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We propose a novel clustering model encompassing two well-known clustering models: k-center clustering

and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in Rd , an integer k ,

and a non-negative real r , our objective is to position k closed balls of radius r to minimize the sum of dis-

tances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L1-fitting

of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to

k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center.

Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid

k-clustering with balls of radius (1 + ε)r . This algorithm achieves a cost at most 1 + ε of the optimum, and

it operates in time 2(kd/ε )O(1) · nO(1). Notably, considering the established lower bounds on k-center and

k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.1
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1 Introduction

Suppose we want to install a set of k access points (APs) at certain locations to provide wireless
internet (Wi-Fi) coverage to a group of people belonging to a certain area. Each AP is capable of
providing Wi-Fi within a circular-shaped region (i.e., a disk) of fixed radius r , and it may not be
possible to cover the entire region with k such disks. Thus, after placing k APs, some people may
be outliers, that lie outside any of the k disks and do not receive Wi-Fi coverage. We can model
this scenario as the classical k-Center with Outliers problem, which is a crude model since it
only cares about the number of outliers. However, our scenario is more nuanced. All people that lie
within any of the k disks of radius r already receive Wi-Fi, whereas a person lying outside all of the
k disks must travel to the boundary of the nearest disk in order to receive coverage. Naturally, we
would like to minimize the total distance traveled by people. Motivated by this and several other
problems in computational geometry/clustering, we consider the following clustering problem,
which encompasses two fundamental variants of clustering: k-Center and k-Median. Given a set
P of points in some metric space and integer k and real r ≥ 0, our objective is to position k closed
balls of radius r in a way that minimizes the sum of distances from points uncovered by the balls
to their closest balls. In Figure 1, we provide an example of such clustering with k = 2 and r = 2.

To define the new clustering formally, we need some definitions. We consider Euclidean inputs,
i.e., all points belong to Rd for some d ≥ 1 and the distance function dist(·, ·) is given by the
Euclidean (�2) distance. For a point p ∈ P and a finite set of points Q ⊂ Rd , we define dist(p,Q) �
minq∈Q dist(p,q). Further, for x ,y ∈ P , and a real r ≥ 0, we define the shorthand distr (x ,y) �
max {dist(x ,y) − r , 0}.

Hybrid k-Clustering

Input. A set P ⊂ Rd of n points, an integer k ≥ 1, and a real r ≥ 0.
Task. Find a set F ⊂ Rd of size at most k , that minimizes:

costr (P , F ) �
∑
p∈P

distr (p, F ) (1)

We denote an instance of Hybrid k-Clustering as I = (P ,k, r ,d), where d denotes the di-
mension. When r = 0, the optimal cost of Hybrid k-Clustering equals the optimal k-Median
clustering cost of the instance. Thus in this case, Hybrid k-Clustering reduces to k-Median.
However, when r > 0, distr (·, ·) does not form a metric, and hence we cannot simply reduce
the problem to k-Median. On the other hand, the minimum value r that guarantees the cost of
Hybrid k-Clustering to be zero is equal to the optimal k-Center value. In this sense, Hybrid
k-Clustering reduces to k-Center.

1.1 Our Result and Techniques

The main result of this article is a bicriteria approximation algorithm for Hybrid k-Clustering.
An α-approximation to an instanceI = (P ,k, r , dist) is a subset F ⊂ Rd of size k with costr (P , F ) ≤
α · OPTr , where OPTr � costr (P , F ∗) denotes the cost of an optimal solution F ∗ ⊂ Rd of size at
most k . Furthermore, an (α , β)-bicriteria approximation is a solution F ⊂ Rd with costβr (P , F ) ≤
α · OPTr . Here, costβr (P , F ) =

∑
p∈P distβr (p, F ).

Consider the special case of r = r ∗, where r ∗ is the optimal radius fork-Center. Then, OPTr ∗ = 0.
Therefore, a (α , 1)-bicriteria approximation would return a solution of cost α · OPTr ∗ = 0 using
radius 1 ·r ∗, i.e., an optimal solution for k-Center. On the other hand, a (1, β)-bicriteria approxima-
tion, for the special case of r = 0, would return an optimal-cost solution using the radius of βr = 0.

ACM Trans. Comput. Theory, Vol. 17, No. 4, Article 23. Publication date: November 2025.
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Fig. 1. Two disks of radius 2 cover all except four points that are colored red. The total sum of distances from

these points to the yellow disks is 2(1 +
√

8 − 2).

Fig. 2. Left: k-Center clustering, a special case of Hybrid k-Clustering with r = r�. All points are covered

by k balls of radius r� and OPTr� = 0. Right: k-Median clustering, a special case of Hybrid k-Clustering

with r = 0, and every point contributes its distance to the closest center (some are shown as brown arrows).

Middle: A general instance of Hybrid k-Clustering lies somewhere in between the two cases, where points

outside radius-r balls contribute the distance to the boundary (shown in blue).

That is, such an algorithm would optimally solve k-Median. In Figure 2, we give an example
of clustering the same point-set using k-Center, k-Median, and Hybrid Hybrid k-Clustering.
Combining these observations with the established lower bounds from the literature for k-Median
and in Euclidean spaces, implies the following bounds for Hybrid k-Clustering.

Proposition 1.1. The following holds for Hybrid k-Clustering even when the input is from R2.

— For any α ≥ 1, there exists no FPT in k algorithm that returns an (α , 1)-approximation, unless

FPT =W[1] [31].

— For any finite β ≥ 1, there exists no polynomial-time algorithm that returns a (1, β)-
approximation unless P = NP [33].

Further, assuming the Exponential-Time Hypothesis (ETH), if the input is from Rd with d ≥ 4,

then there exists no no(k) time algorithm that returns a (1, β)-approximation, for any finite β ≥ 1 [11].

Given these results, a natural question arises: Can we achieve a (1 + ε, 1 + ε)-approximation for

Hybrid k-Clustering, running in time f (k, ε) · nO(1), particularly in low-dimensional Euclidean

spaces? Our main theorem answers this question.

ACM Trans. Comput. Theory, Vol. 17, No. 4, Article 23. Publication date: November 2025.
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Theorem 1.2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance of

Hybrid k-Clustering in Rd , runs in time 2( kd
ε )
O(1)
·nO(1), and returns a (1+ ε, 1+ ε)-approximation

with probability at least a positive constant.

This randomized algorithm and the proof of correctness are described in Section 2. Here we dis-
cuss some of the main ideas. Recall that our objective, as the problem name suggests, is a “hybrid”
of k-Center and k-Median. In our preprocessing steps, we first handle the inputs that behave
almost like either of the two problems. Suppose we (approximately) know the optimal value of
Hybrid k-Clustering for the given set of points P , called OPTr . First, in Lemma 2.1, if r > OPTr ,
then we show that an approximate solution can be found using techniques used for approximating
k-Center. Specifically, for each of the k centers in the optimal solution, we find a “nearby” center
within distance ϵr via overlaying a fine grid in the space. Thus, we can assume that r ≤ OPTr .

