refer to as trivial paths. We further shrink), by contracting edges
of each long trivial path down until its length reaches 2: . The shrank tree) ′

,
has at most O(:2)

vertices, and we initialize the mapping with an arbitrary subgraph isomorphism of) ′
,

into � .
The rest of the work is to transform this isomorphism to the isomorphism of), into � by

embedding vertices of � into trivial paths of the isomorphism image. We exploit the existence of a
trivial path of length Ω(:3) and embed a set ((containing : − 1 non-neighbors for the image of
eachF ∈,) into the image of this path. The technical work here is done using the arguments of
Section 6 that we discussed already. If it cannot be done at some moment, then Idea IV helps us to
construct a mapping in an alternative way.

The case of diam()) ≥ Ω(:4) is now dealt with yet. To proceed further, we cannot rely on
path-to-path isomorphisms anymore since) has no very long paths. Then, we focus more on the
structure of � . This is when we put the notion of @-escape vertices into play (see Definition 3).
At the beginning of Section 8.2, we start with an isomorphism of), into � and show how a
:Ω (1) -escape vertex helps in embedding the isomorphism with non-neighbors of, . This, however,
requires a vertex of degree :Ω (1) in) .

The rest of Section 8.2 partially resolves this issue by making additional assumptions of the
structure of) . Lemma 17 shows an alternative (to exploiting an escape vertex) mechanism to extend
a mapping of), with enough non-neighbors of, . If this mechanism fails, it produces a separator
of� of size :Ω (1) . Finally, Lemma 18 allows to use this separator to map a size-:O(1) -separable tree
) (see Definition 4) inside � . This exhausts the discussion of constructions of Section 8 used to
prove its main result Theorem 7.

3.4 Solving Remaining Case Algorithmically
We move on to the remaining case of Tree Containment Above Minimum Degree: � contains
no :Ω (1) -escape vertices and) is not size-:Ω (1) -separable, while X (�) ≥ :Ω (1) . The main result of

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:11

Section 5, Theorem 4, states that there is a randomized algorithm solving such cases in 2:
O(1) ·=O(1)

running time. In the rest of the current part of the overview, we discuss the main parts of the proof
of this result.

Following Idea II, the first part addresses hitting non-neighbors of images of vertices in, (the
set of leaf-adjacent vertices in)) similar to the previous part of the overview. Before we used
it for proving that � contains) as a subgraph. That was achieved by occupying at least ak (F)
non-neighbors of the image ofF in� for eachF ∈, . But this is only a sufficient condition. In fact,
not all vertices in, require so many saved neighbors. For example, if, has exactly : − 1 vertices,
then we require exactly one vacant neighbor when it comes to mapping the leaf to the neighbor of
the image ofF ∈, . Then, if we have one vacant neighbor forF1, two vacant neighbors forF2,
three vacant neighbors for F3, and so on, the extension of the isomorphism is guaranteed to be
possible.

The paragraph above suggests that a necessary condition should be discovered. This is exactly
what we do in Section 5.1. We prove that if the mapping of, into � is known initially, then the
existence of a subgraph isomorphism of) into � respecting this mapping is equivalent to the
existence of a mapping that hits specific sets in � . The details of this are quite complex, so we
refer the reader to the statement of Lemma 7. It automatically provides a one-to-many reduction
to Annotated Hitting Subtree Containment. Since the diameter of) is at most :O(1) , we
obtain an algorithm that runs in 2:

O(1) · =O(1) time and correctly decides the containment of) in
� , provided the mapping of, into � is given.

The first part alone does not provide any clue on how to choose the mapping of, into� . Trivial
enumeration of all possible mappings gives |+ (�) | |, | < |+ (�) |: possible options and yield only
an XP-algortihm for Tree Containment parameterized by : . The second part of Section 5 resolves
this issue. It allows to reduce the situation when a set, is guessed by making use of a random
sampling. Its central result, Lemma 8, can be turned into a polynomial-time randomized procedure
that takes � ,) ,, , and a single vertex D ∈ + (�) as input and produces a mapping of, into
� . If) is contained in � as a subgraph, then with probability at least 2−:O(1) , this mapping is a
restriction of some subgraph isomorphism of) into � . This is the only source of randomness in
our algorithm which we do not know how to derandomize. Combining the results of two parts we
obtain a (one-sided error) randomized algorithm for the specific case of Tree Containment with
running time 2:O(1) · =O(1) .

4 Vertex of High Leaf-Degree
In this section, we make the first step toward the proof of the main result of the article. It concerns
the case when) has a vertex adjacent to many leaves. One of the trivial cases of the problem is
when a tree) on X (�) +: vertices is a star—we guess where the center of the start could be mapped
and then check whether there is enough space to map the leaves. The main result of this section
extends such arguments to the case when) has a vertex of high-leaf degree.

Theorem 3. Let � be an =-vertex graph, : an integer, and) a tree on X (�) + : vertices and with
ld()) ≥ :−1. There is an algorithm deciding whether� contains) as a subgraph in time 2O(:2) ·=O(1) .

4.1 Hitting Sets with Isomorphism
Before we move on to the main result of this section, we first show auxiliary algorithms for finding
small-sized tree containments. We use the following result of Alon et al. [2].

Proposition 3 (Theorem 6.1, [2]). Let� be an =-vertex graph and) be a tree. It can be determined
in time 2O(|+ ()) |) · =O(1) whether � contains) as a subgraph.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:12 F. Fomin et al.

In the rest of this section, and especially in the later section, a variant of Proposition 3 with
additional constraints will be used. First, it is helpful to fix the images of some vertices, e.g., the root
of the tree. Second, in view of upcoming in the later sections structural properties of the solution,
it is required to find partial isomorphisms of) “hitting” certain subsets of + (�). A generalized
problem encapsulating the properties above is defined next.

First, we observe that just as the original Tree Containment, Annotated Hitting Subtree
Containment is in FPT parameterized by the size of the tree) , by an application of color coding.
We show this for the case when the target subtree) ′ is equal to the whole tree) , in order to use
later as a blackbox when the subtree achieving the isomorphism is already fixed.

Lemma 3. There is an algorithm that determines whether the desired isomorphism of the tree) ′ =)
into� in an instance of Annotated Hitting Subtree Containment exists in time 2O(|+ ()) |+:) ·=O(1) ,
where : =

∑A
9=1 : 9 .

Proof. When the size of the tree is a parameter, accounting for the additional constraints of
the Annotated Hitting Subtree Containment problem is a straightforward extension of the
color-coding technique of Proposition 3. For the color-coding step, we use |+ ()) | colors, where |(|
colors are assigned to the images of the vertices of (under ^, and the remaining ones are picked
randomly and independently throughout the rest of the graph. The dynamic programming then
computes, whether, for every rooted subtree) ′ of) , there exists a colorful solution with the given
characteristics: the partial isomorphism uses precisely the colors among the set� , and it hits exactly
: ′9 elements in each � 9 , for a given composition (: ′1, . . . , : ′A), where 0 ≤ : ′9 ≤ : 9 for each 9 ∈ [A].

For a fixed solution, random coloring makes it colorful with probability at least 2−Ω (|+ ()) |) , and
the dynamic programming runs in time 2O(|+ ()) |) · =O(1) , since there are 2 |+ ()) | choices for the
set of colors � , and 2O(:) choices for the composition (: ′1, . . . , : ′A). The total running time is thus
2O(|+ ()) |+:) · =O(1) . The algorithm can also be derandomized in the standard manner. �

Finally, we show the main result of this subsection: that Annotated Hitting Subtree Con-
tainment is efficiently solvable as long as the total size of “special” targets for the isomorphism
and the diameter of) are bounded.

Lemma 4. Annotated Hitting Subtree Containment admits an algorithm running in time
2O(? ·diam())) · =O(1) , where ? = |(| + ∑A

8=1 :8 .

Proof. It suffices to show that a sufficient set of choices for) ′ may be enumerated in the desired
time and then use Lemma 3 to determine whether the desired isomorphism exists for a fixed choice
of) ′.

Let) ′′ be the unique minimal subtree of) containing all vertices of (, clearly) ′′ is also a
subtree of any) ′ such that the desired isomorphism of) ′ into � exists. We may assume that (
and) ′′ are non-empty, as otherwise we can branch on an arbitrary vertex in) ′ and its image in
polynomial time.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:13

The algorithm tries all possible choices to extend) ′′ to) ′. Namely, let : = :1 + :2 + . . . + :A ,
C = |+ () ′′) |, and let + () ′′) = {F1,F2, . . . ,FC }. First, the algorithm branches on all compositions of
the value of at most : into C terms 01, …, 0C , i.e., : ≥ 01 + · · · + 0C , where for every 8 ∈ [C], 08 is a
nonnegative integer. Intuitively, for every 8 ∈ [C], 08 is the number of preimages in) ′ among the
required : vertices in

⋃A
9=1 � 9 , that are not in) ′′ but are “rooted” inF8 with respect to) ′′. Then,

for every 8 ∈ [C], the algorithm branches on the choice of a rooted tree) ′
8 that has 08 leaves each

at depth at most diam()); if 08 = 0, then) ′
8 is the one-vertex tree. Intuitively,) ′

8 describes exactly
how the selected 08 vertices are connected toF8 in) . Finally, the resulting tree) ′ is obtained from
) ′′ by rooting the tree) ′

8 atF8 , for every 8 ∈ [C].
The algorithm then verifies whether the constructed tree) ′ is a subtree of) such that each

vertex in (keeps its place under the isomorphism from) ′ into) . For every 8 ∈ [C], let)8 be the
subtree of) rooted atF8 that avoids) ′′. More formally,)8 is the connected component ofF8 in)
after removing the edges of) ′′ which is additionally rooted inF8 .

It is easy to observe that) ′ admits the desired isomorphism into) if and only if for each
8 ∈ [C],) ′

8 is a rooted subtree of)8 . The algorithm verifies the latter by invoking the algorithm of
Proposition 3 on) ′

8 and)8 . If there exists 8 ∈ [C] such that) ′
8 is not a rooted subtree of)8 , the

algorithm rejects the choice of) ′.
Finally, for every choice of) ′ that passes the procedure above, the algorithm invokes Lemma 3

to determine whether the desired isomorphism exists from) ′ into � . The algorithm reports that
the given instance admits a solution if for at least one choice of) ′ such an isomorphism exists.

We next verify the correctness of the algorithm. Clearly, if the algorithm finds a subtree) ′ of)
for which the desired isomorphism from) ′ into � exists, then the given instance is a yes-instance.
Thus, it only remains to verify that the considered set of candidate subtrees) ′ is sufficient. Let
) ∗ be a minimal subtree of) such that the desired isomorphism f∗ : + () ∗) → + (�) exists. We
show that in this case there also exists a subtree) ′ of) considered by the algorithm, for which the
desired isomorphism also exists.

Similarly to)8 and) ′
8 , for each 8 ∈ [C] let) ∗

8 be the subtree of) ∗ rooted atF8 that avoids other
vertices of) ′′. Consider a leaf ℓ ≠ F8 of) ∗

8 , by minimality of) ∗ there exists 9 ∈ [A] such that
f∗ (ℓ) ∈ � 9 , and moreover, |f∗ (+ ())) ∩ � 9 | = : 9 , otherwise removing ℓ from) ∗ would still give a
valid solution. This implies that the total number of leaves in {) ∗

8 }8∈[C] that are not in) ′′ is at most
: = :1+· · ·+:A . Let 0∗8 be the number of leaves in) ∗

8 not countingF8 , by the above 0∗1+· · ·+0∗C ≤ : .
Therefore, at a certain step, the algorithm considered the same composition (01, . . . , 0C), i.e., for
each 8 ∈ [C], 08 = 0∗8 . Since) ∗

8 is a tree with 08 leaves, and the distance from each to the root does
not exceed diam()), as) ∗

8 is a subtree of) , the algorithm also considered the choice) ′
8 =) ∗

8 , for
each 8 ∈ [C]. At this step of the algorithm, the constructed tree) ′ is exactly) ∗, and since) ∗

8 is a
subtree of) rooted atF8 and avoiding) ′′, the verification correctly determined that) ′ is a valid
choice for a subtree. Thus, the algorithm of Lemma 3 is queried with the subtree) ′ at the respective
step of the algorithm, and since f∗ is an isomorphism of) ∗ =) ′ into� with the desired properties,
the algorithm correctly identified the given instance as a yes-instance.

It remains to analyze the running time of the algorithm. Since) ′′ is the minimal subtree of
) containing the selected |(| vertices, its size C is at most |(| · diam()). The number of choices
for the composition 01 + · · · + 0C ≤ : is at most 2O(:+C) . The rooted tree) ′

8 has 08 leaves and at
most 08 · diam()) + 1 vertices, thus the number of choices is at most 2O(08 ·diam())) , resulting in
2O(? ·diam())) · =O(1) choices for the tree) ′, as ? = |(| + : . Verifying that the tree) ′

8 is a rooted
subtree of)8 takes time 2O(08 ·diam())) by Proposition 3, which is still under 2O(? ·diam())) · =O(1)

in total. Finally, the size of) ′ is at most |+ () ′′) | + ∑C
8=1 08 · diam()) ≤ ? · diam()), thus the

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:14 F. Fomin et al.

algorithm of Lemma 3 takes time 2O(? ·diam())) · =O(1) . Therefore, the total running time is bounded
by 2O(? ·diam())) · =O(1) . �

4.2 Extending Isomorphism of k − 1 Leaves
As the next preparatory step, we show another general tool for constructing isomorphisms. Namely,
if we manage to find a partial isomorphism of a subtree of) that contains : − 1 leaves while leaving
sufficiently many neighbors of the leaves’ parents unoccupied, such an isomorphism can always be
extended to the isomorphism of the whole tree) .

Lemma 5. Let � be a graph and) be a tree on X (�) + : vertices. Let ! be a set of : − 1 leaves of
) and let, := #) (!) be the set of vertices adjacent to ! in) . Let) ′ be a subtree of) such that
, ⊆ + () ′) ⊆ + () − !). If there exists a subgraph isomorphism f : + () ′) → + (�) such that for
eachF ∈,

|Im f \ #� [f (F)] | ≥ ak (f (F)),

then � contains) as a subgraph.

Proof. We first extend f to an isomorphism of) − ! into � . This is always possible by
Proposition 1 since |+ () − !) | = X (�) + 1. Now we have an isomorphism of) − ! into � , and it
remains to map the : − 1 vertices of !.

Let vertices in ! be ℓ1, ℓ2, . . . , ℓ:−1 and let the only neighbor of ℓ8 in) be F8 ∈ , . Since the
isomorphism occupies at least ak (f (F8)) non-neighbors of f (F8) in � , at least : − 1 neighbors of
f (F8) are not occupied, for each 8 ∈ [: − 1]. First, take any of the free neighbors of f (F1) as the
image of ℓ1. Each f (F8) still has at least : − 2 neighbors that are not occupied; take any of the free
neighbors of f (F2) as the image of ℓ2. Repeat this process for each 9 ∈ {3, . . . , : − 1}: at the 9th
step, each f (F8) has at least : − 9 non-occupied neighbors, so there is always a free neighbor for
the image of ℓ9 . �

4.3 Tree Containment When There Is a Vertex with Many Leaves
Finally, we work directly toward the proof of Theorem 3. We state the main combinatorial observa-
tion behind the theorem next.

Lemma 6. Let � be a graph and) be a tree on X (�) + : vertices. Suppose that) contains a vertex
B ∈ + ()), such that B has : − 1 leaf neighbors, and such that there is a path of length 3: in) starting
with B . If X (�) ≥ 11:2, and |+ (�) | ≥ |+ ()) |, then � contains) as a subgraph.

Intuitively, if the conditions of the lemma are not satisfied, then either X (�) and so |+ ()) | are
bounded by O(:2), or the diameter of) is bounded by O(:). In this case, Proposition 3 or Lemma 4
can be used to find a suitable (partial) isomorphism of) , thus Lemma 6 is the main obstacle towards
showing Theorem 3.

Proof of Lemma 6. By Lemma 5, it suffices to find a suitable subtree) ′ of) . If there is a vertex
E ∈ + (�) of degree at least X (�) + : − 1, then) ′ is the subtree containing the single vertex B , and
the isomorphism maps B to E . Since ak (E) = 0 in this case, Lemma 5 is immediately applicable. Thus,
in the following, we assume Δ(�) < X (�) + : − 1.

