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COMPUTING PATHS OF LARGE RANK IN PLANAR
FRAMEWORKS DETERMINISTICALLY\ast 

FEDOR V. FOMIN\dagger , PETR A. GOLOVACH\dagger , TUUKKA KORHONEN\ddagger , AND

GIANNOS STAMOULIS\S 

Abstract. A framework consists of an undirected graph G and a matroid M whose elements cor-
respond to the vertices of G. Recently, Fomin et al. [Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, 2023, pp. 2214--2227] and Eiben, Koana, and Wahlstr\"om
[Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2024, pp. 377--423] developed parameterized algorithms for computing paths of rank k in frameworks.
More precisely, for vertices s and t of G, and an integer k, they gave FPT algorithms parameterized
by k deciding whether there is an (s, t)-path in G whose vertex set contains a subset of elements of
M of rank k. These algorithms are based on the Schwartz--Zippel lemma for polynomial identity
testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for
this problem remains open. We present the first deterministic FPT algorithm that solves the problem
in frameworks whose underlying graph G is planar. While the running time of our algorithm is worse
than the running times of the recent randomized algorithms, our algorithm works on more general
classes of matroids. In particular, this is the first FPT algorithm for the case when matroid M is
represented over rationals. We complement this result by proving that if the input matroids are given
by their independence oracles, then there is no algorithm solving the problem with f(k) \cdot no(k) oracle
queries. Furthermore, this computational lower bound holds even if the input graphs are planar
graphs of treewidth at most two.

Key words. planar graph, longest path, linear matroid, irrelevant vertex
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1. Introduction. A framework is a pair (G,M), where G is a graph and M =
(V (G),\scrI ) is a matroid on the vertex set of G. This term appears in the recent
monograph of Lov\'asz [39], where he defines frameworks as graphs with a collection of
vectors of \BbbR d labeling their vertices. Frameworks have appeared in the literature under
many different names. For example, they are mentioned as pregeometric graphs in the
influential work of Lov\'asz [38] on representative families of linear matroids and as
matroid graphs in the book of Lov\'asz and Plummer [40]. The problem of computing
maximum matching in frameworks is closely related to the matchoid, the matroid
parity, and polymatroid matching problems (see [40] for an overview). More broadly,
the problems of finding specific subgraphs of large ranks in frameworks belong to the
wide family of problems about submodular function optimization under combinatorial
constraints [8, 9, 43, 15].
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 93

Fomin et al. in [16] introduced the following Max Rank (s, t)-Path problem.
In this problem, given a framework (G,M), two vertices s and t of G, and an integer
k, we seek for an (s, t)-path in G where the rank function of M evaluates to at least
k. We say that such a path has rank at least k.

Input: A framework (G,M), vertices s and t of G, and an integer k ≥ 0.
Task: Decide whether G contains an (s, t)-path of rank at least k.

Max Rank (s, t)-Path

Max Rank (s, t)-Path encompasses several fundamental and well-studied prob-
lems about paths and cycles in undirected graphs.

Longest path. Of course, when M is a uniform matroid, then a path is of rank at
least k if and only if it contains at least k vertices. In this case, we have the classical
Longest Path problem, where for a graph G and integer k the task is to identify
whether G contains a path with at least k vertices [2].

T -cycle. In this problem, we are given a set T of terminals and the task is to
decide whether there is a cycle through all terminals [6, 25, 48]. T -cycle is the special
case of Max Rank (s, t)-Path. Consider the following linear matroid. For every
vertex of G not in T we assign a | T | -dimensional vector whose all entries are zero. To
vertices of T we assign vectors forming an orthonormal basis of \BbbR | T | . Then G has a
cycle passing through all terminals if and only if (G,M) has an (s, t)-path of rank | T | 
for some \{ s, t\} \in E(G).

Maximum colored path. In the Maximum Colored (s, t)-Path problem, we are
given a colored graph G, two vertices s and t of G, and an integer k. The task is to
decide whether G has an (s, t)-path containing at least k different colors [7, 16] (see
also [10, 11]). Maximum Colored (s, t)-Path is the special case of Max Rank
(s, t)-Path where the matroid M is a partition matroid. Indeed, in this matroid the
ground set V (G) is partitioned into classes L1, . . . ,Lt and a set I is independent if
| I \cap Li| \leq 1 for every label i\in \{ 1, . . . , t\} . In this way, a path of G of rank at least k is
a path containing vertices of at least k different (color) classes among L1, . . . ,Lt.

1.1. Randomized FPT algorithms for MAX RANK (\bfits , \bfitt )-PATH. The
parameterized complexity of Max Rank (s, t)-Path was unknown until very recently.
The first FPT algorithm for Max Rank (s, t)-Path was given in [16]. This algorithm
runs in time 2\scrO (k2 log(q+k))n\scrO (1) and works on frameworks with matroids represented
in finite fields of order q. Also, Eiben, Koana, and Wahlstr\"om [14], using different
techniques, obtained an FPT algorithm for the same problem that runs in time 2kn\scrO (1)

on frameworks with matroids representable over fields of characteristic two. These
two algorithms use two different algebraic methods. The algorithm of [16] extends the
celebrated algebraic technique based on cancellation of monomials used by Bj\"orklund,
Husfeldt, and Taslaman [6] to solve the T -Cycle problem, while the algorithm of
[14] utilizes the toolbox of (constrained) multilinear detection [35, 36, 4, 5] combined
with determinantal sieving [14]. Both these algorithms involve polynomial identity
testing and invoke the Schwartz--Zippel lemma, and therefore are randomized. In fact,
because of the crucial use of the Schwartz--Zippel lemma in both these algorithms, as
the authors of [14] state it, ``derandomization appears infeasible"" for the algorithms
of [16] and [14] for Max Rank (s, t)-Path. Therefore, the next challenge is to obtain
derandomized FPT algorithms for this problem.