Next, we consider the case when r is too small compared to OPTr , namely, when r < εOPTr

n
, and

show that in this case, the input behaves like k-Median– an approximate k-Median solution is
also an approximation for Hybrid k-Clustering (Lemma 2.2). In this manner, we preprocess to
handle inputs that resemble k-Center and k-Median, we obtain a relation between r and OPTr ,
which can be used to discretize the distances, which can be used to bound the aspect ratio (i.e., the
ratio of maximum to minimum positive distance) (Lemma 2.3).

After the preprocessing step, we obtain inputs that are not immediately reducible to k-Center/
Median. To handle such inputs, we design an intricate recursive algorithm that, at each step, tries
to simultaneously handle parts (i.e., clusters) of the input that can be handled by either of the two
techniques. This algorithm is inspired by the sampling approach of Kumar, Sabharwal, and Sen [28,
29] (also Jaiswal, Kumar, and Sen [27]). In this approach, one first takes a large enough sample
that can be used to pin down the location of the largest cluster center. Then, one removes enough
points from the vicinity of this center, so that the next largest cluster becomes dominant, and hence
a subsequent sample contains sufficiently many points from the second cluster, and so on.

However, our scenario is more intricate and challenging for several reasons due to the peculiar
nature of the objective. Nevertheless, in principle, one can classify each cluster as either being
more 1-center-like, or more 1-median like (see Figure 3 for an illustration). In a 1-center-like cluster,
a large fraction of points lie within a ball of radius O(r/ε). On the other hand, in a 1-median-like

cluster, a vast majority of points lie outside the O(r/ε)-radius ball. Note that any such point loses
very little due to the “−r” term in the clustering cost, i.e., its distr and dist values are approximately
equal. Hypothetically, if we knew the partition of the input points into k clusters, then we could
use this classification to handle each type of cluster separately – an almost-optimal center of a 1-

center-like cluster can be found using a grid, whereas one can use an approximation for 1-median
(as a black box) to handle a 1-median-like cluster. However, the actual clusters are obviously un-
known to the algorithm. Hence, the algorithm has to carefully navigate between the two types of
clusters based on the random sample obtained, and must simultaneously handle both scenarios
using branching (i.e., recursion). The analysis of the algorithm is also much more involved due to
the various cases in which the distinction between two types of clusters is murkier. Nevertheless,

we are able to show that the algorithm returns a (1+ε, 1+ε)-approximation in time 2(kd/ε )O(1) ·nO(1)
with good probability. Note that we incur an exponential dependence on the dimension d due to
“grid-arguments” used to handle 1-center-like clusters, unlike the approach of [28]. However, such
dependence seems unavoidable using our approach.

1.2 Related Problems

Euclidean Clustering. An extensive body of literature exists on approximation algorithms for
k-Center and k-Median in the Euclidean space. For k-Median in Rd , Polynomial-Time

ACM Trans. Comput. Theory, Vol. 17, No. 4, Article 23. Publication date: November 2025.
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Fig. 3. Example of two different types of clusters. In each figure, we show the cluster center in red, a ball of

radius r around the center in green, and a larger ball of radius O(r/ϵ) in cyan with a dashed outline. Left: A

1-center-like cluster. Note that a large chunk of points lies within the radius O(r/ε) ball around the center.

Right: A 1-median-like cluster. Note that most of the points lie outside the O(r/ϵ) radius ball around c , and

for any such point, e.g., p that is outside the O(r/ε) radius ball, distr (p, c) ≈ dist(p, c).

Approximation Schemes (PTASes) with a running time of nf (ϵ,d ) have been developed,
leveraging local search techniques [13, 19]. Additionally, various Fixed-Parameter Tractable

Approximation Schemes (FPT-AS) with a running time of f (k,d, ϵ) · nO(1) are known for this
problem [12, 14, 27, 29]. The dependence on dimensiond can be eliminated through dimensionality
reduction techniques [10, 30].

For k-Center, an FPT-AS was introduced by Agarwal and Procopiuc in [3], with a runtime of

O(n logk)+ (k/ε)O(dk1−1/d ) in Rd . Subsequent work by Badoiu, Har-Peled, and Indyk [4] improved

the running time to 2O(k log k)/ϵ 2 · dn.

Common generalizations of k-Center and k-Median. In [34], Tamir introduces a common general-
ization of the two clustering problems, namely, �-centrum. In this problem, one ignores � closest
points from the cost. Notably, k-Median ignores 0 points, and k-Center ignores all but one point.
While this problem greatly resembles Hybrid k-Clustering, it is not immediate whether one can
give a (approximation-preserving) reduction from Hybrid k-Clustering to �-Centrum. Never-
theless, some of the techniques used in the literature for obtaining approximations for the latter
problem, e.g., [8], can be used to obtain bicriteria approximations for Hybrid k-Clustering, as
we observe later in the conclusion. Ordered k-Median is a further generalization of �-Centrum,
where the solution is evaluated by first sorting the client connection costs and then multiplying
them with a predefined non-increasing weight vector (higher connection costs are taken with
larger weights) [7]. Finally, the latter problem has been further generalized to the objectives that
contain a general norm of the distance vector of the clients’ connection costs [1]. Approximation
algorithms for these and other generalizations have been developed in [1, 5, 7, 8, 26].

k-center clustering with outliers. In k-Center clustering, we are given sets P (clients) and F
(facilities) of points. Given an integer k , the task is to identify k centers F ⊆ F minimizing the

ACM Trans. Comput. Theory, Vol. 17, No. 4, Article 23. Publication date: November 2025.



23:6 F. Fomin et al.

maximum distance of any point in P from its closest center. A popular variant of k-center is a
formulation that considers outliers. For a selected parameter x , up to x points are allowed not
to be allocated to any center. A plethora of approximation algorithms for this problem, and the
related problems of covering points by disks and minimum enclosing balls with outliers, exist in
the literature [4, 9, 15–17, 21, 24, 32]. Hybrid k-Clustering could be seen as a variant of k-Center
with outliers, where we focus on the sum of distances to outliers rather than their numbers.