We now consider two cases based on whether there is a vertex in � that has a good “expansion”
out from its neighborhood. For a vertex E ∈ � , we call a vertex in #� (E) expanding if it has at least
: − 1 neighbors outside of #� (E). Intuitively, if we have sufficiently many expanding vertices in
#� (E), we can always embed the long path of) into � by mapping B to E and then going outside
of #� (E) sufficiently often. In the complement case, we have that no vertex has many expanding

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:15

vertices and thus the neighborhood of every vertex is extremely dense, which is helpful for finding
a suitable embedding in a different way. We now move on to the details of both cases.
Expanding Case. Let E be a vertex in � that has at least 3: expanding vertices in #� (E). Let
% = ?0 − ?1 − · · · − ?C be a path in) where C = 3: and ?0 = B . We construct a (partial) isomorphism
f : % → � that we will later use to invoke Lemma 5 on. We start by setting f (?0) = E , and then
continue defining f inductively. Let 8 ∈ {0, 1, . . . , C − 1}, we consider three cases based on f (?8):
Outer f (?8) ∉ #� (E), then we set f (?8+1) to be an arbitrary neighbor of f (?8) that is not yet used
by f ;
Non-expanding f (?8) ∈ #� (E) and f (?8) is not expanding in #� (E), then we set f (?8+1) to be an
arbitrary neighbor of f (?8) in #� (E) that is expanding and not previously used by f ;
Expanding f (?8) ∈ #� (E) and f (?8) is expanding in #� (E), then we set f (?8+1) to be an arbitrary
neighbor of f (?8) outside of #� (E) that is not previously used by f .

In case the respective rule out of the above is not applicable (i.e., a suitable next vertex does not
exist), we stop the procedure and let C ′ be the last index such that ?C ′ is assigned by f ; we also let
% ′ = ?0?1 . . . ?C ′ be the respective subpath of % . By construction, f is an isomorphism of % ′ into � .
We now argue that f maps at least : − 1 vertices of % ′ outside # [E].

First, by the construction of f , every Expanding vertex is necessarily followed by an Outer vertex,
and every Non-expanding vertex is followed by an Expanding vertex. Thus, at least every third
vertex in the sequence is Outer, and starting from 8 ≥ 1 none of them coincide with E . Therefore, if
C ′ = C , then the claim holds as C ≥ 3: . Otherwise, C ′ < C and the respective rule is not applicable
to f (?C ′). Observe that f (?C ′) is not Outer as any neighbor of f (?C ′) can be chosen in this case,
and degf (?C ′) ≥ X (�) ≥ 3: + 1 = |+ (%) |. Assume f (?C ′) is Expanding, then there are no more
neighbors of f (?C ′) outside of #� (E) not taken by f . By definition of expanding vertices, there are
at least : − 1 such neighbors, and thus, f maps at least : − 1 vertices outside of # [E], fulfilling the
claim. Finally, assume f (?C ′) is Non-expanding. Then, all of its expanding neighbors in #� (E) are
taken by f . There are at least X (�) neighbors of f (?C ′) in � , and at least X (�) − : + 1 of them are
in #� (E), since f (?C ′) is not expanding. In total, there are at most X (�) + : − 2 vertices in #� (E),
and at least 3: of them are expanding, thus the number of expanding neighbors of f (?C ′) is at least
: − 1. Since all of them are taken by f and each is followed by a vertex outside of # [E], f takes at
least : − 1 vertices outside of # [E] in this case as well.

It remains to observe that invoking Lemma 5 on f gives the desired isomorphism, as at least
: − 1 ≥ ak (E) vertices outside of # [E] are taken by the constructed partial isomorphism.
Dense Case. Since the conditions for the expanding case are not satisfied, we can assume that for
every E ∈ + (�), there are less than 3: expanding vertices in #� (E). By the pigeon-hole principle,
this implies that every non-expanding vertex in #� (E) has at least X (�) − 4: non-expanding
neighbors in #� (E), as it has at least X (�) neighbors in total, at most : − 1 outside of #� (E) since
it is not expanding, and less than 3: expanding vertices exist in #� (E). We further subdivide the
dense case into two subcases depending on the diameter of � .
Diameter of � is at least 3. Consider vertices D, E ∈ + (�) at distance 3 from each other. Take

vertices 0 ∈ #� (D), 1 ∈ #� (E) with 01 ∈ � (�), i.e., D − 0 − 1 − E is the shortest (D, E)-path. Denote
by � the set of non-expanding neighbors of E , observe that #� (E) ∩ #� (D) = ∅, as otherwise there
is a shorter path between D and E , thus � ∩ #� (D) = ∅. Also, by the starting assumption of the
dense case, X (� [�]) ≥ X (�) − 4: ≥ : . Let % ′ be the prefix of % on : + 1 vertices, i.e., % ′ is also a
path in) starting with B . Construct the isomorphism f : + (% ′) → + (�) in the following way.
First, map B to D, the second vertex of the path to 0, and the third vertex to 1. Then greedily map the
remaining : − 2 vertices inside �, since X (� [�]) ≥ : and exactly : − 1 vertices are to be mapped

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:16 F. Fomin et al.

inside �, finding the next unoccupied neighbor is always possible. Finally, by Lemma 5, f can be
extended to an isomorphism of the whole tree) into � .
Diameter of � Is at Most 2. First, assume that there exist two non-adjacent vertices D, E ∈ + (�)

with |#� (D) ∩ #� (E) | < 6: . Under this assumption, we always find an isomorphism similarly to
the previous case of diam(�) ≥ 3. Let � be the set of non-expanding vertices in #� (D). Again,
X (� [�]) ≥ X (�) − 4: , and since |#� (D) ∩ #� (E) | < 6: , X (� [� \ #� (E)]) > X (�) − 10: ≥ : . We
construct an isomorphism of % ′, a prefix of % with : + 1 vertices, to � by mapping B to E , the next
vertex to an arbitrary common neighbor of D and E , the third vertex to D, and then proceeding
greedily inside � \ #� (E). Since the last : − 1 vertices of % ′ are all outside of # [E], by Lemma 5,
we can extend this partial isomorphism to an isomorphism of) .

Otherwise, for every two non-adjacentD, E ∈ + (�), there exists a vertexF ∈ #� (D) ∩#� (E) that
is non-expanding for both D and E . Let D ∈ + (�) be the vertex achieving deg� D = X (�), and let
E ∈ + (�) be another vertex that is non-adjacent to D. We can assume that E exists since otherwise
|+ (�) | = deg� D + 1 = X (�) + 1 < |+ ()) | which contradicts the conditions of the lemma. LetF be
a non-expanding vertex in #� (D) ∩ #� (E) for both D and E . This means that |#� (F) ∩ #� (D) | ≥
X (�) − : and |#� (F) ∩ #� (E) | ≥ X (�) − : . Also, |#� (D) |, |#� (E) | ≤ Δ(�) < X (�) + : , thus both
|#� (D) \#� (F) | and |#� (E) \#� (F) | are at most 2: . Therefore, |#� (F) | ≥ |#� (D) ∪#� (E) | − 4: ,
and since |#� (F) | ≤ Δ(�) < X (�) + : , |#� (D) ∪ #� (E) | < X (�) + 5: . Since |#� (E) | ≥ X (�), we
get |#� (D) \ #� (E) | < 5: .

Now, assume that there exist : − 1 distinct non-neighbors of D, by the above each of them is
not adjacent to less than 5: vertices in #� (D), thus in total less than 5:2 vertices of #� (D) are
not adjacent to some of the selected : − 1 non-neighbors of D. This means that the number of
expanding vertices in #� (D) is at least |#� (D) | − 5:2 + 1 > 3: , since |#� (D) | = X (�) ≥ 8:2, which
is a contradiction as we assume not to be in the expanding case.

Finally, we get that there are fewer than : − 1 non-neighbors of D. The whole graph � therefore
contains at most X (�) + : − 1 vertices, as |#� (D) | = X (�), which means that |+ (�) | < |+ ()) | =
X (�) + : , contradicting the conditions of the lemma. �

4.4 Proof of Theorem 3
We now complete the proof of the main result of this section by using Lemma 6.

Proof of Theorem 3. First, if X (�) < 11:2, then |+ ()) | ≤ 11:2 + : , and by using the algorithm
from Proposition 2, we process the instance in time 2O(:2) · =O(1) .

Then, assume that there is no path of length 3: starting from B in) , which implies that diam()) <
6: . In this case, we reduce the problem to AnnotatedHitting Subtree Containment. Specifically,
we fix (= {B} and try all possible variants of the isomorphism ^ : {B} → + (�), which is equivalent
to fixing the image E ∈ + (�) of B , i.e.,^ (B) = E . We also set �1 =+ (�)\# [E], and:1 = ak (E). We now
invoke the algorithm given by Lemma 4 on the instance (�,) , ^, {�1}, {:1}) of Annotated Hitting
Subtree Containment. We report the yes-instance if for some choice of E the isomorphism is
found, and no-instance otherwise. The running time is bounded by 2O(:2) · =O(1) by Lemma 4. It
remains to show that this procedure always returns the correct answer.

In one direction, let f ′ :) ′ → + (�) be a solution to (�,) , ^, {�1}, {:1}), i.e.,) ′ is a subtree of) ,
f ′ is an isomorphism that maps B to E , and at least ak (E) vertices of) ′ are mapped outside of # [E].
We can assume that) ′ contains no leaves adjacent to B—removing them from) ′ does not change
the property of the solution, i.e.,) ′ is still connected and an adjacent leaf of B could not be mapped
outside of # [E]. We now let ! be an arbitrary set of : − 1 leaves adjacent to B in) , and invoke
Lemma 5 on f ′. Since by the above |Im f ′ \ # [E] | ≥ ak (E), this gives an isomorphism of) to � .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:17

In the other direction, let f be an isomorphism of) into � . Let E = f (B), f maps at least ak (E)
vertices outside # [E], since deg� (E) ≤ |+ ()) | − 1 − ak (E) by definition of ak (E). Therefore f is
a solution to the instance (�,) , ^, {�1}, {:1}) of Annotated Hitting Subtree Containment
constructed for ^ (B) = E .

Finally, if neither of the above cases occurs, then X (�) ≥ 11:2, and there is a path of length 3:
starting with B in) . By Lemma 6, the isomorphism of) to � always exists and can be constructed
in polynomial time. �

5 Small Diameter Trees and Separable M

In this section, we prove the following algorithmic result that allows handling trees with small
leaf-degree, but the scope of its application is restricted to the specific structure of) and � .

Theorem 4. Let ? ≥ 1 and : ≥ 3 be integers. There is a randomized algorithm that for a given graph
� , a tree) on X (�) + : vertices such that

(1) X (�) ≥ :3?+1,
(2) there are no :? -escape vertices in � ,
(3) ld()) < : , and
(4)) is not size-:? -separable, determines whether� contains) as a subgraph in time 2:

O(?) ·=O(1)

with probability at least 1
2 . The algorithm is a one-sided error and reports no false positives.

Before we proceed with the proof of Theorem 4, we establish two key ingredients required for
the proof.

5.1 Extending Leaf-Adjacent Mappings
Themain idea of the following lemma is close to Lemma 5. However, Lemma 5 gives only a sufficient
condition for the existence of a subgraph isomorphism. The proof of the following lemma requires
more precise and sophisticated counting neighbors of sets.

Lemma 7. Let � be a graph and let) be a tree consisting of X (�) + : vertices for : ≥ 1. Let (
be a set of : − 1 leaf-adjacent vertices of) . There is an algorithm that, given � and) , a mapping
^ : (→ + (�), determines whether there exists a subgraph isomorphism from) into � respecting ^.
The running time of the algorithm is 2:

O(1) ·diam()) · =O(1) .

Proof. Denote the vertices of (by B1, B2, . . . , B:−1. Let ! = {ℓ1, ℓ2, . . . , ℓ:−1} be a set of : − 1 leaves
of) , such that it contains exactly one neighbor ℓ8 of B8 for each 8 ∈ [: − 1]. By) ′, we denote the
subtree of) without the leaves of !, i.e.) ′ :=) − !. We also define D8 := ^ (B8) for each 8 ∈ [: − 1].

To present the algorithm, we first study the parameters of the subgraph isomorphism f that
extends ^. These parameters can be represented as a sequence of O(:) non-negative integers
bounded by : . Our algorithm will consider every possible combination of the parameters. Based on
a fixed combination, the algorithm tries to reconstruct a subgraph isomorphism satisfying these
properties. In what follows, we show that if f exists, then our algorithm will successfully construct
a subgraph isomorphism from) into � extending ^, for the choice of parameters corresponding
to f .

Suppose that there exists a subgraph isomorphism f : + ()) → + (�) such that the restriction
of f onto (equals ^. Let f ′ be the restriction of f onto + () ′). The first set of parameters of f
(in fact, parameters of f ′) is the sequence 01, 02, . . . , 0:−1. For each 8 ∈ [: − 1], we define 08 to be
the number of non-neighbors of D8 , the image of B8 , that are occupied by f ′, but capped with the
deficiency of D8 . That is,

08 (f ′) =min{|Im f ′ \ #� [D8] |, ak (D8)}.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:18 F. Fomin et al.

Thus, 08 represents the number of free neighbors of D8 that can be used for mapping ℓ8 when
extending f ′ to a subgraph isomorphism of the whole) . Note that 08 is formally defined as a
function of f ′, but we will often omit the “(f ′)” argument for simplicity.

If for a subgraph isomorphism of) ′, we have 08 = ak (D8) for each 8 ∈ [: − 1], then by Lemma 5,
the mapping of) ′ could be extended to a subgraph isomorphism of) . When this condition is not
satisfied, it could be that the subgraph isomorphism of) ′ cannot be extended. Even worse, it also
could happen that f ′ might have 08 = 0 for some (or even all) 8 ∈ [: − 1]. This forces us to identify
more properties and parameters of f ′.

Let � be the set of “problematic” (for the extension of f ′) vertices among D1, D2, . . . , D:−1. That is,

�(f ′) := {D8 : 8 ∈ [: − 1], 08 (f ′) < ak (D8)}.
Another property of a partial isomorphism that is important for analyzing whether it could be
further extended is the number of neighbors of the problematic vertices �(f ′) in� . This brings us
to the definition of the third parameter of f ′

- (f ′) := (Im f ′ ∩ #� (�(f ′))) \
⋂

D8 ∈� (f ′)
#� (D8),

that is, the neighbors of the vertices in � occupied by f ′, except the vertices that are adjacent to all
vertices of �. The following claim bounds the search space for - .

Claim 1. |#� (�) \ ∩D8 ∈�#� (D8) | < :3 and |- | < :2.

Proof of Claim 1. First note that for eachD8 ∈ �we have 0 ≤ 08 < ak (D8), so deg� (D8) < X (�)+: .
Also |Im f ′ ∩ #� (D8) | ≥ |Im f ′ | − 08 . Hence, at most 08 vertices in Im f ′ are non-neighbors to D8
for each D8 ∈ �.

We have that at most
∑

D8 ∈� 08 ≤ |� | · (: − 1) vertices in Im f ′ can be a non-neighbor to at least
one D8 ∈ �. Hence, vertices in � have at least |Im f ′ | − |� | · (: − 1) common neighbors. Since none
of the vertices of - is adjacent to all vertices of � inside Im f ′, we have that |- | ≤ |� | · (: − 1) < :2.

For each D8 ∈ �, the number of its neighbors that are not the common neighbors of all vertices
of � is at most

deg� (D8) − (|Im f ′ | − |� | · (: − 1)) < (X (�) + :) − (X (�) + 1 − |� | · (: − 1)) = (|� | + 1) · (: − 1).
Summing up these bounds over all D8 ∈ �, we obtain the bound |� | · (|� | + 1) · (: − 1) < :3, as

required by the statement of the claim. �

The final parameter of f ′ that we consider is the number of vertices occupied by f ′ that are not
related to �, that is,

0� (f ′) := |Im f ′ \ #� [�(f ′)] |.
This parameter is very close in meaning to 08 since it represents the number of preserved neighbors
of � in � . Let us quickly upper bound its value.

Claim 2. 0� ≤ min{08 : D8 ∈ �}.

Proof of Claim 2. By definition, 08 ≤ |Im f ′ \ #� [D8] | for each D8 ∈ �. At the same time,
#� [�] ⊃ #� [D8] and, consequently, (Im f ′ \ #� [D8]) ⊃ (Im f ′ \ #� [�]). Hence, by definition of
0� , 08 ≥ 0� for each D8 ∈ �. �

We have defined all parameters of f ′, that is, 01, 02, . . . , 0:−1, �, - and 0� . While there could be
=O(|+ () ′) |) different ways for a mapping f ′ to map) ′ into � , the number of possible combinations
of the parameters is significantly smaller. Indeed, the values of 08 and 0� are integers within the
range {0, . . . , : − 1}. The value of � is derived from 01, 02, . . . , 0:−1. To form set - , we have at

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:19

most (:3):2 possible options depending on � only. We conclude that there are 2O(:2) different
combinations of these parameters. All these combinations are easily enumerated in time, up to a
polynomial factor, proportional to the total number of combinations.