1.2. Our results. Our main result establishes the first deterministic FPT al-
gorithm for Max Rank (s, t)-Path on frameworks of planar graphs and matroids
representable over finite fields or over the field of rationals.
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94 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

Theorem 1.1. There is a deterministic algorithm that, given a framework (G,M),
where G is a planar graph G and M is represented as a matrix over a finite field or
over \BbbQ , two vertices s, t\in V (G) and an integer k, in time 22

\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1)

either return an (s, t)-path of G of rank at least k or determine that G has no such
(s, t)-path.

Note that the randomized FPT algorithms of [16] and [14] work for matroids rep-
resentable over finite fields or fields of characteristic two. The algorithm of Theorem
1.1, apart from being the first deterministic algorithm for Max Rank (s, t)-Path, is
also the first FPT algorithm for frameworks whose matroids are not represented over
a finite field or a field of characteristic two, but are represented over \BbbQ .

We complement this result by demonstrating an unconditional computational
lower bound for Max Rank (s, t)-Path when the input matroid is given by the
independence oracle.

Theorem 1.2. There is no algorithm solving Max Rank (s, t)-Path for frame-
works with matroids represented by the independence oracles using f(k) \cdot no(k) oracle
calls for any computable function f . Furthermore, the lower bound holds for frame-
works with planar graphs of treewidth at most two.

1.3. Our techniques. To design the deterministic FPT algorithm of Theorem
1.1, we follow a different proof strategy than that of [16] and [14]. Our approach
is based on the win/win arguments of the celebrated irrelevant vertex technique of
Robertson and Seymour [45]. The general scheme of this technique is the following.
If the graph satisfies certain combinatorial properties, then one can identify a vertex of
the graph that can be declared irrelevant, meaning that its deletion results in an equiv-
alent instance of the problem. Therefore, after deleting this vertex, we can iterate on
the (equivalent) reduced instance. Once this reduction rule cannot be further applied,
the obtained reduced instance is equivalent to the original one and is also ``simpler.""
Therefore, it remains to argue that the problem can be solved efficiently in the re-
duced equivalent instance. This is a standard technique in parameterized algorithms
design---see, for example, [17, 24, 28, 42, 33, 23, 29, 20, 25, 27, 30, 26, 19, 3, 47, 22]
(see also [12, section 7.8]). The standard measure of complexity of instances for the
application of the irrelevant vertex technique is treewidth. In particular, the strategy
is formulated as follows. As long as the treewidth of the instance is large enough, de-
tect and remove irrelevant vertices. If the treewidth is small, then solve the problem
on this equivalent instance using dynamic programming.

Our application of the irrelevant vertex technique is inspired by the algorithm
of Kawarabayashi [25] for T -cycle and extends its methods. In a typical irrelevant
vertex argument, one has to prove that every solution can ``avoid"" a vertex that will
be declared irrelevant. For example, in the classical application of Robertson and
Seymour [45] for the Disjoint Paths problem, one should argue that (if the graph
has large treewidth) any collection of disjoint paths between certain terminals can be
``rerouted away"" from a vertex v and this vertex should be declared irrelevant. In
our case, where we seek an (s, t)-path of large rank in a framework, this rerouting
should guarantee that large rank is preserved. In general, to deal with such problems
on frameworks, one should employ new arguments to adjust this technique to take
into account the structure of the matroid. The way we circumvent this problem for
Max Rank (s, t)-Path is to formulate such a rerouting argument in a ``sufficiently
insulated"" area of the graph where independent sets of the matroid M appear in a
homogeneous way. The planarity of the input graph allows one to find such an area
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 95

using the grid-like structure of walls. An overview of this approach is provided in
subsection 1.4. This application of the irrelevant vertex technique for frameworks is
novel and illustrates an interesting interplay between combinatorial structures and
algebraic properties, which may be of independent interest.

The dynamic programming on graphs of bounded treewidth is pretty standard
(see, e.g., the book of Cygan et al. [12]) up to one detail. To encode a partial solution,
we keep the information about vertices forming independent sets of matroid M visited
by a partial solution. However, the number of independent sets of size at most k in
M could be of order nk. Thus a naive encoding of partial solutions would result in
blowing-up of the computational complexity. To avoid this, we store only representa-
tive sets (see [18, 37]) instead of all possible independent sets. Both randomized [18]
and deterministic [37] constructions of representative sets require a linear represen-
tation of M . This is the reason why Theorem 1.1 is stated for linear matroids. We
point out that the dynamic programming subroutine for graphs of bounded treewidth
is the only place in the proof of Theorem 1.1 requiring a representation of M .

1.4. Overview of the proof of Theorem 1.1. Our general approach is the
following. We show that if the treewidth of the input graph G is 2\scrO (k logk), then Max
Rank (s, t)-Path can be solved in FPT time by a dynamic programming algorithm.
Otherwise, if the treewidth is sufficiently large, we give an algorithm that either finds
an (s, t)-path of rank at least k or identifies an irrelevant vertex v, that is, a vertex
whose deletion results in an equivalent instance of the problem. In the latter case, we
delete v and iterate on the reduced instance.