Shape fitting. A natural problem arising in machine learning, statistics, data-mining, and many
other fields is to fit a shape γ to a set of points P in Rd . Har-Peled in [23] introduces the following
formalization of this problem. For a family of shapes F (points, lines, hyperplanes, spheres, etc.)
we seek for a shape γ ∈ F with the best fit to P . The typical criteria for measuring how well a
shape γ fits a set of points P could be the maximum distance between a point of P and its nearest
point on γ (L∞-fitting), sum of the distances from P to γ (L1-fitting) or the sum of the squares of
the distances (L2-fitting). In this setting, Hybrid k-Clustering is the problem of L1-fitting to a
shape from F , where F is the family of shapes defined by unions (not necessarily disjoint) of k
balls in Rd . Some relevant work in this direction includes [2, 23, 25, 35].

2 Bicriteria FPT Approximation Scheme in Euclidean Spaces

We first set up some notation and define an important subroutine. For Y ⊂ Rd , and y ∈ Y , let
cl(y,Y ) ⊆ P denote the subset of points of P , whose closest point in Y is y. Ties are broken arbi-
trarily. Note that {cl(y,Y ) : y ∈ Y } forms a partition of P .

Let p ∈ Rd be a point and λ ≥ 0, let B(p, λ) = {q ∈ Rd : dist(p,q) ≤ λ} denote the ball of radius λ
centered at p. For 0 ≤ τ ≤ λ, let Grid(p, λ,τ ) be the outcome of the following procedure: we place

a grid of sidelength τ/
√
d (of arbitrary offset). From each grid cell L that (partially) intersects with

B(p, λ) (i.e., L contains a point q with dist(p,q) ≤ λ), we pick an arbitrary point from L and add it to
the set Grid(p, λ,τ ). Note that Grid(p, λ,τ ) can be computed in time proportional to the size of the
output and d . We have the following observations that follow from simple geometric arguments.

Observation 1.

(1) |Grid(p, λ,τ )| ≤ O((2
√
dλ/τ )d ), where d is the dimension.

(2) For any q ∈ B(p, λ), there exists some q′ ∈ Grid(p, λ,τ ) such that dist(q,q′) ≤ τ .

2.1 Preprocessing

Suppose we know an estimate of OPTr up to a constant factor – this can be done by an exponential
search or by first finding a bicriteria (constant) approximation. For simplicity of exposition, we
assume that we know OPTr exactly.

Step 1. Obtaining OPTr ≥ r ≥ εOPTr

2n
.

First, in the following lemma, we handle k-center-like instances, which we can handle using
“grid arguments”. If this is not applicable, we obtain that r ≤ OPTr .

Lemma 2.1. If r > OPTr , then in time (d
ε
)O(dk) ·nO(1)one can find a set F ⊂ Rd of size k , such that,

cost(1+ε )r (P , F ) ≤ (1 + ε)OPTr .

Proof. Consider an optimal solution F� such that costr (P , F�) = OPTr . We assume that F� is
minimal, i.e., no strict subset of F� also yields the optimal cost. It follows that every point p ∈ P
is within a distance of at most 2r from some c ∈ F�, and each c ∈ F� has some p ∈ P within
distance 2r . Thus, P can be covered using at most k balls of radius 2r . Using a polynomial-time
2-approximation for k-Center (e.g. [22]), we find a set F such that P ⊆

⋃
c ∈F B(c, 4r ). This implies

that F� ⊆
⋃

c ∈F B(c, 6r ).

ACM Trans. Comput. Theory, Vol. 17, No. 4, Article 23. Publication date: November 2025.
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Let R =
⋃

c ∈F Grid(c, 6r , εr ). By Observation 1, |R | ≤ k(
√

d
ε
)O(d ). Now, we iterate over all subsets

F ′ ⊆ R of size at most k , and look at the subset F ′ minimizing costr (P , F ′). The number of such

subsets is at most k
( |R |

k

)
≤ k( e |R |

k
)k ≤ (d

ε
)O(dk). Also, by Observation 1, there exists a subset F ⊆ R

of size at most k , such that for each c� ∈ F�, there exists some c ′ ∈ F such that dist(c�, c ′) ≤ εr . It
is easy to see that F satisfies the claimed properties. �

In the following lemma, we handle k-median-like instances, where r is very small compared
OPTr . We directly reduce such instances to k-Median (where r = 0). If this is not applicable, then
we obtain that r is not “too small” compared to OPTr .

Lemma 2.2. Let 0 < ε < 1. Suppose for an instance I, OPTr ≥ 2nr
ε

. Then, OPT0 ≤ (1 + ε/2) ·
OPTr ≤ (1 + ε/2) ·OPT0. Furthermore, if F ⊂ Rd satisfies that cost0(P , F ) ≤ (1 + ε/3) ·OPT0. Then,

costr (P , F ) ≤ (1 + ε) · OPTr . Such a set F can be found in time 2(k/ε )
O(1) · nd .

Proof. For any F ′ ⊂ Rd , it holds that cost0(P , F ) ≤ costr (P , F ′) + nr . In particular, let F ∗ ⊂
Rd be an optimal solution of size k , i.e., costr (P , F ∗) = OPTr . Then, it holds that cost0(P , F ∗) ≤
costr (P , F ∗)+n · εOPTr

2n
= (1+ ε/2) ·OPTr . Since cost0(P , F ∗) ≥ OPT0, since F ∗ is a feasible solution

of size k for r = 0. This shows the first inequality.
Now, let F ⊂ Rd be a (1 + ε/3)-approximate solution of size k for cost0, as in the statement of

the lemma, i.e., cost0(P , F ) ≤ (1 + ε/3) · OPT0. Then, the first inequality implies that cost0(P , F ) ≤
(1 + ε/3) · (1 + ε/2) ·OPTr ≤ (1 + ε) ·OPTr . We can use a (1 + ε/3)-approximation algorithm (e.g.,
[28, 29]) for k-Median to find such a solution. �

For a given input P , we try the procedures from Lemma 2.1 and 2.2 and keep them as candidate
solutions. However, if P does not satisfy the conditions required to apply these lemmas, then we

must have that εOPTr

2n
≤ r ≤ OPTr . In this case, we use the next step before proceeding to the main

algorithm.

Step 2. Bounding the aspect ratio.
In this step, we suitably discretize the distances in order to bound the aspect ratio of the metric

(i.e., the maximum ratio of inter-point distances) by O(n2

ε
). This procedure preserves the cost of

an optimal solution up to a factor of 1 + ε .

Lemma 2.3. Let P be a set of points satisfying εOPTr

2n
≤ r ≤ OPTr . Then, in polynomial time

we can obtain another (multi)set of points P ′ such that, for any solution F ⊂ Rd , costr (P ′, F ) ∈

(1 ± ε) · costr (P , F ), and
maxp,q∈P ′ dist(p,q)

minp,q∈P ′:dist(p,q)�0 dist(p,q) ≤
4n2

ε
.