We move on to the core part of the algorithm. The algorithm does not go through all possible
guesses for mapping f ′. Instead, we run the algorithm for every valid choice of the parameters
01, 02, . . . , 0:−1, �, - , and 0� . For each choice of the parameters, the algorithm either outputs an
isomorphic embedding of) in � or fails. We will show that when the choice of the parameters
corresponds to f ′, then the algorithm always finds the required subgraph isomorphism of) in � .
Thus, if there exists a subgraph isomorphism f : + ()) → + (�) such that the restriction of f onto
(equals ^ and f ′ is the restriction of f onto + () ′), then our algorithm constructs an isomorphic
embedding of) into � for the choice of the parameters corresponding to f ′.

We assume that we guessed correctly the parameters of f ′. Let us remark that the algorithm does
not recover mappings f ′ and f . Instead, it uses the parameters of f ′ to compute another mapping
b ′ and then extends b ′ to subgraph isomorphism b mapping) to � that is also compatible with
mapping ^. We want subgraph isomorphism b ′ from) ′ to � to satisfy the following conditions:

—08 (b ′) ≥ 08 (f ′),
— Im b ′ ⊃ - (f ′), and
— |Im b ′ \ #� [�(f ′)] | ≥ 0� (f ′).

Let us remark that in particular, f ′ satisfies these three conditions.

Claim 3. The subgraph isomorphism b ′ can be found in 2O(:2) ·diam()) · =O(1) running time.

Proof of Claim 3. First, we find a partial isomorphism from) ′ into� by reducing to Annotated
Hitting Subtree Containment. We choose �8 := #� (D8) and :8 := 08 (f ′) for each 8 ∈ [: − 1].
The next set is �: := - (f ′) with :: := |- (f ′) |. The final set is �:+1 := + (�) \ #� [�(f ′)] with
::+1 := 0� (f ′).

The constructed instance of Annotated Hitting Subtree Containment thus is

(�,) ′, ^, (#� (D1), #� (D2), . . . , #� (D:−1), -,+ (�) \ #� [�]), (01, 02, . . . , 0:−1, |- |, 0�)) .

This instance’s constraints exactly correspond to the three conditions in the definition of b ′. This
instance is a yes-instance by our assumption about the existence of f ′, and, hence of b ′. Apply the
algorithm of Lemma 4 to this instance and in time 2O(:2) ·diam() ′) · =O(1) obtain the intermediate
partial isomorphism. Since |+ () ′) | = X (�) + 1, by Proposition 1, this mapping could be extended
to the subgraph isomorphism b ′ : + () ′) → + (�) in polynomial time. �

The last subroutine of the algorithm extends b ′ : + () ′) → + (�) into an isomorphism b : + ()) →
+ (�). The subroutine here is quite straightforward since we just need to find a matching between
^ (() and + (� − Im b ′) in � saturating every D8 ∈ ^ ((). Then, the edge of the matching incident
with D8 gives an image for ℓ8 . The matching, if it exists, could be found in polynomial time. Thus,
what is left is the proof that such a matching always exists.

Claim 4. There is a matching between ^ (() and + (� − Im b ′) in � saturating ^ (().

Proof of Claim 4. We focus on saturating the vertices in �(f ′), since each D8 ∉ �(f ′) has at
least : − 1 neighbors outside Im b ′. They need not be taken care of, we just saturate them arbitrarily
in the end. In the rest of the proof of the claim, we assume that �(f ′) is not empty.

Define the common neighbors of � as

� (f ′) =
⋂

D8 ∈� (f ′)
#� (D8).

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:20 F. Fomin et al.

Observe that by the definition of �,�,- and 0� ,

|Im f ′ | = |�(f ′) | + |Im f ′ ∩� (f ′) | + |- (f ′) | + 0� (f ′).

On the other hand,

|Im b ′ | = |�(f ′) | + |Im b ′ ∩� (f ′) | + |Im b ′ ∩ #� (�(f ′)) \� (f ′) | + |Im f ′ \ #� [�(f ′)] |.

Since |Im b ′ | = |Im f ′ |, we have

|Im f ′ ∩� | + |- | + 0� (f ′) = |Im b ′ ∩� | + |Im b ′ ∩ #� (�) \� | + |Im b ′ \ #� [�] |. (1)

We split the vertices in � into three groups depending on how f maps their neighbors in !. The
first group consists of vertices D8 ∈ � such that the image of its leaf ℓ8 in f is not occupied by b ′:

�1 := {D8 ∈ � : f (ℓ8) ∉ Im b ′}.

The second group consists of D8 ∈ � such that f (ℓ8) is occupied by b ′, but is common to all vertices
in �:

�2 := {D8 ∈ � : f (ℓ8) ∈ Im b ′ ∩�}.

The remaining group is

�3 := {D8 ∈ � : f (ℓ8) ∈ Im b ′ \�}.

We construct the matching saturating � = �1 ∪ �2 ∪ �3. Denote by !1 := {ℓ8 : D8 ∈ �1} the set
of leaves for �1. For each D8 ∈ �1, we add edge D8f (ℓ8) to the matching. This is legitimate since
f (ℓ8) ∉ Im b ′ for each ℓ8 ∈ !1.

The rest of the vertices in �, that is, vertices of �2 ∪ �3 we match with vertices from� \ (Im b ′ ∪
f (!1)). Since the vertices of� are the common neighbors of � (� and� induce a complete bipartite
subgraph in �), we only have to prove that � has enough free vertices to match.

We have to perform some counting to proceed. Since the leaf neighbors of �2 are matched to �
in f , we have

|� \ (Im f ′ ∪ f (!1)) | ≥ |�2 |.

Because - ⊂ Im f ′ and �3 ∩ Im f ′ = ∅, and both - and �3 are subsets of Im b ′, we have

|Im b ′ ∩ #� (�) \� | ≥ |- | + |�3 |. (2)

Combining Equation (2) and |Im b ′ \ #� [�] | ≥ 0� with Equation (1), we conclude that

|� ∩ Im b ′ | ≤ |� ∩ Im f ′ | − |�3 |.

Therefore,

|� \ (Im b ′ ∪ f (!1)) | = |� \ f (!1) | − |� ∩ Im b ′ |
≥ |� \ f (!1) | − |� ∩ Im f ′ | + |�3 |
= |� \ (Im f ′ ∪ f (!1)) | + |�3 | ≥ |�2 | + |�3 |.

It means that � has enough free vertices to be matched with �2 ∪ �3. This finishes the proof of
the claim. �

This completes the proof of the correctness of the algorithm for the right choice of the parameters.
Note that if our guess of the parameters is incorrect, the algorithm still could find a subgraph
isomorphism, thenwe stop. Or, if it fails, wemove on to the next choice of the parameters. By Claim 3,
the running time of the subroutine for the fixed choice of parameters is 2O(:2) ·diam()) · =O(1) for

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:21

both correct and incorrect choices of the parameters. Thus, the total running time of the algorithm
is 2O(:3) · 2O(:2) ·diam()) · =O(1) . This completes the proof of the lemma. �

As a side remark, we note that Lemma 7 already provides an XP-algorithm (with parameter :)
for tree containment when a tree is of constant diameter.

5.2 Guessing a Mapping Randomly
The second key ingredient of Theorem 4 allows us to guess images (in �) of leaf-adjacent vertices
(in)) efficiently.

Lemma 8. Let� be a graph, ? ≥ 1, : ≥ 3 be integers, and) be a tree on X (�) + : vertices such that

(1) X (�) ≥ :3?+1,
(2) there are no :? -escape vertices in � ,
(3) ld()) < : , and
(4)) is not size-:? -separable.

Then, there is a set W of 2:
O(?)

leaf-adjacent vertices in) , satisfying the following:
If� has a subgraph isomorphic to) , then there is a vertex D ∈ + (�) and a subgraph isomorphism f

from) into� such that with probability at least 1
:?+2 a randomly selected (:−1)-vertex set* ⊂ #� (D)

has f−1 (*) ⊂ W.

By a randomly selected set * , we mean here a set formed by selecting : − 1 times uniformly at
random (without repetitions) a vertex from #� (D).

Proof. Let A be a vertex in) whose deletion separates) into components of size at most
|+ ()) |/2. Suppose that one of the components is of size at least :? . Then, the edge between A and
this component separates) into a part of size at least :? and a part of size at least |+ ()) |/2 >

X (�)/2 ≥ :? . This is a contradiction because, by the lemma’s assumption,) is not size-:? -separable.
Therefore, every component of) − A is of size at most :? .

In the rest of the proof, we assume that) is rooted in A . Let the children of A in) be 21, 22, . . . , 23
for 3 := deg) (A). For each 8 ∈ [A], the subtree)28 rooted in 28 has less than :? vertices.

We first note that there are not too many non-isomorphic rooted trees among)28 . In his work
[51], Otter proved that there are at most O(2.95=) non-isomorphic (unrooted) trees on = vertices. If
we move from unrooted to rooted trees, the number of the classes of equivalence grows by at most
the maximum size of the tree, and the bound becomes O(2.95= · =). Since each)28 consists of at
most :? vertices, we have to sum up this bound over each tree size from 1 to :? . We obtain that the
upper bound on the number of non-isomorphic trees from) − A is O(2.95:? · :? · :?) = 2:

O(?) .
We construct the set of leaf-adjacent vertices W via the following process. For each class of

isomorphic trees from)21 ,)22 , . . . ,)23 , we take : − 1 (or all of them, if they are less than : − 1)
representatives of this class. Then, for each of the selected trees)28 , we add all leaf-adjacent vertices
in + ()28) (with respect to the whole)) to W. The size of W is in 2:

O(?) .

The construction of W is complete, and we proceed with the proof of the probability statement
of the lemma. It is based on the following claim.

Claim 5. There are at least X (�)
:?

leaf-adjacent vertices (excluding A) in) .

Proof of Claim 5. Since ld()) < : , at most : − 1 subtrees among)28 are single-vertex trees.
Each of the other subtrees)28 contains at least one leaf-adjacent vertex in) . The total number of

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:22 F. Fomin et al.

vertices in these subtrees is at least |+ ()) | − 1 − (: − 1) = X (�). Since the size of each of them is at
most :? , at least X (�)

:?
vertices in total are leaf-adjacent vertices. �

Let f : + ()) → + (�) be the subgraph isomorphism from) into� . Put D := f (A). Since there are
no :? -escape vertices in � , at most :? distinct)28 have at least one vertex mapped outside #� (D)
by f , i.e.,

f (+ ()28)) ⊄ #� (D)

holds for at most :? distinct values of 8 . Also deg� (D) < X (�) +:? , again since D is not a :? -escape
vertex. Since each |+ ()28) | is at most :? , we have that |Im f \#� [D] | ≤ :2? . Pipelining with Claim 5,
we deduce that at least

X (�)
:?

− :2? ≥ X (�)
:?

− X (�)
:?+1

≥ X (�) · (: − 1)
:?+1

≥ X (�) + X (�)
:?+1

>
X (�) + :? + :?+2

:?+1
>

deg� (D)
:?+1

+ : (3)

vertices in #� (D) are images of leaf-adjacent vertices with respect to f .
The set* is formed via iterative random selection of a (not previously selected) vertex in #� (D).

There are:−1 iterations. By Equation (3), in each iteration, with probability at least 1
:?+1 , the selected

vertex is an image of a leaf-adjacent vertex. Hence, with probability at least (1
:?+1)

:−1 > 1
:?+2 , a

random subset * ⊂ #� (D) consists of : − 1 distinct images of leaf-adjacent vertices of) with
respect to f . We refer to such a choice of* as to a good choice. It remains to show that for each good
choice of* , there is some subgraph isomorphism f ′ from) to � with property f ′ (W) ∩* =* .

Let* be a fixed good choice, i.e., a subset of #� (D) of size : − 1 such that f−1 (*) consists only
of leaf-adjacent vertices in) . We now modify the isomorphism f and obtain another isomorphism
f ′ with (f ′)−1 (*) ⊂ W.

Recall that W consists of a union of leaf-adjacent vertices in some subtrees of 21, 22, . . . , 23 , i.e.,
)28 for 8 ∈ � for some � ⊂ [3]. On the other hand, f−1 (*) is a subset of a union of leaf-adjacent
vertices of at most : − 1 subtrees of 21, 22, . . . , 23 , i.e.,)2 9 for 9 ∈ � for some � ⊂ [3] of size at most
: − 1. Therefore, if � ⊂ � , then f is the required isomorphism for* .

Otherwise, we modify f . Take a 9 ∈ � \ � . The leaf-adjacent vertices of)2 9 are not inW. However,
by the construction of W, there is 8 ∈ � \ � such that)28 is isomorphic to)2 9 , as W contains
leaf-adjacent vertices of at least : representatives of the isomorphism-equivalence class of)2 9 . We
modify f by interchanging the images of)28 and)2 9 . This modification reduces the size of � \ � by
exactly one.

We repeat such modifications until we reach � ⊂ � , and hence an isomorphism f ′ for* satisfying
the required condition. This completes the proof of the lemma. �

5.3 Proof of Theorem 4
Proof of Theorem 4 The algorithm is aMonte–Carlo algorithm that uses Lemma 7 as its subroutine.
Since every tree) is size-(diam())/2)-separable, it is guaranteed that diam()) ≤ :?

2 , so the running
time of a single call of Lemma 7 is 2:O(?) · =O(1) . It only remains to find a suitable mapping ^ to call
Lemma 7. From now on, we assume that � contains) as a subgraph, since Lemma 7 never reports
false-positives.

We iterate several values of ^ using Lemma 8. Constraints on � and) imposed by Theorem 4
allow to apply Lemma 8. We obtain a set W of leaf-adjacent vertices of) and pick a random set*
of : − 1 leaf-adjacent vertices in) (excluding A). By Lemma 8, with probability at least :−?−2, there
is a subgraph isomorphism f from) into � with f−1 (*) ⊆ W.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:23

To produce the mapping ^ for a single run of the subroutine of Lemma 7, we use W and* . That
is, ^ is a mapping from a subset of W into* , and we iterate over all |W| |* | = 2:

O(?) possible such
mappings. For each fixed mapping, we run the subroutine of Lemma 7. The total running time is
bounded by 2:

O(?) · =O(1) . If the guess of* was good, at least one of the runs correctly reports that
� contains) . In this case, the algorithm reports that � contains) and stops.

We have shown so far that a single guess of* provides a correct answer with probability at least
:−?−2 in time 2:O(?) · =O(1) . To amplify the probability, we repeat this procedure (guess of * and
iterating ^) 2:?+2 times in total. By the standard arguments, the probability that at least one of the
2:?+2 guesses of* is correct is at least 1

2 . The total running time is 2:O(?) · =O(1) .
If at every run of the subroutine the algorithm reports that � does not contain) , the algorithm

reports that � does not contain) . This happens with probability 1 if � does not contain) as a
subgraph, and with probability at most 1

2 otherwise. The proof is complete. �

6 Large Diameter and Preserving Paths
In this section, we show that � contains) if the diameter diam()) is sufficiently large and = is
at least slightly above X (�). The proof also yields a polynomial-time algorithm that constructs a
subgraph isomorphism from) into� . More formally, the main result of the section is the following
combinatorial result.

Theorem 5. Let : ≥ 3 and let � be a connected graph with at least = ≥ (1 + 4
:4) · X (�) vertices

and of minimum vertex degree X (�) > :16. Then, � contains as a subgraph every tree) on at most
X (�) + : vertices and of diameter diam()) ≥ 8:6 · logX (�).

We start the proof of Theorem 5 by preparing auxiliary results in Sections 6.1 and 6.2. The
final step of the proof is given in Section 6.3. While we state Theorem 5 and all lemmata in this
section as combinatorial results—under certain conditions, the graph contains a certain object—all
these proofs are constructive and imply polynomial time algorithms computing the corresponding
objects in polynomial time. In particular, the subgraph isomorphism of tree) in Theorem 5 could
be constructed in polynomial time.

6.1 Preserving Paths and How to Use Them
In this subsection, we define preserving sets and preserving paths. Recall that by ak (E) we denote
the neighbor deficiency of vertex E , that is, max{X (�) +: − 1− deg� (E), 0}. Let us also remind that
for a set (⊆ + (�) and vertex E ∉ (, the non-neighbors of E in (are the vertices of (that are not
adjacent to E .

Definition 5 (Preserving Set and Path). For a graph � and integer : ≥ 0, we say that (⊆ + (�)
is :-neighbor-preserving, or simply :-preserving, if each vertex E ∈ + (�) \ (has at least ak (E)
non-neighbors in (. If % is a path in � such that + (%) is preserving, we say that % is a preserving
path in � .

The following lemma shows that a :-preserving path in� guarantees a tree on X (�) + : vertices
of large enough diameter in � .

Lemma 9. Let � be a graph, : ≥ 0 be an integer, and let % be a :-preserving path in � . If X (�) ≥ : ,
then � contains every tree) on X (�) + : vertices with diam()) ≥ 2|+ (%) | − 1.