If the treewidth of the input graph is large, i.e., of order 2\Omega (k logk), we exploit
the grid-minor theorem of Robertson and Seymour for planar graphs [46] that asserts
that a planar graph either contains (w\times w)-grid as a minor or the treewidth is \scrO (w).
More precisely, we have that given a plane embedding of G, we can find a plane h-wall
for h= 2\Omega (k logk) as a topological minor or, equivalently, a plane subgraph of G that
is a subdivision of such a wall. To explain our arguments, we need some notions that
are informally explained here by making use of figures. In particular, an example of
an h-wall for h= 7 is given in Figure 1.

Note that an h-wall has \lfloor h/2\rfloor nested cycles, called layers, that are shown in
Figure 1 in red and blue. (Color images are available online.) The layer forming the
boundary of a wall is called the perimeter of the wall and is shown in red in the figure.
We extend the notions of layers and perimeter for a subdivided h-wall, that is, the
graph obtained from an h-wall by replacing some of its edges by paths. Given a plane
subdivided h-wall W in G, we call the subgraph of G induced by the vertices on the
perimeter and inside the inner face of the perimeter the compass ofW and denote it by

Fig. 1. A 7-wall and its layers.
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96 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

s

t

W1 W2

Wk

Fig. 2. An (s, t)-path for walls of big rank.

\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ). Notice that we can assume that the compass of the subdivided h-wall W
in G does not contain the terminal vertices s and t by switching to a smaller subwall
if necessary. Furthermore, we can assume that \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ) is a 2-connected graph as
any (s, t)-path can only contain vertices of the biconnected component of \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W )
containing W . Also we can assume that G has two disjoint paths connecting s and t
with two distinct vertices on the perimeter of W ; otherwise, any vertex of \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W )
outside the perimeter is trivially irrelevant.

Observe that for any nontrivial subwallW \prime ofW , \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ) is also 2-connected.
Therefore, for every two distinct vertices x and y on the perimeter of W \prime and any
z \in V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )), \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ) has internally disjoint (x, z) and (y, z)-paths. In
particular, given a set of vertices S \subseteq V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )) that are independent with
respect to M , we can join any z \in S with x and y by disjoint paths. This observation
is crucial for us.

Suppose that there is a packing of k subwalls W1, . . . ,Wk in W separated by paths
in W as shown in Figure 2 such that the rank r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi))\geq k for i \in \{ 1, . . . , k\} .
Then we can choose vertices v1, . . . , vk in \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W1), . . . , \sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wk), respectively,
in such a way that \{ v1, . . . , vk\} is an independent set of M . Then by our observation,
we can construct an (s, t)-path in G that goes through v1, . . . , vk as shown in the figure
in green. Suppose that this is not the case. Then, by zooming inside the wall, we
can assume that r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ))< k. Moreover, by recursive zooming, we can find a
subwall W \prime of W with the following structural properties (see Figure 3):

\bullet There is a packing of k+1 subwalls W0,W1, . . . ,Wk in W \prime separated by paths
in W \prime shown in red in Figure 3 such that r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi)) = r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ))
for i\in \{ 1, . . . , k\} .

\bullet The packing of W0,W1, . . . ,Wk is surrounded by \scrO (k2) ``insulation"" layers of
W \prime shown in blue.

We claim that vertices of W0 are irrelevant.
To see this, consider an (s, t)-path P of rank at least k in G. We show that if P

goes through a vertex of W0, then the path can be rerouted as shown in Figure 3 in
green to avoid W0. Consider an independent set X \subseteq V (P ) of rank k and let u1, . . . , u\ell 

be the vertices of X that are not spanned by V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )) in M . Then u1, . . . , u\ell 

are outside W \prime . We prove that there are two distinct vertices x and y on the inner
insulation layer of W \prime and an (s,x)-path P1 and an (y, t)-path P2 such that (i) x and
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s

t

u2
u1

P1

x

W0 W1

v1

Q

vk

Wk

y

uℓ
P2

Fig. 3. Rerouting an (s, t)-path.

y are unique vertices of these paths in the inner insulation layer, and (ii) u1, . . . , u\ell \in 
V (P1)\cup V (P2). The proof that \scrO (k2) insulation layers are sufficient for rerouting P is
nontrivial. In particular, we adapt the ideas from [25] as well as the structural results
of Kleinberg [31]. Further, using the fact that r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi)) = r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )) for
i\in \{ 1, . . . , k\} , we show that for every independent set I \prime of M consisting of vertices in
\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ), one can also find an independent set Ii of M in \sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi) such that
| Ii| = | I \prime | for every i \in \{ 1, . . . , k\} . Therefore, one can select, for every Wi, a vertex
vi \in Ii and this choice can be made so that r(\{ v1, . . . , vk\} ) = r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )). Then
we construct an (x, y)-path Q in the inner part of W \prime such that (i) Q is internally
disjoint with P1 and P2, (ii) Q goes through v1, . . . , vk, and (iii) Q avoids W0. We have
that P \prime = P1QP2 is an (s, t)-path that goes through u1, . . . , u\ell and v1, . . . , vk. Note
that, replacing the vertices of X that are spanned by V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )) by the vertices
\{ v1, . . . , vk\} , we obtain the set X \prime = \{ u1, . . . , u\ell , v1, . . . , vk\} and r(X \prime ) = r(X), and
the latter holds since r(\{ v1, . . . , vk\} ) = r(\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime )). Therefore, r(P \prime )\geq r(X)\geq k.
Since Q avoids W0, P

\prime has the same property.
Finally, we note that the algorithm of Kawarabayashi [25] for T -cycle works

for general graphs. The statement of Theorem 1.1 is limited to planar graphs, and
planarity is required to ensure that the rerouting does not decrease the rank of an
(s, t)-path. It is quite plausible that with additional technicalities our method could
be lifted when the underlying graph of the framework is of bounded genus, and more
generally, minor-free. However, it is very unclear whether rerouting that does not
decrease the rank could be achieved for general graphs. It remains the main obstacle
toward pushing the irrelevant vertex technique from frameworks with planar graphs
to frameworks with general graphs.