Proof. Imagine an auxiliary graph G = (P ,E), where pq ∈ E iff dist(p,q) ≤ 2(OPTr + r ) ≤
4OPTr . If G has more than one connected component, then, note that two points belonging to
different connected components cannot belong to the same optimal cluster. Hence, we can solve
the problem separately on the points belonging to different connected components and combine
the solutions by a simple dynamic programming.

Thus, we can handle each connected component of G separately. In any connected component,
the maximum distance between any two points is at most n · 4OPTr . Now, we place a grid of

sidelength εOPTr√
dn

and move each point p ∈ P to the center of the grid. It can be easily shown that

this process does not change the cost of an optimal solution by more than a (1+ε) factor. Thus, the

smallest non-zero inter-point distance is now at least εOPTr

n
. Thus, the aspect ratio of the instance

is bounded by 4n2

ε
. �
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ALGORITHM 1: HybridClustering(F ′,k,m)
F ′ ⊆ Rd is a subset of centers of size at most k −m added to the solution so far

β = 1
δ c′ as required in Proposition 2.4 and β ′ � β · 150k

δ 3 .

1: if m = 0 then

2: return F ′

3: end if

4: R ←
⋃

c ′ ∈F ′ Grid(c ′, 16r ,δr )
5: for each q of the form 2j in the range [8r , distmax] do

6: Pq � P \ (
⋃

c ′ ∈F ′ B(c ′,q))
7: Let Sq be a sample of size β ′ chosen uniformly at random from Pq

8: R ← R ∪
⋃

p∈Sq
Grid(p, 8r

δ
,δr )

9: for each S ⊆ Sq of size β do

10: c ′ ← ApproxSolutionOnSample(S,δ/8) � Algorithm from Proposition 2.4

11: R ← R ∪ {c ′}
12: end for

13: end for

14: for each c ∈ R \ F ′ do

15: Call HybridClustering(F ′ ∪ {c} ,k,m − 1)
16: end for

17: Call HybridClustering(F ′,k,m − 1)
18: return solution F̃ minimizing costr ′ (P , F̃ ) over recursive calls made in lines 15 and 17

Bounding the aspect ratio by O(n2

ε
)means that an exponential search over distances has at most

log2(n
2

ε
) = O( log(n)

ε
) levels, which will be useful in our main algorithm. By slightly abusing the

notation, we continue to use P for referring to the discretized (multi)set P ′ returned by Lemma 2.3.
If there are any co-located points in P , we will treat them as separate points, and hence use set
terminology instead of multiset terminology.

After the two preprocessing steps, we now proceed to the description of the main algorithm.

2.2 Main Algorithm

Our goal is to prove Theorem 1.2, that is, to design a randomized bicriteria FPT approximation for

Hybrid k-Clustering. We define some parameters. Let δ � ε
10k
< 1

2 , δ ′ � δ
3 and r ′ � (1 + δ ′)r .

Algorithm 1 is a recursive algorithm, and is called HybridClustering. It takes three parameters
F ′,k , andm. F ′ ⊂ Rd is a subset of centers added to the solution so far and has size k −m. Further,
k is the total size of the solution, and m is an upper bound on the remaining solution (since we
have already added k −m centers). At a high (and imprecise) level, the goal of each recursive step
is to find an approximate replacement for each center in an unknown optimal solution.

In line 2, we check whetherm = 0, i.e., whether we have used our budget of k centers, and if so,
we return the same set F ′ of centers built through the recursive process. Otherwise (line 4 onward),
we assume thatm > 0, i.e., we are yet to add a set of centers. Throughout this process (line 4 to 13,
we will build a set R consisting of candidate centers, at least one of which will be an approximate
replacement of an unseen center (i.e., one whose approximate replacement has not already been
found) from an optimal solution. Finally, in line 15, we will make a recursive call by adding each
candidate to the current solution F ′. Now we discuss how we build the set R.

First, in line 4, for each center c ′ ∈ F ′ added so far, we add a set of “nearby” centers by placing
a grid. This handles the case when an unseen optimal center is close to one of the already chosen
centers in F ′. Next, in the outer for loop (line 5 to 13), we handle the case when all new optimal
centers are relatively far from the already chosen centers. In this for loop, we iterate over a range
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of values for the parameter q via exponential search. Parameter q tries to approximate half of the
minimum distance between the already chosen and new optimal centers. Thus, for the “correct”
value of q, the set of pointsCq lying “far” from the centers of F ′ (line 6), leaves all of them unseen
optimal clusters untouched. At this point, we aim to use a sample of faraway size (chosen in line
7), to find an approximate replacement for one of these m unseen centers. We do this by using
the sample in two different ways, to handle two different situations. First, if our sample happens
to contain a point “nearby” an unseen center, say c�, then the points chosen from the fine grid
in line 8 will find such an approximate replacement for c�. Otherwise, the idea is that, if we have
removed a significant fraction of points from the “seen” clusters in line 6, by virtue of being close
to F ′, then the sample contains sufficiently many (i.e., at least β) points from the largest unseen
cluster, say C�, with reasonable probability, and these points can be used to find an approximate
replacement of the cluster center (using Proposition 2.4). However, a priori we do not know
which subset of the sample comes from C�. Therefore, we iterate over all subsets of size β in
the inner for loop (lines 9 to 12) to find such a subset of size β that comes entirely from C� and
use a known subroutine, called ApproxSolutionOnSample, to find an approximate replacement.
Finally, in 15, we make a recursive call by adding each center from R \ F ′, and in line 17, we
make a recursive call by not adding any new center (to handle a particular case). In line 18, we
return the minimum-cost solution found over all recursive calls. This completes the description of
the algorithm.

2.3 Analysis

The crux of the analysis is to establish that Algorithm 1 satisfies the following invariant.

Invariant. Let 0 ≤ m ≤ k . Suppose for the given F ′ of size at most k −m, there exists some
F = F ′ � Fo ⊂ Rd , such that

(1) |Fo | ≤ m, and
(2) ∑

c ∈F ′
costr ′ (cl(c, F ), c) +

∑
c ∈Fo

costr (cl(c, F ), c) ≤ (1 + δ )k−m · OPTr (2)

Then, there exists some 0 < α < 1 (that does not depend onm), such that with probability at least

αm , the algorithm returns a solution F̃ ⊂ Rd , such that

(1) |F̃ | ≤ k ,
(2) F ′ ⊆ F̃ , and
(3) ∑

c ∈F̃

costr ′ (cl(c, F ), c) ≤ (1 + δ )k · OPTr . (3)

Proof of Correctness. The proof is by induction on m. For the base case, consider m = 0. In the
base case (Algorithm 1), we return the same F ′ = F with probability one. In this case, the invariant
tells us that costr ′ (P , F ) ≤ (1 + δ )k · OPTr , which is what we need to prove. Now we assume that
the claim is true for somem − 1 ≥ 0 and we prove it form by considering different cases.