Proof. Let) be a tree satisfying the conditions of the lemma. We construct an embedding of)
into � by using the preserving path % .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:24 F. Fomin et al.

Fig. 1. Construction of & and '; & is shown by a thick line and ' is shown in red.

Let & be a path in) with exactly 2|+ (%) | − 1 edges. Such a path exists because the diameter
of) is at least 2|+ (%) | − 1. Removal of the middle edge of the path & splits) (and &) into two
parts. One of these parts of) consists of at most |+ ()) |/2 vertices. We denote by ' the subpath
of & belonging to this part of) . Let us remark that ' is also a path in) and that |#) [+ (')] | ≤
|+ ()) |/2 + 1 = (X (�) + :)/2 + 1 ≤ X (�) + 1. (See Figure 1.)

We start constructing the isomorphism f by mapping path ' into path % . Then, we map all
remaining neighbors of ' in) , i.e., #) (+ (')), into the neighbors of their images in � . Since
|#) [+ (')] | ≤ X (�) + 1, such a mapping is always possible.

Thus, so far f maps #) [+ (')] into #� [+ (%)]. For the remaining vertices of + ()) \ #) [+ (')],
we extend f by repeating the following procedure. We pick up an edge G~ ∈ � ()) such that G is
already mapped and ~ is not mapped. Let E := f (G). We claim that at least one neighbor of E in� is
not in Im f yet; thus, we can extend f by mapping ~ into this free neighbor. Since all neighbors of
' in) are already mapped, we have that G , which is adjacent to the unmapped vertex ~, is not in
+ ('). Hence, E ∉ + (%). Because % is a preserving path, vertex E has at least ak (E) non-neighbors in
+ (%) ⊆ Im f . This means that E is adjacent to at most |Im f | − 1 − ak (E) vertices occupied by f . At
least one vertex of) , namely ~, is not mapped yet, and thus |Im f | ≤ |+ ()) | − 1 = X (�) + : − 1.
Concluding, we have that the number of E occupied by f is at most

|Im f | − 1 − ak (E) ≤ X (�) + : − 2 − ak (E) = ((X (�) + : − 1) − ak (E)) − 1 ≤ deg� (E) − 1,

and thus E has a free neighbor.
The resulting isomorphism f is the subgraph isomorphism from) into � . �

The rest of this subsection shows a way to construct a preserving path from a preserving set. We
start with a lemma showing how to convert a “diameter modulator” into a preserving set.

Lemma 10. Let � be a connected graph and : ≥ 1. If there is a vertex set (⊆ + (�) such that
diam(� − () ≥ 2: and X (�) ≥ |(| + : − 1, then � contains a :-preserving path of length at most
4: − 2 + |(| in � .

Proof. We start the proof with the case when � − (is connected. In this case, we select any
two vertices in � − (such that the distance between them in � − (is exactly 2: . Let % be a
shortest path connecting these two vertices. Because % is a shortest path, each vertex in + (�) \ (
has at most three neighbors in % . Since |+ (%) | = 2: + 1, each vertex E ∈ + (�) \ (has at least
(2: + 1) − 3 = 2(: − 1) ≥ ak (E) non-neighbors in + (%).

Let us remark that % is not yet :-preserving because some vertices of (could have fewer than ak
non-neighbors in+ (%). We make % :-preserving by inserting some vertices of (. More formally, if a
vertexD ∈ (has two consecutive neighbors E,F in % , we addD to % by inserting it between E andF .
We repeat this iteratively until either (is exhausted or none of the vertices from (can be inserted

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:25

Fig. 2. The case when � − (is not connected; & is shown in red.

into % . Note that every vertex that remained in (has at least b|+ (%) |/2c ≥ : non-neighbors in
+ (%). Hence, % is a preserving path in � of length at most 2: + |(|.

Now consider the case when � − (is not connected (Figure 2). We assume that diam(�) < 2: ,
otherwise we can take (:= ∅ and proceed as in the connected case of the proof. Let �1,�2, . . . ,�?

be connected components of � − (, ? ≥ 2. Then, X (�8) ≥ X (�) − |(| ≥ : − 1 for each 8 ∈ [?].
In graph � , we take a shortest path & between + (�1) and + (�2). Since the diameter of � is less

than 2: , we have that the length of & is at most 2: − 1. Let E1 and E2 be the endpoints of & such
that E8 ∈ + (�8), 8 ∈ {1, 2}. For each 8 ∈ {1, 2}, we construct a path '8 of length exactly : − 1 inside
�8 starting from E8 . Such a path always exists in�8 since : − 1 ≤ X (�8).3 Paths '1 and '2 are disjoint
and for each 8 ∈ {1, 2}, '8 and & have only one common vertex, namely E8 . We obtain path % by
concatenating paths '1, &, '2. The length of % is at least 2: − 1 (the lengths of '1 and '2 are exactly
: − 1 plus the length of& is at least one) and at most 4: − 3. Since % contains : vertices of�1, it has
at least : > ak (E) non-neighbors for each E ∈ + (�) \ ((∪+ (�1)) =

⋃?

8=2+ (�8). Symmetrically, it
contains : vertices of �2, so it also covers the deficiency of vertices of �1. Hence, only vertices in
(can have fewer than : non-neighbors in % . For such vertices, we use exactly the same trick as
in the connected case: Since |+ (%) |/2 ≥ : , we can repeatedly insert such vertices of (into % . The
resulting path % is :-preserving and its length is at most 4: − 3 + |(|. �

We finally show how to construct a preserving path from a preserving set in � using the lemma
above.

Lemma 11. Let � be a connected graph and : ≥ 1. If � contains a :-preserving set (such that
X (�) ≥ (2: − 1) · |(|, then � also contains a :-preserving path of length at most (2: − 1) · |(|.

Proof. The preserving path is found by joining all vertices of (in some order via shortest paths.
Let B1, B2, . . . , BC be the vertices of (in an arbitrary order, C = |(|. We construct a sequence of paths

%1, %2, . . . , %C , such that for each 8 ∈ [C], %8 is a path between B1 and B8 with+ (%8)∩(= {B1, B2, . . . , B8 }.
We start with the path %1 that consists only of a single vertex B1. To obtain %8+1 from %8 , we do the

following. If diam(�−+ (%8−B8)) < 2: , we concatenate %8 with the shortest path between B8 and B8+1
in� −+ (%8 −B8). We repeat this process (C −1) times unless the condition diam(� −+ (%8 −B8)) < 2:
fails. If we succeed, then we have a path % = %C of length at most (C − 1) · (2: − 1). Since (⊆ + (%),
% is a preserving path in � .

Suppose that for some 1 < 8 < C , we succeed in constructing %8 but we cannot proceed further
because diam(� −+ (%8 − B8)) ≥ 2: . The length of %8 is at most (8 − 1) · (2: − 1) ≤ (C − 2) · (2: − 1).
Then, |+ (%8 − B8) | ≤ (C − 2) · (2: − 1). By Lemma’s assumption, we have X (�) ≥ (2: − 1) · |(|, hence
3A path of length : − 1 is a tree on : vertices. By Proposition 1,�8 contains it as a subgraph even if we fix an arbitrary
starting vertex.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:26 F. Fomin et al.

X (�) ≥ |+ (%8 − B8) | + : . By applying Lemma 10 to� and+ (%8 − B8), we obtain a preserving path of
length at most |+ (%8 − B8) | + 4: − 2 ≤ (2: − 1) · (|(| − 2) + 4: − 2 = (2: − 1) · |(| in � . �

6.2 Finding Preserving Sets of Order log % (M)

We first need the technical lemma about the properties of vertices with degrees below some
threshold in sufficiently large graphs. Informally, the lemma says that for the set � of vertices of
degrees at most (1 + n) · X (�), it is possible to select a sufficiently small vertex set (such that no
vertex of � dominates all vertices of (.

Lemma 12. Let � be an =-vertex graph with X (�) ≥ 2. Let n ∈ (0, 1) be a given number such that
= ≥ (1 + n)2 · X (�). Then, there exists a set (⊆ + (�) such that (has at least one non-neighbor for
each vertex in � and |(| < 4 logX (�)/log(1 + n) + 1, where � is the set of vertices in � of degree less
than (1 + n) · X (�).

Proof. We construct the set (starting from (= ∅. Fix an arbitrary E ∈ �. By choosing a vertex
D ∈ + (�) uniformly at random, the probability that D is adjacent to E is

deg� (E)
=

<
(1 + n)X (�)

=
.

Hence, the expected number of vertices in � adjacent to a random D ∈ + (�) is at most

(1 + n) · X (�)
=

· |�|.

Therefore, there exists B1 ∈ + (�) such that all vertices of� except at most (1+n) · X (�)
=

· |�| vertices
are non-neighbors of B1. We add B1 to (. Let �1 ⊆ � be the set of vertices that are adjacent to B1.
Now apply the arguments above to�1 instead of�. There is a vertex B2 ∈ + (�) that is non-adjacent
to all but at most

(1 + n) · X (�)
=

· |�1 |

vertices of�1. Then,�2 is defined as a subset of vertices of�1 that are adjacent to B2. We add B2 to (.
By repeating this process until we arrive at �C = ∅, we obtain the family {� = �0, �1, . . . , �C }

of subsets of �. For every E ∈ �, there is 8 ∈ {0, . . . , C − 1}, such that E ∈ �8 \ �8+1, and thus, E is
non-adjacent to B8 .

It remains to show the upper bound on the size of (. Observe that

|�8 | ≤ (1 + n)8 ·
(
X (�)
=

)8
· |�|.

To show that �C = ∅ for C := d4 logX (�)/log(1 + n)e, it is enough to show that

(1 + n)C ·
(
X (�)
=

)C
<

1
=
,

or, equivalently,

(1 + n)−C ·
(
=

X (�)

)C
> =. (4)

Since C < 4 logX (�)/log(1 + n) + 1, it follows that (1 + n)C < X (�)4 · (1 + n) < X (�)5. It also
holds that C ≥ 5 since X (�) > 1 + n .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:27

We split the proof of Equation (4) into two cases. The first case is when = ≥ X (�)4. Then

(1 + n)−C ·
(
=

X (�)

)C
>

1
X (�)5 ·

(
=3/4

)5
>

1

=5/4
· =15/4 > =,

and Equation (4) follows. For = < X (�)4, we use the condition of the lemma that = > (1+n)2 ·X (�).
Then

(1 + n)−C ·
(
=

X (�)

)C
> (1 + n)−C · (1 + n)2C = (1 + n)C > (1 + n)4 logX (�)/log(1+n) = X (�)4 > =.

This completes the proof of Equation (4). Hence, |�C | < 1
=
· |�| < 1, and therefore, |(| ≤

d4 logX (�)/log(1 + n)e. �

We now use Lemma 12 for extracting a :-preserving set from � .

Lemma 13. Let � be an =-vertex graph and :, ? > 1 be two integers. Let @ = 4:? · logX (�). If
= ≥ (1 + 3

:?
) · X (�) + @: and X (�) ≥ @: · (:? + 1), then � contains a :-preserving set (of size at

most @: .

Proof. Throughout the proof, we employ (@ + 1) · (: − 1) = @: + ((: − 1) − @) < @: − : .
Put n := 1

:?
. Note that log(1 + 1

:?
) < 1

:?
for : > 1. Denote by � the set of all vertices with

non-zero deficiency in � , that is, � := {E ∈ + (�) : ak (E) > 0}. Recall that each vertex from �

that is not in the preserving set (should have at least ak (E) = X (�) + : − 1 − deg� (E) ≤ : − 1
non-neighbor vertices in (.

First note the trivial case |� | ≤ @: − : . In this case, (:= � is a preserving set of size less than @: ,
since in + (�) \ (all vertices have zero deficiency. Hence, the lemma holds for this case.

In the following claim, we use that |� | > @: − : .

Claim 6. Let - ⊆ + (�) be such that |- | ≤ @: − : . Then, for every E ∈ � \ - , deg�−- (E) <

(1 + n) · X (� − -). Also = − |- | ≥ (1 + n)2 · X (� − -).

Proof of Claim 6. Note that

X (� − -) ≥ X (�) − |- | ≥ @: · (:? + 1) − |- | ≥ (|- | + :) · (:? + 1) − |- | > (|- | + :) · :? .

Let E ∈ � \ - . Since ak (E) > 0, deg� (E) < X (�) + : . Observe

deg�−- (E) ≤ deg� (E) < X (�) + : ≤ X (� − -) + |- | + :
≤ X (� − -) + X (� − -)/:? = (1 + n) · X (� − -).

For the last inequality of the claim, note that (1 + n)2 = 1 + 2n + n2 ≤ (1 + 2 1
16)n for n = 1

:?
≤ 1

4 .
Additionally, by |- | < |� |, we know that� −- contains at least one vertex E ∈ �. Since deg� (E) <
X (�) + : for every E ∈ �, we have that X (� − -) ≤ deg�−- (E) ≤ deg� (E) < X (�) + : . Then

= ≥ (1 + 3n) · X (�) + @: ≥
(
1 + n2

)
· X (�) + 15

16
· n · X (�) + @:

> (1 + n)2 · (X (� − -) − :) + 15
16
@: + |- |

≥ (1 + n)2 · X (� − -) +
(
15
16
@ − (1 + n2)

)
· : + |- | > (1 + n)2 · X (� − -) + |- |.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:28 F. Fomin et al.

�

Claim 6 (with - := ∅) allows to apply Lemma 12 to � and n . By Claim 6, the application
of Lemma 12 gives a set (1 that contains at least one non-neighbor for each vertex in �. Also
|(1 | ≤ 4:? · logX (�) + 1 = @ + 1.

Repeat the application of Lemma 12, but now apply it to � − (1 and n . The obtained set (2 is of
size at most @ + 1 and has at least one non-neighbor for each vertex in � \ (2. This application is
legitimate by Claim 6 (with - := (1).

Repeat this : − 3 more times to obtain sets (3, (4, . . . , (:−1. Each time, the set (8+1 is obtained
from Lemma 12 applied to� − ((1 ∪ . . . ∪ (8) and n . This is legitimate by Claim 6 (with - of size at
most 8 · (@ + 1) < @: −:). So (8+1 has at least one non-neighbor for each vertex in � \ ((1 ∪ . . .∪(8).

Put (:=
⋃:−1

8=1 (8 . Clearly, (has at least : − 1 non-neighbors for each vertex in � \ (. It follows
that (is the required preserving set in � . �

6.3 Proof of Theorem 5
Now everything is ready to proceed with the proof of Theorem 5. Generally speaking, we show
that there exists a preserving set in� by Lemma 13 and then transform it into a preserving path in
� using Lemma 11. Then, we show that the diameter of) is large enough to apply Lemma 9.

Proof of Theorem 5 Let : ≥ 3 and let � be a connected graph with at least = ≥ (1 + 4
:4) · X (�)

vertices and of minimum vertex degree X (�) > :16. We want to show that� contains as a subgraph
every tree) on at most X (�) + : vertices and of diameter diam()) ≥ 8:6 · logX (�).

In order to apply Lemma 13, we have to show that � satisfies its conditions for ? := 4.

Claim 7.

(1) X (�) ≥ 4:5 · logX (�) · (:4 + 1);
(2) = ≥ (1 + 3

:4) · X (�) + 4:5 logX (�).

Proof of Claim 7. Since : ≥ 3, we have that X (�) > 316 > 225. Then, logX (�) < X (�)3/16.
Obtain

4:5 · logX (�) · (:4 + 1) < X2/16 · X (�)5/16 · X (�)3/16 · (X (�)4/16 + 1) < X (�)10/16 · X (�)5/16 < X (�).
The first part of the claim is proved.

To see that the second part of the claim holds, from the first part obtain 4:5 · logX (�) < X (�)/:4 .
Then, by the constraint imposed by the statement of Theorem 5,

= ≥
(
1 + 4

:4

)
· X (�) =

(
1 + 3

:4

)
· X (�) + X (�)

:4
>

(
1 + 3

:4

)
· X (�) + 4:5 logX (�).

The claim is proved. �

By Claim 7, we can apply Lemma 13 to � and : with ? := 4. The size of the obtained preserving
set (is |(| ≤ 4:5 · logX (�). By Claim 7, X (�) > 2: · |(|. Lemma 11 implies that� has a :-preserving
path % of length at most (2: − 1) · |(| < 8:6 · logX (�).

By Lemma 9,� contains every tree) with |+ ()) | ≤ X (�) +: and diam()) ≥ 8:6 · logX (�). This
completes the proof of the main result of the section. �

7 When M Has at Most (1 + 9)% (M) Vertices
In this section, we consider graphs with a sufficiently small number of vertices. We show that such
graphs contain all trees of size X (�) + : whose maximum leaf-degree ld()) is less than : . Let us

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:29

remind that by the maximum leaf-degree of) , we mean the maximum number of leaf-neighbors a
vertex of) could have. More formally, the main result of this section is the following theorem.