1.5. Organization of the paper. In section 2, we present some basic defini-
tions and preliminary results. In section 3, we show how to reduce to instances of
bounded treewidth using the irrelevant vertex technique, while in section 4 we present
the dynamic programming algorithm that solves the problem in instances of bounded
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98 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

treewidth. In section 5, we prove the computational lower bound given in Theo-
rem 1.2. We conclude in section 6 with open questions and possible future research
directions.

2. Preliminaries. In this section, we introduce basic notation and state some
auxiliary results. In subsection 2.1, we provide some basic definitions on parameterized
complexity and on graphs, while in subsection 2.2, we give some necessary definitions
and results on walls and treewidth. We conclude this section with subsection 2.3,
where we provide some useful notions on matroids and the definition of frameworks.

2.1. Basic definitions. We use \BbbZ \geq 1 to denote the set of positive integers and
\BbbZ \geq 0 the set of nonnegative integers. Also, given integers p, q such that p < q, we
use [p, q] to denote the set \{ p, p+ 1, . . . , q\} and, if p\geq 1, we use [p] to denote the set
\{ 1, . . . , p\} .

Parameterized complexity. We refer to the book of Cygan et al. [12] for an intro-
duction to the topic. Here we only briefly mention the notions that are most important
to state our results. A parameterized problem is a language L\subseteq \Sigma \ast \times \BbbN , where \Sigma \ast is a
set of strings over a finite alphabet \Sigma . An input of a parameterized problem is a pair
(x,k), where x is a string over \Sigma and k \in \BbbN is a parameter. A parameterized problem
is fixed-parameter tractable (FPT) if it can be solved in time f(k) \cdot | x| \scrO (1) for some
computable function f . The complexity class FPT contains all FPT parameterized
problems.

Graphs. We use standard graph-theoretic terminology and refer to the textbook
of Diestel [13] for missing notions. We consider only finite graphs, and the considered
graphs are assumed to be undirected if it is not explicitly said to be otherwise. For
a graph G, V (G) and E(G) are used to denote its vertex and edge sets, respectively.
Throughout the paper we use | G| = | V (G)| . For a graph G and a subset X \subseteq V (G)
of vertices, we write G[X] to denote the subgraph of G induced by X. For a vertex
v, we denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are
adjacent to v in G. For X \subseteq V (G), NG(X) =

\bigl( \bigcup 
v\in X NG(v)

\bigr) 
\setminus X. The degree of a

vertex v is dG(v) = | NG(v)| .
A walk W of length \ell in G is a sequence of vertices v1, v2, . . . , v\ell , where vivi+1 \in 

E(G) for all 1 \leq i < \ell . The vertices v1 and v\ell are the endpoints of W and the
vertices v2, . . . , v\ell  - 1 are the internal vertices of W . A path is a walk where no vertex
is repeated. For a path P with endpoints s and t, we say that P is an (s, t)-path. A
cycle is a path with the additional property that v\ell v1 \in E(G) and \ell \geq 3.

2.2. Walls and treewidth.
Walls. Let k, r \in \BbbN . The (k \times r)-grid is the graph whose vertex set is [k] \times [r]

and two vertices (i, j) and (i\prime , j\prime ) are adjacent if and only if | i  - i\prime | + | j  - j\prime | = 1.
An elementary r-wall, for some odd integer r \geq 3, is the graph obtained from a
(2r\times r)-grid with vertices (x, y) \in [2r]\times [r], after the removal of the ``vertical"" edges
\{ (x, y), (x, y + 1)\} for odd x+ y, and then the removal of all vertices of degree one.
Notice that, as r \geq 3, an elementary r-wall is a planar graph that has a unique (up
to topological isomorphism) embedding in the plane such that all its finite faces are
incident to exactly six edges. The perimeter of an elementary r-wall is the cycle
bounding its infinite face.

An r-wall is any graphW obtained from an elementary r-wall \=W after subdividing
edges. We call the vertices that were added after the subdivision operations subdivision
vertices, while we call the rest of the vertices (i.e., those of \=W ) branch vertices. The
perimeter ofW , denoted by \sansp \sanse \sansr \sansi \sansm (W ), is the cycle ofW whose nonsubdivision vertices
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 99

are the vertices of the perimeter of \=W . A subdivided edge of W is a path of W whose
endpoints are two branch vertices ofW and its internal vertices are subdivision vertices
of W .

A graph W is a wall if it is an r-wall for some odd r\geq 3 and we refer to r as the
height of W. Given a graph G, a wall of G is a subgraph of G that is a wall. We insist
that, for every r-wall, the number r is always odd. Let W be a wall of a graph G and
K \prime be the connected component of G\setminus V (\sansp \sanse \sansr \sansi \sansm (W )) that contains W \setminus V (\sansp \sanse \sansr \sansi \sansm (W )).
We use \sansi \sansn \sansn (W ) to denote the graph K \prime . The compass of W , denoted by \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ),
is the graph G[V (\sansi \sansn \sansn (W ))\cup V (\sansp \sanse \sansr \sansi \sansm (W ))].