Easy case: F = F ′. This is a much simpler case since we have already found the desired set. In this

case, any solution F̃ returned by a recursive call always contains F = F ′ as a subset. Then, in this
case, we have that:

costr ′ (P , F̃ ) ≤ costr ′ (P , F ) ≤ (1 + δ )k−m · OPTr ≤ (1 + δ )k · OPTr .

Here, the first inequality follows from the assumption that F̃ ⊇ F = F ′, and the second inequality
follows from (2) of the invariant. Note that we do not need to rely on the induction here.
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Fig. 4. Illustration for Case 1. Centers in F ′ are shown as red squares and unseen centers of F \ F ′ are shown

as purple crosses. c is the closest center to F ′ and dist(c, c ′) ≤ 16r . Then, a nearby center c̃ ′ can be found

using a δr grid.

Main case: F ′ � F . This is the case where we are yet to discover some subset (namely, F \ F ′)
of centers. We will analyze this case by considering different scenarios based on the inter-center
distances, as well as their relative sizes.

First, since F ′ � F , there exists some c ∈ F \ F ′. Now, let c ∈ F \ F ′ and c ′ ∈ F ′ be the pair of
centers with the smallest distance, i.e., (c, c ′) is a pair realizing minc1∈F \F ′,c2∈F ′ dist(c1, c2). Now we
consider different cases depending on dist(c, c ′), namely the closest distance between an already
chosen center c ′ ∈ F ′, and an “unseen center” c ∈ F \ F ′.
Case 1. Nearby center: dist(c, c ′) ≤ 16r . In this case, via Observation 1, we conclude that there

exists some c̃ ∈ Grid(c ′, 16r ,δr )with dist(c̃, c) ≤ δr . Let F̃ = F ′ ∪ {c̃}. Then, the proof follows from
the following claim (see Figure 4).

Claim 1. Let c1 ∈ Fo and let c̃1 ∈ Rd be such that dist(c1, c̃1) ≤ δ ′r . Then, with probability at least

αm−1, HybridClustering(F ∪ c̃1,k,m − 1) returns a solution F̃ that satisfies the required properties.

Proof. Consider c1, c̃1 as defined in the statement. Define Fnew � F ′new � F ′o , where F ′new �
F ′ ∪ {c̃1} and F ′o � Fo \ {c1}. First, we show the following inequality:

costr ′ (cl(c1, F ), c̃1) +
∑

c ∈F ′new\{c̃1 }
costr ′ (cl(c, F ), c)+

∑
c ∈F ′o

costr (cl(c, Fnew), c)

≤
∑
c ∈F ′

costr ′ (cl(c, F ), c) +
∑
c ∈Fo

costr (cl(c, F ), c) (4)
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Fig. 5. Illustration for Case 2. Centers of F ′ are shown as red squares and unseen centers of F \ F ′ are shown

as purple crosses. Balls of radius q� around F ′ are shown in dashed orange. P ′ are the points lying outside

these balls. Among the points of P ′, D is the set of points belonging to clusters around F ′, and shown as

green-orange filled dots. Finally, the cluster around c� is the largest unseen cluster (marked in dashed blue

shape), L. We analyze different cases depending on the relative sizes of L and D.

We construct an assignment of clients to the centers in Fnew, where we may not assign a client to
its closest center. To construct this assignment, we consider different cases. Firstly, for any point
p ∈ cl(c1, F ), it holds that dist(p, c̃1) ≤ dist(p, c1)+dist(c1, c̃1) ≤ dist(p, c1)+δ ′r , which implies that
costr ′ (cl(c̃1, P)) ≤ costr (cl(c1, P)). Next, for c ∈ F ′ ∪ Fo \ {c1}, we assign all points p ∈ cl(c, F ) to
c . The contribution of all such points is the same as the right-hand side of (4). Finally, we assign
all points in cl(c1, F ) to c̃1. By the choice of c̃1, costr ′ (cl(c1, F ), c̃1) ≤ costr (cl(c1, F ), c1), which is the
contribution of such points on the right-hand side. Since the cost on the left-hand side is no larger
than the cost of the assignment thus constructed, it shows (4).

Note that the right-hand side of (4) is at most (1+ δ )k−m ·OPTr due to the invariant, and hence
Fnew satisfies the properties required to apply the inductive hypothesis form− 1. This implies that
with probability at least αm−1 the recursive call Recursive(F ′ ∪ {c̃1} ,k,m − 1) returns a solution

F̃ satisfying costr ′ (P , F̃ ) ≤ (1 + δ )k · OPTr . �

Case 2. Faraway center: 16r < dist(c, c ′) ≤ distmax. Let t = dist(c, c ′) and q� be the largest power
of 2 that is at most t/2. Consider Pq� = P \

(⋃
c1∈F ′ B(c1,q

�)
)
. Let c� ∈ F \ F ′ denote the center of

the maximum-size cluster, i.e., c� = arg maxc1∈F \F ′ |cl(c1, F )|, and L � cl(c�, F ) denote the largest
cluster. Finally, let D �

⋃
cold∈F ′ cl(cold, F ) ∩ Pq� denote the set of clients that are distant from the

respective centers in F ′. Let us summarize some consequences of these definitions in the following
observation (its proof is essentially discussed above). Also see Figure 5.

Observation 2.

(1) Pq� = D �
⊎

c1∈F \F ′
cl(c1, F ) ∩ Pq� .

(2) In particular, cl(c, F ), cl(c�, F ) ⊆ Pq� .

We consider different sub-cases based on the relative sizes of L and D.
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Case 2.1. New cluster is tiny: |L| ≤ δ2/4 · |D |. Let N � cl(c, F ). Note that the definition of c�,

combined with the case assumption, implies that |N | ≤ |L| ≤ δ 2

4 · |D |. We summarize a few
technical consequences of these definitions in the following claim.