Theorem 6. Let� be a graph and let : ≥ 1 be an integer such that X (�) +: ≤ |+ (�) | ≤ (1+Y)X (�)
for Y ≤ 1

4: and X (�) ≥ 12:2. Let also) be a tree with at most X (�) + : vertices such that ld()) < : .
Then, � contains) as a subgraph.

The following combinatorial property of trees is useful for us. We remind that a hitting set for a
family of sets S is a set that contains at least one representative from each set of S.

Lemma 14. Let) be a tree with ℓ leaves. Then, any hitting set for the family of the neighborhoods of
its vertices, that is, for the family S = {#) (E) | E ∈ + ())}, is of size at least 1

2 (|+ ()) | − 3ℓ + 6).

Proof. Let+1,+2, and+≥3 be the sets of vertices of degree one, two, and at least three, respectively.
Denote = = |+ ()) | = |S|, =1 = |+1 | = ℓ , =2 = |+2 |, and =≥3 = |+≥3 |. We have that

2=1 + 2=2 + 2=≥3 − 2 = 2(= − 1) =
∑

E∈+ ())
deg) (E)

=
∑
E∈+1

deg) (E) +
∑
E∈+2

deg) (E) +
∑
E∈+≥3

deg) (E)

= =1 + 2=2 +
∑
E∈+≥3

deg) (E).

(5)

In particular, Equation (5) implies that =1 + 2=≥3 − 2 =
∑

E∈+≥3 deg) (E) ≥ 3=≥3 and, therefore,
=≥3 ≤ =1−2.Then,

∑
E∈+≥3 deg) (E) ≤ 3=1−6. Note that a vertex E ∈ +≥3 is included in deg) (E) sets of

S. Hence, the vertices of+≥3 hit at most
∑

E∈+≥3 deg) (E) sets of S. Any vertex E ∈ +1∪+2 is included
in at most two sets of S. Therefore, any hitting set of S contains at least 1

2 (= −
∑

E∈+≥3 deg) (E)) ≥
1
2 (= − 3=1 + 6) = 1

2 (|+ ()) | − 3ℓ + 6) vertices of +1 ∪+2. This concludes the proof. �

7.1 Proof of Theorem 6
We proceed with the proof of the main result of the section.

Proof of Theorem 6. The proof is by induction on the number of vertices of) . If |+ ()) | ≤
X (�) + 1, then) is a subgraph of� by Lemma 1. Assume that) has X (�) +? vertices for 2 ≤ ? ≤ : ,
ld()) < : , and� contains any tree with X (�) +? − 1 vertices and the maximum leaf-degree at most
: − 1 as a subgraph. Observe that every vertex G of � has at most |+ (�) | − 1 − X (�) ≤ YX (�) − 1
non-neighbors in � .

We argue that) has a leaf D such that ld() − D) ≤ ld()). Let us note that deleting a leaf D could
increase the value ld only if the deletion of D turns its neighbor into a leaf. Hence, if there is a leaf
D such that its neighbor’s degree is at least three, then ld() − D) ≤ ld()).

Now we are in the situation where every leaf of) is adjacent to a vertex of degree two. If there
is a leaf D with a neighbor E , such that the neighborF of E ,F ≠ D, is not adjacent to any leaf of) ,
then ld() − D) ≤ ld()). If F is adjacent to a leaf, then deg) (F) = 2 by the assumption that each
leaf is adjacent to a vertex of degree two. This means that) is the path on four vertices. But this
cannot happen because |+ ()) | ≥ X + 2 > 4. Hence, there is a leaf D such that ld() − D) ≤ ld()).

Consider an arbitrary leaf D of) such that ld() − D) ≤ ld()) ≤ : − 1 and let E be its unique
neighbor. Let) ′ =) − D. By the inductive assumption, � contains) ′ as a subgraph, and we can
assume that + () ′) ⊆ + (�) and � () ′) ⊆ � (�). If E is adjacent to a vertex of + (�) \ + () ′) in � ,
then we obtain that) is a subgraph of � . Assume that this is not the case. Then, #� (E) ⊆ + () ′),
and E has at most |+ ()) | − 1 − X (�) = ? − 1 ≤ : − 1 non-neighbors among the vertices of) ′.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:30 F. Fomin et al.

Suppose that) has at least (X (�)Y + :) (: − 1) leaves. Let * be the set of vertices of) that are
adjacent to at least one leaf, and let, = * \ {E}. Because ld()) ≤ : − 1, |* | ≥ X (�)Y + : . For
every vertex of G ∈, , we choose a leaf ℓG of) adjacent to G in) ′ and define ! = {ℓG | G ∈, }.
Because |! | = |* | − 1 ≥ X (�)Y + : − 1 and E has at most : − 1 non-neighbors among the vertices of
+ () ′), E is adjacent to at least |! | − : + 1 ≥ YX (�) vertices of !. Let !′ ⊆ ! be the set of vertices
adjacent to E and consider, ′ = {G ∈, | ℓG ∈ !′}. Because |+ (�) | ≥ X (�) + : > |+ () ′) |, there is
F ∈ + (�) \+ () ′). Since |, ′ | = |!′ | ≥ YX (�) andF has at most YX (�) − 1 non-neighbors in� , we
have that F has a neighbor G in, ′. Thus, E and G are adjacent to ℓG , and G is adjacent to F . Let
) ′′ be the subgraph of� with+ () ′′) =+ () ′) ∪ {F} and � () ′′) = (� () ′) \ {ℓG }) ∪ {EℓG , GF}. Note
that trees) ′′ and) are isomorphic: the leaf ℓG of G is remapped toF , and the leaf D of) is mapped
to ℓG . Hence, if) has at least (X (�)Y + :) (: − 1) leaves, then � contains) .

From now on, we assume that the number of leaves of) is less than (X (�)Y + :) (: − 1).
Consider the family S = {#) ′ (G) | G ∈ + () ′)} of the neighborhoods of the vertices of) ′ and let
S′ = {#) ′ (G) | G ∈ + () ′) \ {E} s.t. EG ∈ � (�)}. Because E has at most ? − 1 non-neighbors in
+ () ′), we have that |S′ | ≥ |+ () ′) | − ? = X (�) − 1. By Lemma 2, any hitting set for S is of size at
least

1
2
(|+ () ′) | − 3(X (�)Y + :) (: − 1) + 6) = 1

2
(X (�) + ? − 1 − 3(X (�)Y + :) (: − 1) + 6)

≥ 1
2
((1 − 3Y (: − 1))X (�) − 3: (: − 1)) .

(6)

For a vertex F ∈ + (�) \ + () ′), we consider the set - = {G ∈ + ()) | GF ∉ � (�)} of its non-
neighbors in + () ′). BecauseF has at most YX (�) − 1 non-neighbors in � , by Equation (6), - does
not hit at least

1
2
((1 − 3Y (: − 1))X (�) − 3: (: − 1)) − YX (�) + 1 ≥ 1

2
((1 − 3Y:)X (�) − 3: (: − 1)),

sets of S. Because |S| = |+ () ′) | ≤ X (�) + : − 1 and |S′ | ≥ X (�) − 1, - does not hit at least
1
2
((1 − 3Y:)X (�) − 3: (: − 1)) − : =

1
2
((1 − 3Y:)X (�) − : (3: − 1)),

sets of S′. Since Y ≤ 1
4: and X (�) ≥ 12:2, we have that (1 − 3Y:)X (�) − : (3: − 1) > 0. Therefore

- does not hit at least one set of S′. Thus, there is G ∈ + () ′) \ {E} such that GE ∈ � (�) and
for every ~ ∈ #) ′ (G), ~F ∈ � (�). We construct the subgraph) ′′ of � from) ′ by defining
+ () ′′) = + () ′) ∪ {F} and � () ′′) = (� () ′) \ {G~ | ~ ∈ #) ′ (G)}) ∪ {F~ | ~ ∈ #) ′ (G)} ∪ {EG}.
Observe that) ′′ is a tree isomorphic to) where G ∈ + () ′) is remapped toF and D is mapped to G .
Thus, � contains) as a subgraph. This concludes the proof. �

8 Medium Diameter and Escape Vertices
In this section, we prove a combinatorial result (Theorem 7) about containment in � trees on
X (�) + : vertices and of “medium” diameter :O(1) · logX (�). Informally, Theorem 7 ensures that�
contains any such medium-diameter tree) if its diameter is at least :Ω (1) . Moreover, Theorem 7
collects two other cases when � contains a tree of diameter :O(1) · logX (�). One case is when �
has a :O(1) -escape vertex. (Recall that a vertex E ∈ + (�) is @-escape if either its degree is at least
X (�) + @ or there is a matching of size @ between # [E] and + (�) \ # [E].) The other case is when
) is size-:O(1) -separable, that is, there is an edge in) whose removal separates) into two parts
consisting of at least :O(1) vertices.

More formally, the main result of this section is the following theorem.

Theorem 7. Let � be a connected graph and) be a tree on X (�) + : vertices for : ≥ 3. If
|+ (�) | ≥ X (�) + 2:14, ld()) < : , X (�) ≥ :17, diam()) ≤ 8:6 · logX (�) and either
ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:31

—diam()) ≥ 2:11, or
— there is a 4:13 -escape vertex in � , or
—) is size-2:14-separable,

then � contains) as a subgraph.

We organize the proof of Theorem 7 in several stages.

8.1 Contracting Trivial Paths
We start with trees of diameter :Ω (1) . The key property, in this case, is the following: Whenever
we consider a minimal subtree connecting some set of (sufficiently distant) : leaves, the subtree
always contains long trivial paths, defined below.

Definition 6 (Trivial Path). An (B, C)-path % in a tree) is a trivial path if each inner vertex
E ∈ + (%) \ {B, C} is of degree two, i.e., deg) (E) = 2. Additionally, if deg) (B) ≠ 2 and deg) (C) ≠ 2,
we say that % is a maximal trivial path in) .

We will use long trivial paths to embed non-neighbors of a fixed set of vertices and then extend
such embeddings by making use of Lemma 5. We prove the following:

Lemma 15. Let � be a connected graph and) be a tree on X (�) + : vertices for : ≥ 3. If ld()) < : ,
X (�) ≥ 2: · diam()), and diam()) ≥ 2:4, then � contains) as a subgraph.

Proof. Note that) has at least : −1 leaves since |+ ()) | > X (�) > (: −1) ·diam()), by Lemma 2.
Construct a set ! of : − 1 leaves of) as follows. We first put in ! a diametral pair of leaves of) ,
that is, two leaves such that the distance between these leaves is exactly diam()). Then, we extend
! by adding arbitrary : − 3 ≥ 0 leaves of) .

Let, := #) (!) be the set of neighbors of these leaves in) , |, | ≤ : − 1. Let), be the minimal
subtree of) containing all vertices of, . We have that diam(),) = diam()) − 2 and), has at
most : − 1 leaves.

Now obtain a tree) ′
,

from), by the following procedure (Figure 3). For each maximal trivial
path % in), of length more than 2: , we contract some of its inner edges such that the resulting path
is of length exactly 2: . It is important that the endpoints of % are not changed by the contractions.
Note that) ′

,
has the same number of leaves as), (their set is exactly,). The endpoints of the

maximal trivial paths are preserved in) ′
,

as well. If ℓ is the number of leaves in) ′
,
, then) ′

,

contains less than 2(ℓ − 1) maximal trivial paths. Since each edge of) ′
,

belongs to exactly one
maximal trivial path, |� () ′

,
) | < 2: · 2(: − 2) = 4:2 − 8: . Hence,) ′

,
has at most 4:2 − 8: vertices.

Since X (�) ≥ 4:2 > |+ () ′
,
) |, by Chvátal’s Lemma (Lemma 1), there is an isomorphism from) ′

,

into a subgraph of� . Denote this isomorphism by f ′. Our goal is to extend f ′ to an isomorphism f

of), into a subgraph of� , ensuring that Im f has enough non-neighbors of the images of vertices
in, to fit Lemma 5.

Construct the set (of desired non-neighbors by picking arbitrary ak (f ′ (F)) ≤ : − 1 non-
neighbors in � for each F ∈ , . After that, remove all vertices of Im f ′ from (, since they are
already used by the isomorphism. The set (consists of at most (: − 1) · |, | ≤ (: − 1)2 vertices of
� . To embed (in the image of f ′, we need to show that there is a sufficiently long trivial path in
), . All vertices of (will be images of the vertices of this path.

Claim 8. There is a maximal trivial path in), of length at least 2:3 + 4:2.

Proof of Claim 8. Let � be the path between a diametral pair of leaves in), . Since), has at
most : − 1 leaves, � has at most (: − 1) − 2 = : − 3 inner vertices of degree at least 3. Then, �

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:32 F. Fomin et al.

Fig. 3. The tree) ′
,

for, = {F1, . . . ,F? } and the extension of % via B1, . . . , B@ ; % is shown by a thick line
and the paths that are used for extending % are shown in red. For the sake of illustration, we identify the
respective vertices of) and � under the isomorphism.

consists of at most : − 2 maximal trivial paths and at least one of these paths is of length at least

diam(),)
: − 2

≥ diam()) − 2
: − 2

≥ 2:4 − 2
: − 2

=
2:4 − 4:3 + 4:3 − 2

: − 2
= 2:3 + 4:3 − 2

: − 2
> 2:3 + 4:2.

�
This maximal trivial path is contracted in) ′

,
and has length 2: , denote it by % . Therefore, at

least (2:3 + 4:2) − 2: > 2:3 edges are contracted. Let DE be an edge of % . We will replace this edge
with a longer (D, E)-path (Figure 3), which will fall under the “budget” of 2:3 edges. Its image in �
will be a (f ′ (D), f ′ (E))-path containing all vertices in (. Thus, for convenience, we consider f ′ (D)
and f ′ (E) to be a part of (too.

Let vertices in (be B1, B2, . . . , B@ , such that B1 = f ′ (D) and B@ = f ′ (E), and @ ≤ (: − 1)2 + 2 ≤ :2.
We first find a path in � that contains all vertices of (. Additionally, this path should avoid all
vertices of � = Im f ′ \ {f ′ (D), f ′ (E)}. Let us note that |� | = |+ () ′

,
) | −2 ≤ 4:2−8: . The construction

is similar to the one in the proof of Lemma 11: we connect vertices B1, . . . , B@ in order via shortest
paths avoiding vertices that are already used (including vertices in � and (), see Figure 3.

We proceed with constructing such a path inductively. Let *1 = � ∪ {B3 . . . , B@}. If the distance
between B1 and B2 in � −*1 is at most 2: + 1, we find a shortest (B1, B2)-path in � −*1 and denote
it by &1. For each 8 ∈ [2, @ − 1], let *8 = *8−1 ∪ + (&8−1) \ {B8+1}. If the distance between B8 and
B8+1 in � −*8 is at most 2: + 1, we define &8 as the (B1, B8+1)-path obtained by appending to &8−1 a
shortest (B8 , B8+1)-path in � −*8 . This construction is not always possible, since at some moment
an (B8 , B8+1)-path might either not exist or it might be too long.

Let 8 be the smallest index such that there is no (B8 , B8+1)-path of length at most 2: + 1 in � −*8

for 8 ≤ @ − 1. We have that

|*8 | ≤ |� | + |+ (&8) ∪ (| ≤ (4:2 − 8:) + (2: · 8 + @)
≤ (4:2 − 8:) + (2: · (@ − 1) + @) ≤ (4:2 − 8:) + @ · (2: + 1)
≤ (4:2 − 8:) + :2 · (2: + 1) = 2:3 + 5:2 − 8:

< 2:3 + 2:3 − 8: = 4:3 − 8:.

Then, we can apply Lemma 10, since X (�) > 4:5 > |*8 | + (: − 1) and diam(� −*8) > 2: . Thus,
there is a :-preserving path % ′ of length at most 4: − 2 + |*8 | in � . Recall that a path % ′ in � is
:-preserving if any vertex E not on % ′ has at least ak (E) non-neighbors on % ′ (Definition 5). Observe

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:33

that the number of vertices in % ′ is at most

4: − 2 + |*8 | + 1 ≤ 4: − 1 + 4:3 − 8: < 4:3 − 4: <
diam())

2
,

and hence by Lemma 9, � contains) .
Therefore, in the rest of the proof, we can assume that the (B1, B@)-path &@−1 is constructed

successfully and that its length is at most

(2: + 1) · (@ − 1) < (2: + 1) · ((: − 1)2 + 1) = (2: + 1) · (:2 − 2: + 2)
= (2:3 − 4:2 + 4:) + (:2 − 2: + 2)
= 2:3 − (3:2 − 2: − 2) < 2:3 − (3:2 − 3:) < 2:3.

Recall that at least 2:3 edges were contracted to obtain the path % from the respective maximal
trivial path, thus the bound above shows that enough “space” was left during the contraction for
the extended isomorphism.