The layers of an r-wall W , for any odd integer r \geq 3, are recursively defined as
follows. The first layer of W is its perimeter. For i = 2, . . . , (r  - 1)/2, the ith layer
of W is the (i - 1)th layer of the wall W \prime obtained from W after removing from W
its perimeter and all occurring vertices of degree one. Notice that each (2k+ 1)-wall
has k layers. For every i = 1, . . . , (r  - 1)/2, we use Li to denote the ith layer of W .
Also, for i = 2, . . . , (r  - 1)/2 we use W (i) to denote the wall obtained from W after
removing from W the layers L1, . . . ,Li - 1 and all occurring vertices of degree one and
we set W (1) := W . Notice that for every i = 1, . . . , (r  - 1)/2, \sansp \sanse \sansr \sansi \sansm (W (i)) = Li. See
Figure 1 for an example.

Treewidth. A tree decomposition of a graph G is a pair (T,\scrX ), where T is a tree
and \scrX = \{ Xi | i\in V (T )\} is a family of subsets of V (G) such that

\bullet \bigcup 
t\in V (T )Xt = V (G),

\bullet for every edge e of G there is a t\in V (T ) such that Xt contains both endpoints
of e, and

\bullet for every v \in V (G), the subgraph of T induced by \{ t \in V (T ) | v \in Xt\} is
connected.

The width of (T,\scrX ) is equal to max
\bigl\{ 
| Xt|  - 1 | t \in V (T )

\bigr\} 
and the treewidth of G is

the minimum width over all tree decompositions of G.
The following result from [21, Lemma 4.2] states that given a q \in \BbbN and a graph

G with treewidth more than 9q, we can find a q-wall of G.

Proposition 2.1. There exists an algorithm that receives as an input a planar
graph G and a q \in \BbbN and outputs, in 2q

\scrO (1) \cdot | G| time, either a q-wall W of G or a
tree decomposition of G of width at most 9q.

2.3. Frameworks. We recall definitions related to frameworks.
Matroids. We refer to the textbook of Oxley [44] for the introduction to matroid

theory.

Definition 2.2. A pair M = (V,\scrI ), where V is a ground set and \scrI is a family of
subsets of V , called independent sets of M , is a matroid if it satisfies the following
conditions, called independence axioms:

(I1) \emptyset \in \scrI ,
(I2) if X \subseteq Y and Y \in \scrI , then X \in \scrI ,
(I3) if X,Y \in \scrI and | X| < | Y | , then there is v \in Y \setminus X such that X \cup \{ v\} \in \scrI .
An inclusion maximal set of \scrI is called a base. We use V (M) and \scrI (M) to denote

the ground set and the family of independent sets of M , respectively.
Let M = (V,\scrI ) be a matroid. We use 2V to denote the set of all subsets of V . A

function r : 2V \rightarrow \BbbZ \geq 0 such that for every X \subseteq V ,

r(X) =max\{ | Y | : Y \subseteq X and Y \in \scrI \} ,
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100 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

is called the rank function of M . The rank of M , denoted r(M), is r(V ); equivalently,
the rank of M is the size of any base of M .

Matroid representations. Let M = (V,\scrI ) be a matroid and let \BbbF be a field. An
r\times n-matrix A is a representation of M over \BbbF if there is a bijective correspondence
f between V and the set of columns of A such that for every X \subseteq V , X \in \scrI if
and only if the set of columns f(X) consists of linearly independent vectors of \BbbF r.
Equivalently, A is a representation of M if M is isomorphic to the column matroid of
A, that is, the matroid whose ground set is the set of columns of the matrix and the
independence of a set of columns is defined as the linear independence. If M has a
such a representation, then M is representable over \BbbF and it is also said M is a linear
(or \BbbF -linear) matroid. We can assume that the number of rows r= r(M) for a matrix
representing M [41].

Whenever we consider a linear matroid, it is assumed that its representation is
given and the size of M is \| M\| = \| A\| , that is, the bit-length of the representation
matrix. Notice that given a representation of a matroid, deciding whether a set is
independent demands a polynomial number of field operations. In particular, if the
considered field is finite or is the field of rationals, we can verify independence in time
that is a polynomial in \| M\| . Another standard way to encode a matroid in problem
inputs is by using independence oracles. Such an oracle, given a subset of the ground
set, in unit time correctly returns either \sansy \sanse \sanss or \sansn \sanso depending on whether the set is
independent or not. Thus a matroid can be fully described by its ground set and the
independence oracle.

Frameworks. A framework is a pair (G,M), where M = (V,\scrI ) is a matroid whose
ground set is the set of vertices of G, i.e., V (M) = V (G). An (s, t)-path P in a
framework (G,M) has rank at least k if there is a set X \subseteq V (P ) with X \in \scrI and
| X| = k.

3. Rerouting paths and cycles. In this section, our goal is to prove Theorem
1.1, which we restate here.

Theorem 1.1. There is a deterministic algorithm that, given a framework (G,M),
where G is a planar graph G and M is represented as a matrix over a finite field or
over \BbbQ , two vertices s, t\in V (G) and an integer k, in time 22

\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1)

either returns an (s, t)-path of G of rank at least k or determines that G has no such
(s, t)-path.

The algorithm of Theorem 1.1 consists of two parts. In the first part, we use
the irrelevant vertex technique in order to design an algorithm that removes vertices
from the input graph as long as its treewidth is big enough. In order to do this, in
subsection 3.1 we prove a combinatorial result (Lemma 3.2) that allows us to argue
that, given a planar graph and a wall of it and a vertex set S that lies outside the wall,
if there is a path P that contains S and invades deeply enough inside the wall, we can
find another path P \prime that contains S (with the same endpoints as P ) and avoids some
``central area"" of the wall. Then, in subsection 3.2, we give an algorithm (Lemma 3.3)
that given a planar graph of ``big enough"" (as a function of k) treewidth, outputs,

in time 22
\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1), either a path of rank at least k or an irrelevant

vertex. Finally, in section 4, we provide the dynamic programming algorithm that
solves the problem in graphs of bounded treewidth.