Claim 2.

costr (N , c ′) ≤ δ · costr (D, F ) + (1 + δ ) · costr (N , c). (5)

Proof. Note that for each p ∈ D, dist(p, F ) ≥ t
4 . Thus, distr (p, F ) ≥ t

4 − r ≥
3t
16 , where the last

inequality follows from the case assumption, namely t > 16r . Thus, each point p ∈ D contributes
at least 3t

16 to costr (P , F ), and their total contribution to costr (P , F ) is

costr (D, F ) �
∑
p∈D

distr (p, F ) ≥ |D | ·
3t

16
. (6)

Now we upper bound the cost of assigning points of N to c ′. To this end, we partition N =
Nnear � Nfar, where Nnear � {p ∈ N : dist(p, c) ≤ 2r/δ } and Nfar � {p ∈ N : dist(p, c) > 2r/δ }.
Note that, for each p ∈ Nfar, distr (p, c) = dist(p, c) − r ≥ dist(p, c) − δ

2 · dist(p, c), which implies
that, for each p ∈ Nfar,

dist(p, c) ≤
(

1

1 − δ
2

)
· distr (p, c) ≤ (1 + δ ) · distr (p, c). (7)

Now consider,

costr (N , c ′) ≤
∑
p∈N

dist(p, c ′) (Since distr (·, ·) ≤ dist(·, ·))

≤
∑
p∈N

dist(p, c) + dist(c, c ′) (Triangle inequality)

= |N | · dist(c, c ′) +
∑

p∈Nnear

dist(p, c) +
∑

p∈Nfar

dist(p, c)

≤ δ 2

4 · |D | · t +
∑

p∈Nnear

2r
δ
+

∑
p∈Nfar

(1 + δ ) · distr (p, c) (From case assumption and (7))

≤ δ 2

4 · |D | · t +
2r
δ
· |Nnear | + (1 + δ ) · costr (N , c)

≤ δ 2

4 · |D | · t + δ · |D | ·
t
32 + (1 + δ ) · costr (N , c)

(Since |Nnear | ≤ |N | ≤ δ 2

4 |D | and t > 16r )

≤ |D | · 3t
16 · δ ·

(
4δ
3 +

1
3

)
+ (1 + δ ) · costr (N , c)

≤ δ · costr (D, F ) + (1 + δ ) · costr (N , c). (8)

where the last inequality follows from (6) and δ < 1/2. �

Thus, consider the solution F \ {c}. To upper bound costr (P , F \ {c}), we assign all points in
N = cl(c, F ) to c ′. The cost of this solution can be upper bounded as follows:

costr (P , F \ {c}) ≤ costr (P , F ) − costr (N , c) + costr (N , c ′)
≤ costr (P , F ) + δ · costr (D, F ) + δ · costr (N , c) (From (5))

≤ costr (P , F ) + δ · costr (P , F ) (Since D � N ⊆ P )

≤ (1 + δ )k−m+1 · OPTr . (9)
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where the last inequality follows from the invariant. Further, observe that c ∈ F \F ′, which implies
that |(F \ {c}) \ F ′ | ≤ m − 1. This, combined with (9), shows that the solution F \ {c} = F ′ �
(Fo \ {c}) satisfies the conditions of the invariant for m − 1. Then, by using inductive hypothesis,

HybridClustering(F ,k,m − 1), with probability at least αm−1 ≥ αm , returns a solution F̃ such

that (a) |F̃ | ≤ k , (b) F ⊆ F̃ , and (c) cost(1+δ )r ′ (F , F̃ ) ≤ (1 + δ )k · OPTr , completing the induction.

Case 2.2. New cluster is large enough: |L| > δ2/4 · |D |. That is, the largest “untouched” cluster
is at least a δ 2/4 fraction of the remaining points. Since L = cl(c�, F ) is the largest “untouched”
cluster, |L| ≥ |cl(c1, F )| for all c1 ∈ F \ F ′. Then, by Observation 2, we have that

|Pq� | = |D | +
∑

c1∈F \F ′
|cl(c1, F )| ≤ |D | + |F \ F ′| · |L| ≤ 4

δ 2 · |L| + k · |L| ≤ 5k
δ 2 · |L|.

In other words, |L| ≥ δ 2

5k
· |Pq� |.

In the next claim, we summarize some properties of the sample S chosen in line 7 of the algo-

rithm, in the current case, i.e., when |L| ≥ δ 2

5k
|Cq� |.

Claim 3. Consider the iteration of the for loop of Algorithm 1, when q = q�, and the corresponding

sample Sq obtained in Algorithm 1. The following statements hold.

(1) With probability at least 1/2, Sq contains at least β points of L.

(2) Sq ∩ L has the same distribution as selecting |Sq ∩ L| points uniformly at random from L.

(3) Let L′ ⊆ L be an arbitrary subset of size at least δ
10 |L|. Then, with probability at least 1/2, Sq

contains at least 1 point from L, i.e., Sq ∩ L′ � ∅.

Proof. Recall that β ′ = β · 150k
δ 3 and |L| ≥ δ 2

5k
|Cq� |. So, the first item follows, say, via Markov’s

inequality.2 The second item is an easy consequence of conditional distributions. The proof of the
third item is analogous to the first item, combined with the bound on |L′ |. �

Now we condition on the event that |Sq� ∩ L| ≥ β , which, by Claim 3 happens with probability

at least 1
2 . Then, let S ′ ⊆ S ∩ L be such a subset of size β . Let L = Lnear � Lfar, where Lnear =

{p ∈ L : dist(p, c�) ≤ 8r
δ
} and Lfar = {p ∈ L : dist(p, c�) > 8r

δ
}. We consider different cases

depending on the relative sizes of Lnear and Lfar. In the first case below (2.2.1), when |Lnear | is not
very tiny compared to |Lfar |, we show that our sample contains at least one point from Lnear with
good probability, and hence a δr grid around that point will contain an approximate center. In the
complementary case (2.2.2), |Lnear | is very tiny compared to |Lfar |, and in this case, we argue that,
instead of finding an approximate Hybrid 1-Median, we can focus on finding an approximate
1-Median, which can be found using the sample. Now we formally analyze each of these cases.

Case 2.2.1. |Lnear | > δ
8
· |Lfar |. In this case, letting L′ ← Lnear in Claim 3, we infer that with at least

probability 1/2, S ′ ∩ Lnear � ∅. We condition on this event. Then, since dist(p, c�) ≤ 8r
δ

, it follows

that there exists a c̃� ∈ Grid(p, 8r
δ
,δr ), such that dist(c̃�, c�) ≤ δr . Since we branch on each point in⋃

p′ ∈S Grid(p, 8r
δ
,δr ), we will branch on c̃� in particular. Then, by Claim 1, HybridClustering(F ′∪

{c̃�},k,m − 1) returns a solution F̃ , with probability at least 1/2 · αm−1 ≥ αm .

Case 2.2.2. |Lnear | ≤ δ
8
· |Lfar |. We prove two claims, namely Claim 4, and Claim 5. The latter

essentially reduces the problem to finding an approximate solution to 1-median on L. Intuitively
speaking, this follows from the following two reasons: (1) As we show in (10), a similar statement
holds for the points in Lfar. This essentially follows from the fact that, since each point of Lfar has
distance at least 8r

δ
to c , the subtraction of r from their distances has little effect on the cost, and

2In fact, a closer inspection reveals that the probability is much closer to 1, but “at least 1/2” suffices for our purpose.
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(2) Due to the case assumption, the points of Lfar vastly outnumber the points of Lnear. Hence, the
preceding claim also translates to the points of L = Lfar ∪ Lnear, at a further small approximation
error.