We now transform the isomorphism f ′ using the obtained path &@−1. First, we transform) ′
,

into a new tree) ′′
,

by replacing DE ∈ � () ′
,
) with a path isomorphic to &@−1. This corresponds to

reversing some contractions made to obtain) ′
,

from), ; that is,) ′′
,

still remains a minor of), .
To transform the isomorphism f ′ into the corresponding isomorphism f ′′ from) ′′

,
, we simply

extend f ′ with the mapping of the inserted DE-path of) ′′
,

into the f ′ (D)f ′ (E)-path &@−1 in � . At
this point, by the choice of the path&@−1, the obtained isomorphism f ′′ would satisfy the condition
of Lemma 5. However,) ′′

,
is a minor of) , while we need a subgraph of) in order to apply the

lemma.
We further extend the isomorphism f ′′ into the isomorphism f from), into � . To achieve

that, we reverse all edge contractions that transform), into) ′′
,

while simultaneously extending
trivial paths in the image of the isomorphism. The only procedure for extension we use here is an
insertion of a single vertex in � between two adjacent vertices in the image of the tree.

Formally, we proceed as follows: Put)0 =) ′′
,

and f0 = f ′′. Then, for each 8 between 0 and
C − 1, where C = |+ (),) | − |+ () ′′

,
) | is the number of vertex insertions we need to make, obtain a

larger tree)8+1 together with an isomorphism f8+1 from)8+1 to � by extending the tree)8 and the
isomorphism f8 . We always have that |+ ()8) | = |+ () ′′

,
) | + 8 , and)8 is a minor of), .

In order to construct)8+1 from)8 , note that since 8 < C ,)8 has at least one maximal trivial path
that is shorter than its original counterpart in), . Denote this maximal trivial path by %8 . We want
to find a vertex in� − Im f8 that has two consecutive neighbors on the path f8 (%8). If such a vertex
exists in � , denote it by E8 and “insert” E8 between its consecutive neighbors in f8 (%8), with its
preimage in)8 being a new vertex inserted in the corresponding place in %8 . In formal terms, let)8+1
be obtained from)8 by inserting a new vertex G between f−1

8 (D) and f−1
8 (F), where D andF are

the consecutive neighbors of E8 on f8 (%8), and let f8+1 be obtained by extending f8 with mapping
the new vertex G to E8 .

Assume now that on every iteration 8 ∈ [0, C − 1] the suitable vertex E8 exists, therefore we
obtain the tree)C and the isomorphism fC from)C to � . Clearly,)C =), as)C is a minor of), ,
and |+ ()C) | = |+ (),) |; denote f = fC . We apply Lemma 5 to the tree), with the isomorphism
f ; by construction,), contains the set of the leaf neighbors, , and sufficiently many of their
non-neighbors are in Im f . Thus, by Lemma 5, there is also an isomorphism from) to � .

It is left to consider the case where no suitable vertex exists on the step 8 ∈ [0, C − 1]. Then,
+ (�) \ Im f8 has no vertices with two consecutive neighbors on the path f8 (%8). The length of %8
is at least 2: by the construction of) ′

,
. We take any subpath of f8 (%8) consisting of exactly 2:

vertices and denote it by '. Each vertex in + (�) \ Im f8 has at least : − 1 non-neighbors on '.
Hence, ' is a :-preserving path for the graph � − (Im f8 \+ (')).

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:34 F. Fomin et al.

Since, is a set of leaves of), , and any edge lies on a path between a fixed leaf and any other
leaf, (|, | − 1) · diam(),) ≥ |� (),) | holds. We have

X (� − (Im f8 \+ ('))) ≥ X (�) − |+ ()8) | ≥ X (�) − |+ (),) | + 1 = X (�) − |� (),) |
≥ X (�) − diam(),) · (|, | − 1)
≥ 2: · diam()) − diam(),) · (|, | − 1)
> 2|, | · diam(),) − diam(),) · |, |
= diam(),) · |, | ≥ |� (),) | + 1 = |+ (),) |.

We then argue that), admits an isomorphism into a subgraph of� − (Im f8 \+ (')). Consider any
trivial path � of), on at least 2: vertices that does not intersect, , which exists, e.g., inside the
long trivial path given by Claim 8. Clearly, there exists an isomorphism from � into '. We extend
this isomorphism to an isomorphism f from), into a subgraph of � − (Im f8 \+ (')) greedily
by Proposition 1; this is possible since by the inequality above, X (� − (Im f8 \+ ('))) > |+ (),) |.
Since every vertex in + (�) \ Im f8 has at least : − 1 non-neighbors on ', so do the images of,
in � under the newly constructed isomorphism. Therefore by Lemma 5 applied to), and f , �
contains) as a subgraph. This completes the proof of the lemma. �

8.2 Escaping Neighborhoods and Separating M

The second tool we use for preserving neighbors is the notion of an escape vertex in � . In the
following lemma, we require) to have a vertex of a large enough degree. We will map this vertex of
) to an escape vertex in � and then use it for embedding non-neighbors into partial isomorphism
in order to further pipeline with Lemma 5. Recall that a vertex D in a graph � is a @-escape vertex
if either deg� (D) ≥ X (�) + @, or the maximum matching size between # [D] and + (�) \ # [D] is at
least @ (Definition 3).

Lemma 16. Let � be a graph and) be a tree on X (�) + : vertices for : ≥ 2. Let @ = 2:2 · diam()).
If X (�) ≥ @, Δ()) ≥ :2, ld()) < : , and � has a @-escape vertex, then � contains) as a subgraph.

Proof. Let D be a @-escape vertex in � and let C be a maximum-degree vertex in) . To prove
the lemma, we take, , the set of neighbors of arbitrary : − 1 leaves of) , and construct a partial
isomorphism of) that fits into Lemma 5 with, .

We start with) ′, the minimal subtree of) containing all vertices of, ∪{C} in) . Thus, |+ () ′) | ≤
diam()) · (|, | + 1) ≤ diam()) · : < X (�). We initialize f to be an arbitrary isomorphism from) ′

into a subgraph of � that maps C to D, the @-escape vertex. That is, f (C) = D; such an isomorphism
can be found greedily by Proposition 1.

Now we expand f (and) ′ correspondingly) so it occupies at least ak (f (F)) non-neighbors of
f (F) for eachF ∈, . We expand) ′ and f iteratively using the following two claims.

Claim 9. If |+ () ′) | ≤ @

2 − : and ak (f (F)) > 0, then there is a vertex E ∈ + (�) such that
E ∉ #� (f (F)) ∪ Im f and the distance between D and E in � − (Im f \ {D}) is at most 2.

Proof of Claim 9. If there is E ∈ #� (D) \ (#� (f (F)) ∪ Im f), then we are done. Clearly, this is
the case if deg� (D) ≥ X (�) + @, as |#� (f (F)) ∪ Im f | ≤ X (�) + : − 1 + @

2 − : < X (�) + @.
Thus, we may assume #� (D) ⊆ #� (f (F)) ∪ Im f , and there is a matching" of size @ between

#� [D] and its complement in � by the definition of a @-escape vertex. Since |#� (D) | ≥ X (�) and
|#� (f (F)) | < X (�) + : , we have that D and f (F) should have at least

X (�) − |Im f | ≥ X (�) −
(@
2
− :

)
> deg� (f (F)) − @

2

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:35

Fig. 4. The expansion of) ′: the original vertices and edges of) ′ are shown in black and the added vertices
and edges are red.

common neighbors. Hence, at most @

2 − 1 neighbors of f (F) lie outside of #� (D).
Now, at least @ − |Im f | = @ − |+ () ′) | > @

2 of the edges of" do not have endpoints in Im f . At
least one of these edges has its endpoint outside of #� (f (F)), since at most @

2 − 1 neighbors of
f (F) lie outside of #� (D), and every edge in" has one endpoint outside of #� (D). The distance
between this endpoint and D is two, completing the proof of the claim. �

Initially,) ′ has at most : leaves, and each expansion will add one leaf to) ′. The following claim
provides a vertex in) to expand) ′ with.

Claim 10. If) ′ has at most :2 − : leaves, then there is a non-leaf neighbor G ∈ #) (C) of C such that
G ∉ + () ′).

Proof of Claim 10. Since ld()) < : , the vertex C has more than deg) (C) − : ≥ :2 − : non-leaf
neighbors in) . Also deg) ′ (C) ≤ :2−: , since) ′ has at most :2−: leaves. Then, at least one non-leaf
neighbor of C in) is not in + () ′). �

Aswe noted above, each expansion of) ′ adds exactly one leaf to it, and atmost
∑
F ∈,ak (f (F))

≤ (: − 1)2 expansions are made in total. Hence,) ′ has fewer than (: − 1)2 + : = :2 − : + 1 leaves
until the last possible expansion. It follows that |+ () ′) | ≤ (:2 − :) · diam()) ≤ @

2 − : . We get that
the two claims above can be applied to) ′ at each iteration of the expansion.

One iteration of the expansion process is as follows (Figure 4): Until f and) ′ satisfy the conditions
of Lemma 5, take a vertexF ∈, such that f (F) has less than ak (f (F)) non-neighbors in Im f . By
Claim 9, there is a vertex E ∉ #� (f (F)) ∪ Im f within distance at most 2 from D, and the shortest
path to this vertex does not go through Im f . Take G given by Claim 10, and take its neighbor
~ ∈ #) (G) such that C ≠ ~; it exists since G is not a leaf in) . If E is a neighbor of D, expand) ′ with
G , making it adjacent with C , and put f (G) := E (see case (i) in Figure 4). Otherwise, expand) ′ with
the path C − G − ~ and map it to the shortest (D, E)-path in � − Im f (see case (ii) in Figure 4).

Since the expansion is always possible, we reach the situation when Lemma 5 can be applied to
) ′ and f . The proof of the lemma is thus complete. �

We also have to deal with trees without vertices of large degree. The basic idea of the following
lemma is quite similar to the last one, but the mechanism of mapping extension is different.
Sometimes the extension is not possible; in this case, we obtain a small vertex separator of � . By
small we mean that its size is significantly smaller than X (�).

Lemma 17. Let� be a graph and) be a tree on X (�) +: vertices for : ≥ 2. If ld()) < : , Δ()) < :2,
and X (�) ≥ :5 · diam()), then either

—� contains) as a subgraph, or
— there is a vertex separator of � of size at most 2: · (: − 1) · (diam()) + 2).

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:36 F. Fomin et al.

Proof. The first part and general idea of the proof is similar to the previous lemma: we pick a
set, of neighbors of some : − 1 leaves, a spanning tree) ′ of, , and a subgraph isomorphism
f : + () ′) → + (�). Then, we try to expand f and) ′ to satisfy the non-neighbor condition on each
F ∈, .

However, the statement of the current lemma does not guarantee us a vertex of a large enough
degree in) . Therefore, instead of starting from a mapping of one single high-degree vertex and
then extending this mapping to) ′, we use a different strategy. We select distinct vertices for each
single extension iteration. We call this set * , and we require its size to be (: − 1)2 ≥ ∑

ak (F). We
first claim that the choice of sets* and, consisting of distinct vertices always exists.

To simplify further arguments, we consider) a rooted tree. We pick as its root an arbitrary
vertex A ∈ + ()). For each E ∈ + ()), by)E we denote the subtree of) rooted in E .

Claim 11. There is a set* ⊂ + ()) of size (: − 1)2 and a set, ⊂ + ()) of size : − 1 such that

—* ∩, = ∅;
—For each B ∈ * , the depth of tree)B is two;
—For each F ∈, , the depth of tree)F is one;
—Rooted subtrees of) corresponding to vertices in * ∪, are pairwise disjoint.

Proof of Claim 11. In this proof, by a subtree we mean a rooted subtree)G for some G ∈ + ()).
Note that the depth of) is at least 2, since |+ ()) | > X (�) > Δ()) + 1.

Assume first that) has at least :2 − : subtrees of depth exactly 2. All these trees are pairwise
disjoint; we pick* as the roots of any (: − 1)2 of these subtrees. There are :2 −: − (: − 1)2 = : − 1
depth-2 subtrees left, pick an arbitrary depth-1 subtree from each one of them. The roots of these
depth-1 trees form the set, , and, up to our assumption, the claim follows.

It is left to show that) cannot have fewer than :2 − : subtrees of depth exactly 2. Targeting a
contradiction, we suppose that) has less than :2 − : such subtrees.

There are three types of vertices in) : (a) roots of subtrees of depth two or greater; (b) roots of
subtrees of depth one; (c) leaves. Consider the subtree)0 of) where all vertices of types (b) and (c) are
removed. The tree)0 thus consists of all type (a) vertices of) , and it has less than :2−: leaves since
the leaves are exactly the roots of depth-2 subtrees. By Lemma 2, the number of vertices in)0 , which
is equal to the number of vertices of type (a) in) , is less than (:2−:) ·diam()0) ≤ (:2−:) ·diam()).

For vertices of type (b) in) , note that each vertex of type (b) is a neighbor to some vertex of
type (a). So the number of these vertices is at most (:2 − :) · diam()) · Δ()). Each leaf in) (vertex
of type (c)) has a vertex of type (a) or type (b) as its only neighbor, and each vertex can have at
most ld(:) adjacent leaves.

We obtain that

X (�) + : = |+ ()) | ≤ (:2 − :) · diam()) · (1 + Δ())) · (1 + ld(:)) ≤ (:2 − :) · :2 · : · diam()) < X (�),

which is a contradiction. �

Let * and, be the sets given by Claim 11. We start constructing the subgraph isomorphism
by mapping a minimal subtree) ′ of) containing* ∪, . Since X (�) > |+ () ′) |, by Lemma 1, we
can construct an isomorphism f from) ′ into a subgraph of � . Similar to the proof of Lemma 16,
we expand the embedding of) ′ in � as follows. Until) ′ and f satisfy the statement of Lemma 5,
we consider an arbitrary F ∈ , that does not have enough non-neighbors in Im f . If there is
D ∈ * such that there is a vertex E ∉ #� (f (F)) within a distance at most 2 from f (D) in the
graph � − (Im f \ {f (D)}), then extend) ′ with either one or two vertices from)D and map the

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:37

Fig. 5. The expansion of) ′; the vertices of* are shown in white and the added vertices and edges are red.

corresponding path into the (f (D), E)-path in � (Figure 5). After that, remove D from* . Note that
* is chosen in such a way that) ′ can always be extended with either one or two vertices.

However, there is a problem that could prevent a successful iteration. It could happen that none
of the D ∈ * is suitable for saving neighbors of anyF ∈, that requires more non-neighbors in
Im f . To dive into the details, suppose that we arrive at such a situation. Let, ′ be the set ofF ∈,
that does not satisfy the condition of Lemma 5. The set * consists of vertices that were not yet
used in the extension. Since the extension is not possible, none of the neighbors of D ∈ * suits any
ofF ∈, ′. That is,

� :=

(⋃
D∈*

#� (f (D)) \ Im f

)
⊆ � :=

⋂
F∈, ′

#� (f (F)) .

Since the extension is not possible, the neighbors of � in� are also not suitable for anyF ∈, ′.
Thus

#� (�) \ Im f ⊆ �

holds as well. Equivalently, vertex set (:= Im f ∪ (� \�) separates � from the rest of � . But we
know that |�| ≥ X (�) − |Im f | while |� | < X (�) + : . Hence, the size of the vertex separator (is
less than 2|Im f | + : .

To estimate |Im f | = |+ () ′) |, note that we start) ′ from a spanning tree with :2 − : leaves, and
each iteration adds at most two vertices to) ′. So |Im f | < (:2 − :) · diam()) + 1 + 2(: − 1)2. Thus,
the size of the separator (is at most

2|Im f | + : ≤ 2(:2 − :) · diam()) + 4(: − 1)2 + :
= 2(: − 1) · (: · diam()) + 2(: − 1)) + :
≤ 2(: − 1) · (: · diam()) + 2(: − 1) + 1)
< 2(: − 1) · : · (diam()) + 2),

which completes the proof of the lemma. �

The last result of this subsection shows a way to employ a small vertex separator of � . Recall
that a tree) is @-separable if there exists an edge whose removal separates) into two subtrees
each of size at least @ (Definition 4).

Lemma 18. Let� be a connected graph and let) be a tree on X (�) +: vertices. Let also (be a vertex
separator of� such that X (�) ≥ 3|(|. If X (�) ≥ 15: , ld()) < : , and) is size-(|(| +:)-separable, then
� contains) as a subgraph.

Proof. Without loss of generality, we assume that (is an inclusion-wise minimal separator of� .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:38 F. Fomin et al.

The graph� − (consists of at least two connected components. Let � be the vertex set of one of
them and let � :=+ (� − () \� be the vertex set of all other connected components in � − (.

Take an arbitrary B ∈ (. Since (is minimal, both � [� ∪ {B}] and � [� ∪ {B}] are connected.
In total, B has at least X (�) − |(| neighbors in � and �. Without loss of generality, B has at least
1
2 (X (�) − |(|) neighbors in �.
Now consider the edge of) that separates it into two connected parts of size at least |(| + : .