3.1. Rerouting paths and cycles. In this subsection, we aim to prove the main
combinatorial result (Lemma 3.2) that allows us to find an (s, t)-path that contains
a given set S and avoids some inner part of a given wall. Before stating Lemma 3.2,
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 101

we first prove the following result (Lemma 3.1), which will be an important tool for
the proof of Lemma 3.2. The proof of Lemma 3.1 is inspired by the proof of [25,
Lemma 1].

Lemma 3.1. Let G be a planar graph, let k \in \BbbN , let W be a wall of height at least
2k+3, and let s, t\in V (G)\setminus V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W )). Also, let E = \{ e0, e1, . . . , ek, ek+1\} be a set
of k+2 edges of G with pairwise disjoint endpoints, where, for every i\in \{ 1, . . . , k\} , ei =
\{ vi, ui\} , e0 = \{ s\prime , s\} , ek+1 = \{ t\prime , t\} , and let X be the set \{ s\prime , t\prime \} \cup \bigcup 

i\in \{ 1,...,k\} \{ vi, ui\} . If
every v \in X is a branch vertex of degree two in W that is a vertex of \sansp \sanse \sansr \sansi \sansm (W ), then
there is an (s, t)-path in G that contains the edges e0, . . . , ek+1 and its intersection
with \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (k+1)) is a path of \sansp \sanse \sansr \sansi \sansm (W (k+1)) whose endpoints are branch vertices
of W .

Proof. We fix an embedding of G on the plane. Let H be the graph whose vertex
set is \{ s, t\} \cup X and whose edge set is \{ e0, . . . , ek+1\} . Observe that H is the disjoint
union of k+ 2 edges.

We will prove the statement by induction on k. If k = 0, then | X| = 2, and H
contains exactly two edges, e0 = \{ s\prime , s\} and e1 = \{ t\prime , t\} . By connecting s and t through
an (s\prime , t\prime )-path in \sansp \sanse \sansr \sansi \sansm (W ), we obtain the claimed (s, t)-path.

Suppose that k\geq 1. Take a vertex x\in X, let ex be the edge of H that is incident
to x, and let x\prime \in V (H) be the other endpoint of ex. Also, let y be a vertex in
X \setminus \{ x,x\prime \} for which there is an (x, y)-path Qx,y in \sansp \sanse \sansr \sansi \sansm (W ) such that no internal
vertex of Qx,y is in X. Let ey = \{ y, y\prime \} be the edge of H that is incident to y. By
the choice of y (i.e., y \in X \setminus \{ x,x\prime \} ), ex \not = ey. We next perform the following edge
contractions: we first contract all edges in E(Qx,y) \cup \{ ex\} to a single vertex. Then,
for every v \in X \setminus \{ x,x\prime , y\} , pick the subdivided edge of W connecting v with the
next branch vertex zv in the perimeter of W (in the clockwise cyclic ordering of the
vertices of \sansp \sanse \sansr \sansi \sansm (W ) induced by the cycle \sansp \sanse \sansr \sansi \sansm (W ) in the considered embedding of
G). Also, pick the subdivided edge of W connecting zv with the corresponding vertex
wz on the second layer of W . Then, contract all edges in the two subdivided edges
between v, zv and zv,wv. Let G\prime be the contracted graph. Observe that for every
v \in X \setminus \{ x,x\prime , y\} , wv is a degree two branch vertex pf W (2) in the perimeter of W (2).
Also note that after the contractions, we have a set of k + 1 edges E\prime with pairwise
disjoint endpoints such that every endpoint that is different from s and t is a degree
two branch vertex of W (2) in the perimeter of W (2). Since W (2) has height at least
2k + 1, we can apply the induction hypothesis to the graph G\prime , the wall W (2), and
the edge set E\prime and find an (s, t)-path in G\prime as claimed. By uncontracting the edges
of G\prime , we obtain an (s, t)-path in G with the desired properties. For an illustration of
the obtained (s, t)-path, see Figure 4. This completes the proof of the lemma.

We are now ready to prove the following.

s
te1 e0 e2 e3

Fig. 4. Visualization of the proof of Theorem 3.1 for k= 2. In this example, the edges e0, . . . , e3
are depicted in blue and the vertex set X is depicted in red. The highlighted orange paths inside the
wall correspond to the paths used in the proof to construct the claimed (s, t)-path.
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u1 u2
u3

v1

v2 v3

v4 v5

v6 v7

v8
v9

v10

v11 v12

v13

v14

s

t

C1

C2k+1

C4k+1

Fig. 5. An example of an (s, t)-path P containing an independent set S = \{ u1, u2, u3\} . In
this example, \scrF 1 is the collection of the four red paths (the ones with endpoints (s, v1), (v4, v5),
(v8, v9), and (v14, t)), \scrF 2 is the collection of the four green paths (the ones with endpoints (s, v2),
(v3, v6), (v7, v10), (v13, t)), and \scrF 3 is the collection of the two blue paths (the (s, v11)-path and the
(v12, t)-path).

Lemma 3.2. There is a function h :\BbbN \rightarrow \BbbN such that if k \in \BbbN , G is a planar graph,
s, t \in V (G), S is a subset of V (G) of size at most k, W is a wall of G of at least
h(k) layers and whose compass is disjoint from S\cup \{ s, t\} , and P is an (s, t)-path of G
such that S \subseteq V (P ) and P intersects V (\sansi \sansn \sansn (W (h(k)))), and then there is an (s, t)-path
\~P of G such that S \subseteq V ( \~P ) and its intersection with \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (h(k))) is a path of
\sansp \sanse \sansr \sansi \sansm (W (h(k))) whose endpoints are branch vertices of W . Moreover, h(k) =\scrO (k2).