Claim 4.
∑
p∈L

distr (p, c�) ≤
∑
p∈L

dist(p, c�) ≤
(
1 + 3δ

4

)
·
∑
p∈L

distr (p, c�).

Proof. First, consider,∑
p∈Lfar

distr (p, c�) =
∑

p∈Lfar

dist(p, c�) − r ≥
∑

p∈Lfar

dist(p, c�) − δ
8 · dist(p, c�).

(Since dist(p, c�) ≥ 8r
δ
> r )

Then, the inequality between the first and the last term can be rewritten as∑
p∈Lfar

dist(p, c�) ≤ 1

1 − δ/8 ·
∑

p∈Lfar

distr (p, c�) ≤
(
1 + δ

4

)
·

∑
p∈Lfar

distr (p, c�). (10)

The following inequality will be used later to show that the contribution of points of Lnear is
negligible to the overall cost.∑

p∈Lfar

dist(p, c�) ≥
∑

p∈Lfar

distr (p, c�) ≥
∑

p∈Lfar

(
1 − δ

8

)
· dist(p, c�) (From (10))

≥
(
1 − δ

8

)
· 8r

δ
· |Lfar | (Definition of Lfar)

≥ 1
2 ·

8r
δ
· 8

δ
· |Lnear | (Case assumption: |Lfar | ≥ 8

δ
· |Lnear |)

= 4
δ
· 8r

δ
· |Lnear |

≥ 4
δ
·

∑
p∈Lnear

distr (p, c�). (11)

where the last inequality follows from the definition of Lnear.
The next sequence of inequalities shows a bound similar to (10), but when the sum is taken over

all points of L (instead of only the points of Lfar, as in Equation (10)).∑
p∈L

distr (p, c�) ≤
∑
p∈L

dist(p, c�) =
∑

p∈Lnear

distr (p, c�) +
∑

p∈Lfar

distr (p, c�)

=
(
1 + δ

4

)
·

∑
p∈Lfar

dist(p, c�) (From (11))

≤
(
1 + δ

4

)
·
(
1 + δ

4

)
·

∑
p∈Lfar

distr (p, c�) (From (10))

≤
(
1 + 3δ

4

)
·
∑
p∈L

distr (p, c�). (12)

Here, the last inequality follows from (i) (1+ δ
4 ) · (1+

δ
4 ) ≤ 1+ 3δ

4 and (ii) Lfar ⊆ L. This completes
the proof of the claim. �

Using this claim, we prove the following claim, which shows that it is sufficient to find an ap-
proximate 1-median solution for L, which will also be a good approximation for Hybrid 1-Median
for L. To this end, let c̃� ∈ Rd denote the optimal 1-median for L.
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Claim 5. Let c1 be a (1 + δ
8 )-approximation for 1-Median for L, i.e.,

∑
p∈L dist(p, c1) ≤ (1 + δ

8 ) ·∑
p∈L dist(p, c̃�). Then, it is also a (1 + δ )-approximation for Hybrid 1-Median for L, i.e.,∑

p∈L
distr (p, c1) ≤ (1 + δ ) ·

∑
p∈L

distr (p, c�) (13)

Proof. Let c1, c̃
� ∈ Rd as defined above. Then,∑

p∈L
distr (p, c1) ≤

∑
p∈L

dist(p, c1) ≤
(
1 + δ

8

)
·
∑
p∈L

dist(p, c̃�) (By definition of c1)

≤
(
1 + δ

8

)
·
∑
p∈L

dist(p, c�)

(Since c̃� ∈ Rd is an optimal 1-median and c1 ∈ Rd is a feasible median)

≤
(
1 + δ

8

)
·
(
1 + 3δ

4

)
·
∑
p∈L

distr (p, c�) (From Claim 4)

≤ (1 + δ ) ·
∑
p∈L

distr (p, c�). �

Thus, now the task reduces to finding a 1+ δ
8 -approximate 1-Median solution for L. To this end,

we have the following result from [28, 29].

Proposition 2.4 ([28, 29]). LetX ⊂ Rd be a set of n points and 0 < δ < 1. Let S ⊆ X be a uniform

sample chosen from X of size β = ( 1
δ
)c ′ . Then, there exists an algorithm that runs in time 2O(1/δ

c )d ,

and with probability at least α ′, returns a (1+δ )-approximate 1-median forX . Here, c, c ′ are absolute

constants independent of the dimension d , and 0 < α ′ < 1 is a constant.

We combine the properties of the sample Sq� proved in Claim 3 along with the previous propo-
sition, to complete the proof. To this end, note that the first item of Claim 3 implies that, with
probability at least 1/2, Sq� contains at least β = 1

δ c points from L. Then, we use the algorithm of

Proposition 2.4, that returns with probability at least α ′, a (1 + δ
8 )-approximate 1-median c1 ∈ Rd

for L. It follows that∑
c ∈F ′

costr ′ (cl(c, F ), c) +
∑

c ∈Fo\{c� }
costr (cl(c, F ), c) +

∑
p∈L

distr (p, c1)

≤
∑
c ∈F ′

costr ′ (cl(c, F ), c) +
∑
c ∈Fo

costr (cl(c, F ), c) − costr (cl(c�, F ), c�) +
∑
p∈L

distr (p, c1)

≤
∑
c ∈F ′

costr ′ (cl(c, F ), c) +
∑
c ∈Fo

costr (cl(c, F ), c) + δ ·
∑
c ∈Fo

costr (cl(c, F ), c) (From Claim 5)

≤(1 + δ ) ·
(∑

c ∈F ′
costr ′ (cl(c, F ), c) +

∑
c ∈Fo

costr (cl(c, F ), c)
)

≤(1 + δ )k−m+1 · OPTr . (14)

Then, by induction hypothesis, HybridClustering(F ′ ∪ {c1},k,m − 1), with probability at least

αm−1, returns a solution F̃ such that costr ′ (P , F̃ ) ≤ (1 + δ )k · OPTr . The overall probability of this
event is at least 1

2 · α
′ · αm−1 = αm , completing the induction.

This finishes the case analysis, and thus we have established the invariant using induction. Using
the invariant, we can show the following key lemma.
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Lemma 2.5. HybridClustering(∅,k,k) returns a (1+ε, 1+ε)-bicriteria approximation solution to

the given instance of Hybrid k-Clustering with probability at least αk for some constant 0 < α < 1.

Proof. We first show the following:

Claim 6. |R | ≤ (k
√

d
δ
)O(d ) + k log n

δO(1)
· ((
√

d
δ
)O(d ) +

(β ′

β

)
) ≤ (logn) · 2(kd/δ )O(1) .