Denote the endpoints of this edge by G and ~. Denote the two parts of) by)G and)~ , such that
they contain G or ~, respectively. Without loss of generality, we assume that deg) (G) ≤ deg) (~).

Claim 12. deg) (G) ≤
X (�)
3 .

Proof of Claim 12. The proof is by contradiction. If deg) (G) >
X (�)
3 , then deg) (~) >

X (�)
3 as

well. Since ld()) < : , both G and ~ have more than X (�)/3 − : neighbors (other than G and ~) in)
that are not leaves.

Hence, in) − {G,~}, there are at least 2X (�)/3 − 2: connected components of size at least two.
But then |+ ()) | − 2 ≥ 4X (�)/3 − 4: ≥ X (�) + : , which is a contradiction. �

Now we have that both + ()G) and + ()~) are of size at most

|+ ()) | − (|(| + :) = (X (�) + :) − (|(| + :) = X (�) − |(|.

Since X (� [�]) ≥ X (�) − |(|, there is a subgraph isomorphism from)~ into � [�]. Construct an
arbitrary such isomorphism using Proposition 1 that maps ~ to a neighbor of B in � [�].

Now we show how to map)G into � [� ∪ {B}]. While the minimum degree of � [� ∪ {B}] is
not guaranteed to be at least X (�) − |(|, B is the only vertex that could break this condition. We
ensured that

deg� [�∪{B }] (B) ≥
X (�) − |(|

2
≥ X (�)

3
≥ deg) (G),

so it is possible to map G and its neighbors in)G into B and its neighbors in � [� ∪ {B}]. Since each
vertex in � [�] is of degree at least X (�) − |(|, this partial mapping extends into full isomorphism
of)G into � [� ∪ {B}] by Proposition 1.

To conclude, we constructed an isomorphism from)G to� [�∪ {B}] and from)~ to� [�]. Since G
is mapped into B and ~ is mapped into a neighbor of B , the union of these mappings is the required
isomorphism from) to � . �

8.3 Proof of Theorem 7
We combine the results of this section into the proof of its main result.

Proof of Theorem 7. The proof consists of considering several cases.

) Has Large Diameter. Suppose that diam()) ≥ 2:11. Since X (�) ≥ 317 > 216, X (�) > (logX (�))4.
Then, as diam()) ≤ 8:6 · logX (�),

X (�) > (logX (�))4 > diam())4
84 · :24 > diam()) · diam())3

38 · :24

≥ diam()) · 8:
33

:32
≥ diam()) · 8: > 2: · diam()).

Then, by Lemma 15, � contains) . For the remaining part of the proof, we assume that diam()) <
2:11.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:39

) Is of Small Max-Degree. Suppose now that Δ()) < :2 and apply Lemma 17 to � and) . If �
contains) , then we are done. Otherwise, there is a vertex separator (of � of size at most

(diam()) + 2) · 2: (: − 1) < (2:11 + 2) · 2:2 < 6:13 ≤ 2:14 .

Note that X (�) ≥ 3|(|.
We now argue that there is an edge in) separating it into sufficiently large parts.

Claim 13. In a tree) with |+ ()) | ≥ 2, there exists an edge separating it into two parts of size at
least |+ ()) |−1

Δ()) .

Proof. If Δ()) = 1 the statement is trivial since then |+ ()) | = 2, hence we assume Δ()) ≥ 2.
There exists a vertex E ∈ + ()) such that each connected component of) − E is of size at most
|+ ()) |−1

2 . Consider the largest component; its size is also at least |+ ()) |−1
Δ()) since there are at most

Δ()) components. The edge from the largest component to E is the desired edge since the size of
the remaining part is at least |+ ()) |+1

2 ≥ |+ ()) |−1
Δ()) , as Δ()) ≥ 2. �

Note that

|+ ()) | − 1
Δ()) >

X (�)
:2

≥ :15 > |(| + :.

That is, by Claim 13) is size-(|(| + :)-separable. Therefore,� contains) by Lemma 18. In what
follows, we assume that Δ()) ≥ :2.

� Has an Escape Vertex. If � has a 4:13-escape vertex, then Lemma 16 can be applied to � and
) , since 4:13 > 2:2 · diam()). Then, � contains) . We further assume that � has no 4:13-escape
vertices.
) is size-2:14-separable. It is left to consider the case when) is size-2:14-separable. Since �

has no 4:13-escape vertices and = ≥ X (�) + 2:14 ≥ X (�) + 6:13 > (X (�) + :) + 4:13, then �
has vertex separator (of size at most 4:13. Indeed, consider a minimum-degree vertex E ∈ + (�),
deg� (E) = X (�). Since E is not a 4:13-escape vertex, the maximum size of a matching between
#� [E] and + (�) \ #� [E] is less than 4:13. This means that the corresponding bipartite graph
has a vertex cover (of size less than 4:13. Clearly (is a separator since both #� [E] \ (and
+ (�) \ #� [E] \ (are non-empty: the former since we may assume E ∉ ((E is not adjacent to any
vertex in + (�) \ #� [E]), and the latter by = > X (�) + : + 4:13.

As 2:14 ≥ 6:13 > 4:13 +: , apply Lemma 18 to�,) and (and obtain that� contains) . The proof
is now complete. �

9 Final Proof: Putting It All Together
This section finalizes the proof of our main result by combining the previous sections’ main
theorems. We restate the theorem here.

Theorem 1. For any =-vertex graph � , integer : , and a tree) on at most X (�) + : vertices,
there is a randomized algorithm deciding with probability at least 1

2 whether � contains a subgraph
isomorphic to) in time 2:

O(1) ·=O(1) . The algorithm is a one-sided error Monte Carlo algorithm without
false-positives.

Proof. Let� be a non-empty graph and) be a tree on exactly X (�) +: vertices. We assume that
: ≥ 2 (if : ≤ 1, by Chvátal’s Lemma,) is a subgraph of �). We also assume that |+ (�) | ≥ |+ ()) |,
otherwise, trivially, � does not contain) .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:40 F. Fomin et al.

If � and) satisfy the conditions of Theorem 4 with ? := 15, then by Theorem 4, we can identify
in time 2:O(1) · =O(1) whether) is a subgraph of) . In the rest of the proof, we go through all the
cases when � and) do not satisfy the conditions of Theorem 4.

Case 1: X (�) < :3?+1. In this case, we use the color coding of Alon et al., see Proposition 3, to
decide whether� contains) . The algorithm works in time 2O(|+ ()) |) · =O(1) = 2O(X (�)+:) · =O(1) =

2:
O(?) · =O(1) .
Case 2: : < 3. Since) consists of at least two vertices, its leaf-degree is at least one. Hence, the

case : < 3 is equivalent to ld()) ≥ : − 1, which we consider in the next case.
Case 3: ld()) ≥ : − 1. In this case, we apply Theorem 3 to decide whether � contains) . The

running time of this algorithm is 2O(:2) · =O(1) .
Case 4: |+ (�) | ≤ (1 + 1

4:) · X (�). We also assume that previous cases are not applicable. Because
X (�) ≥ :46 > 2:12 and ld()) < : , by Theorem 6, � contains) .

Case 5: diam()) ≥ 8:6 · logX (�). As before, we assume that the previous cases are not applicable.
Then, : ≥ 3, X (�) > :16, and |+ (�) |/X (�) ≥ 1 + 1

4: = 1 + 4
16: > 1 + 4

:4 . Then, by Theorem 5, �
contains) .

Case 6:There is a:? -escape vertex in� . Wewant to applyTheorem 7.We assume that the conditions
of the prior cases do not apply. Then, |+ (�) | > (1 + 1

4:) · X (�) ≥ X (�) + :46

4: > X (�) + 2:14. As
:? = :15 > 4:13, we know that � has a 4:13-escape vertex. Conditions diam()) ≤ 8:6 · logX (�),
ld()) < : , and X (�) ≥ :17 also hold because the previous cases are not applicable. Then, by
Theorem 7, in this case, � contains) as a subgraph.

Case 7:) is size-:? -separable. In this case, we again use Theorem 7 but with a different condition.
Since :? = :15 > 2:14, we have that) is size-2:14-separable. Then, by Theorem 7, � contains) .

We have shown that if� and) do not meet the conditions of Theorem 4, then we are either able
to resolve the subtree isomorphism in time FPT in : or use the established combinatorial theorems
to prove that � should contain) . This completes the proof. �

10 Why the Guarantee Cannot Be Improved
In this section, we prove Theorem 2. The theorem, which we restate below, shows that the parame-
terization of Tree Containment above X (�) is tight in some sense.

Theorem 2. For any Y > 0, Tree Containment is NP-complete when restricted to instances (�,))
with |+ ()) | ≤ (1 + Y)X (�).

Proof. We reduce from the 3-Partition problem. In this problem, we are given a set � of
size< = 3=, a “size” function B : � → Z≥0, and an integer � > 0 such that 1

4� < B (0) < 1
2� for

every 0 ∈ � and
∑

0∈� B (0) = =�, and the task is to decide whether there is a partition of � into =
disjoint sets (1, . . . , (= such that for every 8 ∈ [=], ∑0∈(8 B (0) = �. This problem is well known to be
NP-complete in the strong sense [27]. We remind that because of the constraint 1

4� < B (0) < 1
2�,

each set (8 should contain three elements of� whenever a partition of� with the required property
exists.

Consider an instance of 3-Partition with � = {01, . . . , 0<} and set ℓ =
∑<

8=1 B (08). We define
X =max{

⌈
ℓ+3
Y

⌉
, ℓ + 4= − 2} and Δ = X + 2. We construct the following tree) (Figure 6(a)).

—For each 8 ∈ [<], construct a vertex E8 , a set '8 of B (08) vertices, and make E8 adjacent to every
vertex of '8 .

—Construct a vertex A and make it adjacent to the vertices E1, . . . , E< .
—Construct Δ −< vertices D1, . . . , DΔ−< and make them adjacent to A .
Next, we construct the graph � as follows (Figure 6(b)).

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

Tree Containment above Minimum Degree Is FPT 9:41

Fig. 6. Construction of) (a) and � (b). In (b), the edges between the vertices ~ (ℎ)
8

for 8 ∈ [=] and ℎ ∈ [3] are
not shown. Similarly, the edges between I1, . . . , IΔ−< are not shown. Also, we do not show the edges between
~
(ℎ)
8

and I 9 for 8 ∈ [=], ℎ ∈ [3], and 9 ∈ [Δ −<], except the edges incident to ~ (1)
1 .

—For every 8 ∈ [=], construct a set !8 of � + 3 vertices and make it a clique, and then select
three vertices ~ (1)

8
, ~

(2)
8
, ~

(3)
8

∈ !8 .
—Construct ℓ (X − � − 2) copies ,F,8 of the complete graph X+1 for all F ∈ ⋃=

8=1 (!8 \
{~ (1)

8
, ~

(2)
8
, ~

(3)
8

}) and 8 ∈ [X − � − 2].
—For eachF ∈ ⋃=

8=1 (!8 \ {~
(1)
8
, ~

(2)
8
, ~

(3)
8

}) and 8 ∈ [X − � − 2], makeF adjacent to one vertex
of,F,8 .

—For all 8, 9 ∈ [=] such that 8 < 9 , make ~ (ℎ)
8

adjacent to ~ (1)
9
, ~

(2)
9
, ~

(3)
9

for each ℎ ∈ [3].
—Construct a vertex G and make it adjacent to ~ (1)

8
, ~

(2)
8
, ~

(3)
8

for all 8 ∈ [=].
—Construct Δ −< vertices I1, . . . , IΔ−< , make them pairwise adjacent and adjacent to G .
—Find< pairwise disjoint sets of vertices / (ℎ)

8
⊆ {I1, . . . , IΔ−<} of size � + 1 for 8 ∈ [=] and ℎ ∈

[3]. For every 8 ∈ [=] and ℎ ∈ [3], make ~ (ℎ)
8

adjacent to the vertices of {I1, . . . , IΔ−<} \/ (ℎ)
8

.

Notice that because Δ −< ≥ ℓ + = = (� + 1)=, disjoint sets / (ℎ)
8

⊆ {I1, . . . , IΔ−<} exist. Observe
that for every F ∈ ⋃=

8=1 (!8 \ {~ (1)
8
, ~

(2)
8
, ~

(3)
8

}), deg� (F) = X , for every vertex E of each,F,8 ,
X ≤ deg� (E) ≤ X + 1, for each ~ (ℎ)

8
, deg� (~

(ℎ)
8

) = � + Δ − (� + 1) = Δ − 1 = X + 1, for each
I8 , Δ − 1 ≤ deg� (I8) ≤ Δ, and deg� (G) = Δ. In particular, X (�) = X and the maximum degree
Δ(�) = Δ.

We show that � contains) as a subgraph if and only if there is a partition of � into = disjoint
sets (1, . . . , (= such that for every 8 ∈ [=], ∑0∈(8 B (0) = �.

Assume that there is a partition of � into = disjoint sets (1, . . . , (= such that for every 8 ∈ [=],∑
0∈(8 B (0) = �. We construct the isomorphism f mapping) into a subgraph of � as follows:

—Set f (A) = G .
—Set f (D8) = I8 for all 8 ∈ [Δ −<].

Now we consider each ℎ ∈ [=]. Assume that (ℎ = {08 , 0 9 , 0: }.

—We set f (E8) = ~ (1)
ℎ

, f (E 9) = ~ (2)
ℎ

, and f (E:) = ~ (3)
ℎ

.
—Finally, we map the vertices of '8 ∪ ' 9 ∪ ': into distinct vertices of !8 \ {~ (1)

8
, ~

(2)
8
, ~

(3)
8

} using
the fact that |'8 | + |' 9 | + |': | =

∑
0∈(ℎ B (0) = � = |!8 \ {~ (1)

8
, ~

(2)
8
, ~

(3)
8

}|.

The construction of) and � implies that f is a subgraph isomorphism of) to � .

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

9:42 F. Fomin et al.

For the opposite direction, assume) is a subgraph of� , that is, there is a subgraph isomorphism
f mapping) into a subgraph of� . We have that deg) (A) = Δ. From the other side, deg� (G) = Δ and
only other vertices of degreeΔ are the vertices of {I1, . . . , IΔ−<}\⋃=

8=1
⋃3

ℎ=1 /
(ℎ)
8

. However, the latter
vertices are true twins with G . Therefore, we can assume without loss of generality that f (A) = G .
Because deg) (A) = deg� (G) = Δ, f bijectively maps #) (A) to #� (G). If the vertex E8 for some
8 ∈ [<] is mapped to some I 9 for 9 ∈ [Δ −<], then the vertices of '8 should be mapped to vertices
of #� (G) because #� (I 9) ⊆ #� [G]. However, this is impossible because f−1 (#� (G)) = #) (A). This
implies that f ({D1, . . . , DΔ−<}) = {I1, . . . , IΔ−<}. Thus, f ({E1, . . . , E<}) =

⋃=
ℎ=1{~

(1)
ℎ
, ~

(2)
ℎ
, ~

(3)
ℎ

}
and the sets (′

ℎ
= f−1 ({~ (1)

ℎ
, ~

(2)
ℎ
, ~

(3)
ℎ

}) for ℎ ∈ [=] form a partition of {E1, . . . , E<}. For each
ℎ ∈ [=], we define (ℎ = {08 ∈ � | E8 ∈ (′

ℎ
}. The sets (1, . . . , (= form a partition of �. We

claim that
∑

0∈(ℎ B (0) ≤ � for each ℎ ∈ [=]. To see this, consider some (ℎ and assume that
f−1 ({~ (1)

ℎ
, ~

(2)
ℎ
, ~

(3)
ℎ

}) = {E8 , E 9 , E: } for distinct 8, 9, : ∈ [<]. We have that the vertices of '8 , ' 9 , and
': are mapped by f to distinct vertices of !ℎ \ {~ (1)

ℎ
, ~

(2)
ℎ
, ~

(3)
ℎ

}. Because |!ℎ \ {~ (1)
ℎ
, ~

(2)
ℎ
, ~

(3)
ℎ

}| = �,
we have that B (08) + B (0 9) + B (0:) = |'8 | + |' 9 | + |': | ≤ �. This implies that

∑
0∈(ℎ B (0) ≤ �. Since

the inequality holds for every ℎ ∈ [=] and =� =
∑

0∈� B (0), we obtain that
∑

0∈(ℎ B (0) = � for every
ℎ ∈ [=].

To complete the proof, notice that |+ ()) | = 1+<+∑<
8=1 B (08)+Δ−< = X+3+∑<

8=1 B (08) = X+(3+ℓ).
Because X ≥ ℓ+3

Y
, we have that |+ ()) | ≤ (1 + Y)X (�). �

We remark that Theorem 2 is proved for a constant Y, but the proof works even if Y = 1
=2

for any
2 > 0 where = is the number of vertices of the input graph.