Proof. We set h(k) := 2k \cdot (k + 2) + 2k + 1. Let W be a wall of at least h(k)
layers. For i \in [k + 2], we use Ci to denote the layer L2k\cdot (i - 1)+1 of W . Intuitively,
we take C1 to be the first layer of W and for every i \in [2, k + 2], we take Ci to be
the 2kth consecutive layer after Ci - 1. Also, we use Di to denote the vertex set of
\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (2k\cdot (i - 1)+1)). Keep in mind that Ci is the perimeter of W (2k\cdot (i - 1)+1). For
every i \in [k + 2], we consider the collection \scrF i of paths of G that are subpaths of P
that intersect Di only on their endpoints and that there is an onto function mapping
each vertex u \in S \cup \{ s, t\} to the path in \scrF i that contains u. Intuitively, for each
u \in S \cup \{ s, t\} we consider the maximal subpath of P that contains u and intersects
Di only on its endpoints and we define \scrF i to be the collection of these maximal paths
(see Figure 5 for an example).

Observe that | \scrF 1| \leq k+2 (since | S \cup \{ s, t\} | \leq k+2) and | \scrF k+2| \geq 2 (since V (P )\cap 
V (\sansi \sansn \sansn (W (h(k)))) \not = \emptyset and therefore P intersects at least twice every Ci, i\in [k+2]). For
every i\in [k+2], we assume that \scrF i = \{ Fi,1, . . . ,Fi,| \scrF i| \} , where the ordering is given by
traversing P from s to t. For every i\in [k+2], we set \scrQ i = \{ Qi,1, . . . ,Qi,| \scrF i|  - 1\} , where,
for each j \in [| \scrF i|  - 1], Qi,j is the minimal subpath of P that intersects both V (Fi,j)
and V (Fi,j+1). Observe that, for every i \in [k + 2], P is the concatenation of the
paths Fi,1,Qi,1, Fi,2, . . . ,Qi,| \scrF i|  - 1, Fi,| \scrF i| . In Figure 5, \scrQ 1 = \{ Q1,1,Q1,2,Q1,3\} , where
Q1,1 is the (v1, v4)-subpath, Q1,2 is the (v5, v8)-subpath, and Q1,3 is the (v9, v14)-
subpath of P , \scrQ 2 = \{ Q2,1,Q2,2,Q2,3\} , where Q2,1 is the (v2, v3)-subpath, Q2,2 is
the (v6, v7)-subpath, and Q2,3 is the (v10, v13)-subpath of P , and \scrQ 3 consists of the
(v11, v12)-subpath Q3,1 of P .

It is easy to see that for every i\in [k+1], | \scrF i+1| is equal to | \scrF i| minus the number
of paths in \scrQ i that do not intersect Ci+1 and therefore, | \scrF i| \geq | \scrF i+1| . Therefore,
given that | \scrF 1| \leq k+2, | \scrF k+2| \geq 2, and for every i\in [k+1], | \scrF i| \geq | \scrF i+1| , there is an
i0 \in [k + 1] such that | \scrF i0 | = | \scrF i0+1| (if there are many such i0, we pick the minimal
one). This implies that every path in \scrQ i0 intersects Ci0+1.
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C

C′

C

C′

s
t

s
t

Fig. 6. A visualization of the statement of Claim 3.1. In both figures, the edges \{ vF , uF \} are
depicted in blue, the black vertices correspond to the set Y , and the red vertices correspond to the
set B. In the left figure, we illustrate | Y | disjoint paths from Y to C\prime , while in the right figure, we
illustrate | Y | disjoint paths from Y to B.

For each F \in \scrF i0 , we denote by vF and uF the endpoints of F . We define the
graph G\prime obtained from G after removing the internal vertices of every F \in \scrF i0 (i.e.,
the vertex set

\bigcup 
F\in \scrF i0

(V (F ) \setminus \{ vF , uF \} )) and adding the edge \{ vF , uF \} for every

F \in \scrF i0 . Observe that G\prime is also planar and contains Di0 as a subgraph. Moreover,
notice that, for every F \in \scrF i0 , \{ vF , uF \} \in V (Ci0)\cup \{ s, t\} . In Figure 5, | \scrF 1| = | \scrF 2| and
thus G\prime is obtained after replacing each 3-colored path with an edge.

In the rest of the proof we will argue that, in G\prime , there is an (s, t)-path that
contains all edges \{ vF , uF \} , F \in \scrF i0 , and its intersection with V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (h(k))))
is the vertex set of a subdivided edge of W that lies in \sansp \sanse \sansr \sansi \sansm (W (h(k))). Having such
a path in hand, we can replace each edge \{ vF , uF \} , F \in \scrF i0 with the corresponding
path F and thus obtain the path \~P claimed in the statement of the lemma.

We will denote by C the cycle Ci0 (that is the layer L2k\cdot (i0 - 1)+1) and by C \prime 

the layer L2k\cdot i0 . To get some intuition, recall that Ci0+1 = L2k\cdot i0+1 and therefore
C \prime is the layer of W ``preceding"" Ci0+1. Since every path in \scrQ i0 intersects Ci0+1,
it holds that every path in \scrQ i0 intersects C \prime at least twice. Therefore, if we set
Y := V (C)\cap \bigcup 

F\in \scrF i0
\{ vF , uF \} and \ell := | Y | , then \ell \leq 2k and there are \ell disjoint paths

from Y to C \prime (for an example, see the left part of Figure 6).
Recall that \sansp \sanse \sansr \sansi \sansm (W (2k\cdot i0)) =C \prime . We set B to be the set of branch vertices of W

that are in V (C \prime ) and have degree two in W (2k\cdot i0). Also, we set \scrK to be the graph
G\prime \setminus V (\sansi \sansn \sansn (W (2k\cdot i0))). We now argue that there also exist \ell disjoint paths from Y to
B in \scrK .