Proof. First, in algorithm 1, we add the points returned by Grid(c ′, 16r ,δr ) for each c ′ ∈ F ′. The

number of such points is ( 16r
√

d
δr
)d = (

√
d

δ
)O(d ). Next, there are at most

log n

δO(1)
values forq (this follows

from the second preprocessing step, cf. Lemma 2.3), corresponding to each iteration of the for loop.

In each iteration, we take a sample S of size β ′ = O( 150k β

δ 3 ). Then, for each p ∈ S , we add to R the

points of Grid(p, 8r/δ ,δr ), and the number of such points is at most ( 8
√

d
δ 2 )d = (

√
d

δ 2 )O(d ). In addition,

we iterate over each subset S ′ ⊆ S of size β , and the number of such subsets is
(β ′

β

)
≤ ( e β ′

β
)β =

( k
δ 3 ·β )

β = ( k
δ 3 )(1/δ )

O(1)
= k1/δO(1) . Thus, overall, the size of R is bounded by (logn) · 2(kd/δ )O(1) . �

To bound the running time of the algorithm, let T (m) denote an upper bound on
HybridClustering(F ′,k,m) for any F ′ ⊂ Rd . Note that we make a recursive call on each point in

R. Further by Proposition 2.4, the time taken to compute a center in algorithm 1 is at most 2(1/δ )
O(1)

;

and this algorithm is used in each of the at most
k log n

(1/δ )O(1) ·
(β ′

β

)
≤ (logn) · k (1/δ )O(1) . Thus, T (m) can

be bounded by the following recurrence:

T (m) ≤ |R | ·T (m − 1) + (logn) · k (1/δ )
O(1)
· nO(1)

≤ (logn) · 2(
kd
δ )
O(1)
·T (m − 1) + k (1/δ )

O(1)
· nO(1).

It can be shown that this recurrence solves to T (m) ≤ 2( kd
δ )
O(1)
· nO(1) – here we use the standard

argument that (logn)t ≤ t O(t ) · nO(1).
Finally, note that our first call to the recursive algorithm is HybridClustering(F ′ = ∅,k,k).

At this point, the precondition of the invariant is satisfying setting Fo ← F ∗, an optimal solution
satisfying costr (P , F ∗) = OPTr . Then, the correctness of the invariant implies that, with probability

at least αk , the algorithm returns a solution F̃ of size at most k , that is a (1 + ε, 1 + ε)-bicriteria
approximation – here we use that δ = ε

10k
, which implies that (1 + δ )k ≤ (1 + ε). �

We now conclude with the following theorem, which is restated for convenience.

Theorem 1.2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance of

Hybrid k-Clustering in Rd , runs in time 2( kd
ε )
O(1)
·nO(1), and returns a (1+ ε, 1+ ε)-approximation

with probability at least a positive constant.

Proof. From Lemma 2.5, the success probability of the algorithm is αk for some constant α > 0.
Thus, we need to repeat the algorithm α−k times to boost the probability to at least a positive

constant, which gets absorbed in the 2( kd
ε )
O(1)

factor. �

A Hybrid of k-Center and k-Means. We note that an almost identical algorithm also implies a
(1+ε, 1+ε) bicriteria approximation for an analogous generalization of k-Center and k-Means. In
this problem, the objective of (1) is replaced by the following: costr (C, F ) �

∑
p∈C distr (p,C)2. Let

us refer to this problem as Hybrid (k, 2)-Clustering – the “2” in the name refers to the squares
of the distance-thresholds that feature in the objective. Most of the analysis can be adapted to deal
with the squares of the distances, by appropriately changing the sizes and distance-thresholds.
The only significant change is that instead of Proposition 2.4, one needs to use an algorithm that
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computes an approximate 1-Means solution given a large enough uniform sample of the cluster –
such an algorithm can also be found in [29]. Then, one obtains the following theorem.

Theorem 2.6. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance of

Hybrid (k, 2)-Clustering inRd , runs in time 2(
kd
ε )
O(1) ·nO(1) and returns a (1+ε, 1+ε)-approximation

with probability at least a positive constant.

More generally, one can also define Hybrid (k, z)-Clustering analogously, where the threshold-
distances feature the zth power of distances. Again, our approach easily extends to this problem,
modulo a version of Proposition 2.4 for the vanilla (k, z)-Clustering in Euclidean spaces. To the
best of our knowledge, such an algorithm is not explicitly known in the literature; however, it may
be possible to obtain such an algorithm using the approach of [27, 29].

3 Conclusion and Future Directions

In this article, we proposed a novel clustering objective and defined a new problem, called Hy-
brid k-Clustering, that generalizes both k-Median and k-Center. For d-dimensional Euclidean
inputs, we designed a randomized (1 + ε, 1 + ε)-bicriteria approximation scheme for Hybrid k-

Clustering running in time 2(kd/ε )O(1) , for any ε > 0. Further, essentially the same algorithm also
generalizes for a hybrid objective of k-Center and k-Means. We remind that improving either of
the two (1 + ε) factors to 1 would imply an exact FPT algorithm for k-Center/Median(/Means)
in Euclidean spaces, which is unlikely to exist.

In the conference version of this article [18], we asked whether obtaining an approximation
scheme with an improved FPT dependence on the dimension d—or ideally, without an FPT depen-
dence on d—is possible, similar to the approach of [29] for k-Median/k-Means. We also asked
whether designing coresets for Hybrid k-Clustering is possible. Subsequently, both of these
problems were answered in the affirmative in the work of Gadekar and Inamdar [20]. Firstly, they
designed dimension-free FPT approximation schemes for Hybrid k-Clustering, and indeed gen-
eralizations of the problem to so-called norm objectives that also capture (k, z)-clustering variant,
as defined above. In fact, their results hold in a much broader class of metric spaces introduced in
[1], namely, metric spaces of bounded algorithmic scatter dimension. This class of metrics includes
Euclidean spaces of arbitrary dimension, metric spaces of bounded doubling dimension, shortest
path metrics in graphs excluding a fixed minor, and bounded treewidth graphs [1, 6]. Secondly, they
designed coresets for Hybrid k-Clustering in metric spaces of bounded doubling dimension.

In light of our results, and the subsequent improvement by [20], Hybrid k-Clustering remains
greatly unexplored in general metric spaces. Here, a primal-dual algorithm from [8] can be adapted
to obtain an (α , β)-bicriteria approximation in polynomial time, for some constantsα and β . Indeed,
a quick examination of the proof of [8] suggests that (18, 6)-bicriteria approximation easily follows
by mimicking their approach step-by-step; with further improvements possible with a more careful
analysis. Exploring the best possible constants in the bicriteria approximation in general metric
spaces would be an interesting avenue for future research.
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