11 Conclusion
In our exploration of algorithmic extensions of classical combinatorial theorems, we have demon-
strated that it is possible to determine, in time 2:O(1) · =O(1) , whether a graph � contains a tree
) with at most X (�) + : vertices as a subgraph. Our algorithm is a one-sided error Monte Carlo
algorithm. This naturally raises two questions. First, can we develop a deterministic algorithm for
this problem? Second, is there room for improvement in the running time? Can the problem be
solved in time 2O(: log:) · =O(1) or even in time 2O(:) · =O(1)?

Another question related to our work. Brandt, in his work [6], extended Chvátal’s Lemma for
forests.

Proposition 4 ([6]). Let � be a graph, and � be a forest such that |+ (�) | ≤ |+ (�) | and |� (�) | ≤
X (�). Then, � contains � as a subgraph.

Is the Forest Containment problem (for a given graph � and forest � , to decide whether �
contains �) FPT when parameterized by : = |� (�) | − X (�)?

References
[1] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. 2010. Solving MAX-A -SAT above a tight

lower bound. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 511–517.
[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4 (1995), 844–856. DOI: https://doi.org/10.

1145/210332.210337
[3] Ch Sobhan Babu and Ajit A. Diwan. 2005. Degree conditions for forests in graphs. Discrete Math. 301, 2–3 (2005),

228–231. DOI: https://doi.org/10.1016/j.disc.2005.08.001
[4] Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. 2019. Finding detours is fixed-parameter tractable.

SIAM J. Discrete Math. 33, 4 (2019), 2326–2345. DOI: https://doi.org/10.1137/17M1148566
[5] Virendrakumar C. Bhavsar, Harold Boley, and Lu Yang. 2004. A weighted-tree similarity algorithm for multi-agent

systems in e-business environments. Comput. Intell. 20, 4 (2004), 584–602.
[6] Stephan Brandt. 1994. Subtrees and subforests of graphs. J. Combin. Theory Ser. B 61, 1 (1994), 63–70. DOI: https:

//doi.org/10.1006/jctb.1994.1030

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/j.disc.2005.08.001
https://doi.org/10.1137/17M1148566
https://doi.org/10.1006/jctb.1994.1030
https://doi.org/10.1006/jctb.1994.1030

Tree Containment above Minimum Degree Is FPT 9:43

[7] Vasek Chvátal. 1977. Tree-complete graph Ramsey numbers. J. Graph Theory 1, 1 (1977), 93. DOI: https://doi.org/10.
1002/jgt.3190010118

[8] Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. 2013. Poly-
nomial kernels for lambda-extendible properties parameterized above the Poljak-Turzik bound. In IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 43–54.

[9] D. Pramodh Krishna and K. Venu Gopal Rao. 2016. Generalized weighted tree similarity algorithms for taxonomy
trees. EURASIP J. Inf. Secur . 2016, 1 (June. 2016). DOI: https://doi.org/10.1186/s13635-016-0035-2

[10] Reinhard Diestel. 2017. Graph Theory (5th ed.). Graduate Texts in Mathematics, Vol. 173. Springer-Verlag, Berlin,
xvi+411.

[11] D. V. Dimarogonas and K. H. Johansson. 2008. On the stability of distance-based formation control. In 47th IEEE
Conference on Decision and Control, 1200–1205.

[12] Dimos V. Dimarogonas and Karl H. Johansson. 2009. Further results on the stability of distance-based multi-robot
formations. (2009), 2972–2977.

[13] P. Erdős. 1964. Extremal problems in graph theory. In Theory of Graphs and Its Applications (Proc. Sympos. Smolenice,
1963). Publishing House of the Czech Academy of Sciences, Prague, 29–36.

[14] P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós. 1995. Discrepancy of trees. Stud. Sci. Math. Hung. 30, 1–2 (1995), 47–57.
[15] P. Erdős and T. Gallai. 1959. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10 (1959), 337–356.
[16] Fedor V. Fomin, Petr A. Golovach, William Lochet, Danil Sagunov, Kirill Simonov, and Saket Saurabh. 2022. Detours in

directed graphs. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Artilce 29, 1–16. DOI: https://doi.org/10.4230/LIPIcs.STACS.2022.29

[17] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2020. Going
far from degeneracy. SIAM J. Discrete Math. 34, 3 (2020), 1587–1601. DOI: https://doi.org/10.1137/19M1290577

[18] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2021.
Multiplicative parameterization above a guarantee. ACM Trans. Comput. Theory 13, 3 (2021), Article 18, 1–16. DOI:
https://doi.org/10.1145/3460956

[19] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. 2020. Algorithmic extensions of Dirac’s theorem.
arXiv:2011.03619. Retrieved from https://arxiv.org/abs/2011.03619

[20] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. 2022. Algorithmic extensions of Dirac’s
theorem. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 406–416. DOI:
https://doi.org/10.1137/1.9781611977073.20

[21] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. 2022. Longest cycle above Erdős-Gallai bound.
In 30th Annual European Symposium on Algorithms (ESA). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Article
55, 1–15. DOI: https://doi.org/10.4230/LIPIcs.ESA.2022.55

[22] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. 2023. Turán’s theorem through algorithmic
lens. arXiv:2307.07456. Retrieved from https://arxiv.org/abs/2307.07456

[23] Zoltán Füredi, Alexandr Kostochka, Ruth Luo, and Jacques Verstraëte. 2018. Stability in the Erdős-Gallai theorem on
cycles and paths, II. Discrete Math. 341, 5 (2018), 1253–1263. DOI: https://doi.org/10.1016/j.disc.2017.12.018

[24] Zoltán Füredi, Alexandr Kostochka, and Jacques Verstraëte. 2016. Stability in the Erdős-Gallai theorems on cycles and
paths. J. Combin. Theory Ser. B 121 (2016), 197–228. DOI: https://doi.org/10.1016/j.jctb.2016.06.004

[25] Martin Fürer and Balaji Raghavachari. 1992. Approximating the minimum degree spanning tree to within one from
the optimal degree. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 317–324.

[26] Luyining Gan, Jie Han, and Jie Hu. 2023. An algorithmic version of the Hajnal–Szemerédi theorem. arXiv:2307.08056.
Retrieved from https://arxiv.org/abs/2307.08056

[27] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman.

[28] Shivam Garg and Geevarghese Philip. 2016. Raising the bar for vertex cover: Fixed-parameter tractability above a
higher guarantee. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
1152–1166. DOI: https://doi.org/10.1137/1.9781611974331.ch80

[29] Michel X. Goemans. 2006. Minimum bounded degree spanning trees. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). IEEE, 273–282.

[30] Gregory Gutin, Leo van Iersel, MatthiasMnich, andAnders Yeo. 2012. Every ternary permutation constraint satisfaction
problem parameterized above average has a kernel with a quadratic number of variables. J. Comput. Syst. Sci. 78, 1
(2012), 151–163.

[31] Gregory Z. Gutin and Matthias Mnich. 2022. A survey on graph problems parameterized above and below guaranteed
values. arXiv:2207.12278. Retrieved from https://arxiv.org/abs/2207.12278

[32] Jie Han and Peter Keevash. 2020. Finding perfect matchings in dense hypergraphs. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2366–2377. DOI: https://doi.org/10.1137/1.9781611975994.145

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

https://doi.org/10.1002/jgt.3190010118
https://doi.org/10.1002/jgt.3190010118
https://doi.org/10.1186/s13635-016-0035-2
https://doi.org/10.4230/LIPIcs.STACS.2022.29
https://doi.org/10.1137/19M1290577
https://doi.org/10.1145/3460956
https://arxiv.org/abs/2011.03619
https://arxiv.org/abs/2011.03619
https://doi.org/10.1137/1.9781611977073.20
https://doi.org/10.4230/LIPIcs.ESA.2022.55
https://arxiv.org/abs/2307.07456
https://arxiv.org/abs/2307.07456
https://doi.org/10.1016/j.disc.2017.12.018
https://doi.org/10.1016/j.jctb.2016.06.004
https://arxiv.org/abs/2307.08056
https://arxiv.org/abs/2307.08056
https://doi.org/10.1137/1.9781611974331.ch80
https://arxiv.org/abs/2207.12278
https://arxiv.org/abs/2207.12278
https://doi.org/10.1137/1.9781611975994.145

9:44 F. Fomin et al.

[33] Meike Hatzel, Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski. 2023. Simpler and faster algorithms for
detours in planar digraphs. In 2023 Symposium on Simplicity in Algorithms (SOSA). SIAM, 156–165. DOI: https:
//doi.org/10.1137/1.9781611977585.ch15

[34] Frédéric Havet, Bruce Reed, Maya Stein, and David R. Wood. 2020. A variant of the Erdös-Sós conjecture. J. Graph
Theory 94, 1 (2020), 131–158. DOI: https://doi.org/10.1002/jgt.22511

[35] Jianfeng Hou, Xizhi Liu, and Hongbin Zhao. 2024. Faster coloring and embedding in dense hypergraphs via stability.
arXiv:2401.17219. Retrieved from https://arxiv.org/abs/2401.17219

[36] Ashwin Jacob, Michal Wlodarczyk, and Meirav Zehavi. 2023. Long directed detours reduction to 2-disjoint paths.
arXiv:2301.06105. Retrieved from https://arxiv.org/abs/2301.06105

[37] Bart M. P. Jansen, László Kozma, and Jesper Nederlof. 2019. Hamiltonicity below Dirac’s condition. In Proceedings of
the 45th International Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in Computer
Science, Vol. 11789. Springer, 27–39.

[38] Mokhtar Khorshid, Robert Holte, and Nathan Sturtevant. 2011. A polynomial-time algorithm for non-optimal multi-
agent pathfinding. In Proceedings of the 2nd International Symposium on Combinatorial Search, 76–83.

[39] János Komlós, Gábor N. Sárközy, and Endre Szemerédi. 1995. Proof of a packing conjecture of Bollobás. Comb. Probab.
Comput . 4, 3 (1995), 241–255. DOI: https://doi.org/10.1017/S0963548300001620

[40] G. N. Kopylov. 1977. Maximal paths and cycles in a graph. Dokl. Akad. Nauk SSSR 1 (1977), 19–21.
[41] Binlong Li and Bo Ning. 2021. A strengthening of Erdős-Gallai theorem and proof of Woodall’s conjecture. J. Combin.

Theory Ser. B 146 (2021), 76–95. DOI: https://doi.org/10.1016/j.jctb.2020.08.003
[42] Bernard Lidický, Hong Liu, and Cory Palmer. 2013. On the Turán number of forests. Electron. J. Comb. 20, 2 (2013),

Paper 62, 13. DOI: https://doi.org/10.37236/3142
[43] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2014. Faster

parameterized algorithms using linear programming. ACM Trans. Algorithms 11, 2 (2014), Article 15, 1–31. DOI:
https://doi.org/10.1145/2566616

[44] Jie Ma and Bo Ning. 2020. Stability results on the circumference of a graph. Combinatorica 40, 1 (2020), 105–147. DOI:
https://doi.org/10.1007/s00493-019-3843-4

[45] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. 2009. Parameterizing above or below guaranteed values. J.
Comput. Syst. Sci. 75, 2 (2009), 137–153.

[46] Elan Markowitz, Anil Ramakrishna, Jwala Dhamala, Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-Wei Chang, and
Aram Galstyan. 2024. Tree-of-traversals: A zero-shot reasoning algorithm for augmenting black-box language models
with knowledge graphs. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Bangkok, Thailand, 12302–12319. DOI: https://doi.org/10.18653/v1/2024.
acl-long.665

[47] Dániel Marx and Michał Pilipczuk. 2013. Everything you always wanted to know about the parameterized complexity
of subgraph isomorphism (but were afraid to ask). arXiv:1307.2187. Retrieved from http://arxiv.org/abs/1307.2187

[48] Jiřı Matoušek and Robin Thomas. 1992. On the complexity of finding iso- and other morphisms for partial k-trees.
Discrete Math. 108, 1–3 (1992), 343–364. DOI: https://doi.org/10.1016/0012-365X(92)90687-B

[49] David W. Matula. 1978. Subtree isomorphism in$ (=5/2) . In Annals of Discrete Mathematics. Vol. 2. Elsevier, 91–106.
[50] Bo Ning and Long Tu Yuan. 2023. Stability in Bondy’s theorem on paths and cycles. arXiv:2207.13650. Retrieved from

https://arxiv.org/abs/2207.13650
[51] Richard Otter. 1948. The number of trees. Ann. Math. 49, 3 (July 1948), 583. DOI: https://doi.org/10.2307/1969046
[52] Christos H. Papadimitriou and Mihalis Yannakakis. 1982. The complexity of restricted spanning tree problems. J.

ACM 29, 2 (1982), 285–309.
[53] Maya Stein. 2020. Tree containment and degree conditions. In Discrete Mathematics and Applications (Springer

Optimization and Its Applications), Vol. 165. Springer, Cham, 459–486. DOI: https://doi.org/10.1007/978-3-030-55857-
4_19

[54] Yang Xiang and Abdulrahman Alshememry. 2018. Privacy sensitive construction of junction tree agent organization
for multiagent graphical models. In Proceedings of the 9th International Conference on Probabilistic Graphical Mod-
els (Proceedings of Machine Learning Research). PMLR, 523–534. Retrieved from https://proceedings.mlr.press/v72/
xiang18a.html

[55] Xiutao Zhu, Ervin Győri, Zhen He, Zequn Lv, Nika Salia, and Chuanqi Xiao. 2022. Stability version of Dirac’s theorem
and its applications for generalized Turán problems. arXiv:2207.12465. Retrieved from https://arxiv.org/abs/2207.12465

[56] Lizheng Zu, Lin, Song Fu, Na Zhao, and Pan Zhou. 2025. Collaborative tree search for enhancing embodied multi-agent
collaboration. DOI: https://doi.org/10.1109/CVPR52734.2025.02748

Received 5 March 2024; revised 18 June 2025; accepted 7 September 2025

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 9. Publication date: November 2025.

https://doi.org/10.1137/1.9781611977585.ch15
https://doi.org/10.1137/1.9781611977585.ch15
https://doi.org/10.1002/jgt.22511
https://arxiv.org/abs/2401.17219
https://arxiv.org/abs/2401.17219
https://arxiv.org/abs/2301.06105
https://arxiv.org/abs/2301.06105
https://doi.org/10.1017/S0963548300001620
https://doi.org/10.1016/j.jctb.2020.08.003
https://doi.org/10.37236/3142
https://doi.org/10.1145/2566616
https://doi.org/10.1007/s00493-019-3843-4
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
http://arxiv.org/abs/1307.2187
http://arxiv.org/abs/1307.2187
https://doi.org/10.1016/0012-365X(92)90687-B
https://arxiv.org/abs/2207.13650
https://arxiv.org/abs/2207.13650
https://doi.org/10.2307/1969046
https://doi.org/10.1007/978-3-030-55857-4_19
https://doi.org/10.1007/978-3-030-55857-4_19
https://proceedings.mlr.press/v72/xiang18a.html
https://proceedings.mlr.press/v72/xiang18a.html
https://proceedings.mlr.press/v72/xiang18a.html
https://proceedings.mlr.press/v72/xiang18a.html
https://arxiv.org/abs/2207.12465
https://arxiv.org/abs/2207.12465
https://doi.org/10.1109/CVPR52734.2025.02748

	Abstract
	1 Introduction
	 Related Work
	2 Definitions and Preliminaries
	3 Main Ideas and Structure of the Proof of Theorem 1
	3.1 Saving Neighbors of a Single Vertex
	3.2 Filtering out Yes-Instances
	3.3 Shaving off Leaves from Distinct Neighbors
	3.4 Solving Remaining Case Algorithmically

	4 Vertex of High Leaf-Degree
	4.1 Hitting Sets with Isomorphism
	4.2 Extending Isomorphism of k-1 Leaves
	4.3 Tree Containment When There Is a Vertex with Many Leaves
	4.4 Proof of Theorem 3

	5 Small Diameter Trees and Separable G
	5.1 Extending Leaf-Adjacent Mappings
	5.2 Guessing a Mapping Randomly
	5.3 Proof of Theorem 4

	6 Large Diameter and Preserving Paths
	6.1 Preserving Paths and How to Use Them
	6.2 Finding Preserving Sets of Order (G)
	6.3 Proof of Theorem 5

	7 When G Has at Most (1+)(G) Vertices
	7.1 Proof of Theorem 6

	8 Medium Diameter and Escape Vertices
	8.1 Contracting Trivial Paths
	8.2 Escaping Neighborhoods and Separating G
	8.3 Proof of Theorem 7

	9 Final Proof: Putting It All Together
	10 Why the Guarantee Cannot Be Improved
	11 Conclusion
	References