Claim 3.1. There is a set X \subseteq B, a bijection \rho : Y \rightarrow X, and a collection
\scrP = \{ Pv | v \in Y \} of pairwise disjoint paths where, for every v \in Y , Pv is a (v, \rho (v))-
path in \scrK .

Proof of Claim 3.1. Suppose, toward a contradiction, that there is a set S \subseteq V (\scrK )
of size at most \ell  - 1 such that there is no path in \scrK \setminus S from Y to B.

Since there are \ell disjoint paths from Y to V (C \prime ), there is a connected component
A of \scrK \setminus S that contains vertices from both Y and V (C \prime ). Since Y \subseteq V (C), A contains
vertices from both V (C) and V (C \prime ). Also, since C \prime =L2k\cdot i0 , where i0 \in [k+2] and W
has at least h(k) layers, where h(k)> 2k \cdot (k + 2) + 2k, there exist at least 2k vertex
disjoint paths from V (C) to B. This, together with the fact that | S| < \ell and \ell \leq 2k,
implies that there is a connected component A\prime of \scrK \setminus S that contains vertices from
both V (C) and B.

Since both A and A\prime contain vertices of both C and C \prime , there exist paths P,P \prime 

in A and A\prime , respectively, both intersecting V (C) and V (C \prime ). The fact that C =
L2k\cdot (i0 - 1)+1 and C \prime = L2k\cdot i0 implies that there are 2k layers intersecting both V (P )
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104 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

and V (P \prime ), that yield 2k disjoint paths between V (P ) and V (P \prime ) in \scrK . Since | S| < \ell 
and \ell \leq 2k, some of the aforementioned disjoint paths between V (P ) and V (P \prime ) should
remain intact in \scrK \setminus S, implying that A = A\prime . But, given that A contains vertices
from Y , and A\prime contains vertices from B, we conclude that S does not separate Y and
B, a contradiction to the initial assumption. Therefore, there exist \ell disjoint paths
from Y to B. We set X to be the endpoints (in B) of these paths and this proves the
claim.

Following Claim 3.1, let X \subseteq B, let a bijection \rho : Y \rightarrow X, and let there be a
collection \scrP = \{ Pv | v \in Y \} of pairwise disjoint paths such that for every v \in Y , Pv is
a (v, \rho (v))-path in \scrK .

Now, for each F \in \scrF i0 , we consider the path PF obtained after joining the paths
PvF and PuF

by the edge \{ vF , uF \} (in the case where s, t \in \{ vF , uF \} , we just extend
the corresponding path in \scrP by adding the edge \{ vF , uF \} ). Let G\prime \prime be the graph
obtained from G\prime after contracting each PF , F \in \scrF i0 to an edge ePF

and let E =
\{ ePF

| F \in \scrF i0\} . Then, notice that G\prime \prime contains W (2k\cdot i0) as a subgraph and since
h(k) = 2k \cdot (k + 2) + 2k + 1, the wall W (2k\cdot i0) has at least k + 1 layers and therefore
height at least 2k + 3. Therefore, by Lemma 3.1, G\prime \prime contains an (s, t)-path that
contains all edges in E and its intersection with \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (2k\cdot i0+k+1)) is a path of
\sansp \sanse \sansr \sansi \sansm (W (2k\cdot i0+k+1)) whose endpoints are branch vertices of W .

Thus, using this (s, t)-path in G\prime \prime , we can find an (s, t)-path P  \star in G that contains
S and its intersection with \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (2k\cdot i0+k+1)) is a path \widehat P of \sansp \sanse \sansr \sansi \sansm (W (2k\cdot i0+k+1))
whose endpoints, say, x and y, are branch vertices of W . Finally, let Rx,y be an
(x, y)-path in \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (2k\cdot i0+k+1)) with the following property: its intersection with
\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W (h(k))) is a path of \sansp \sanse \sansr \sansi \sansm (W (h(k))) whose endpoints are branch vertices of
W . The proof concludes by observing if we replace in P  \star the path \widehat P with the path
Rx,y, then we obtain an (s, t)-path as claimed in the statement of the lemma.

We stress that, while Lemma 3.2 deals with the case of ``rerouting"" an (s, t)-path,
we can apply the same arguments to ``reroute"" a cycle that contains a fixed set S
away from the inner part of some wall.

3.2. Equivalent instances of small treewidth. In this subsection, we prove
that there is an algorithm that receives a framework (G,M), where G is a planar
graph of ``big enough"" treewidth, and two vertices s, t \in V (G), and outputs either a
report that G contains an (s, t)-path of rank at least k, or an irrelevant vertex that
can be safely removed. In frameworks, to remove a vertex, one has to remove this
vertex from G and also restrict the matroid.

Restrictions of matroids. Let M = (V,\scrI ) be a matroid and let S \subseteq V . We define
the restriction of M to S, denoted by M | S, to be the matroid on the set S whose
independent sets are the sets in \scrI that are subsets of S. Given a v \in V , we denote by
M \setminus v the matroid M | (V \setminus \{ v\} ).

The goal of this subsection is to prove the following.

Lemma 3.3. There is a function g : \BbbN \rightarrow \BbbN and an algorithm that, given an
integer k \in \BbbN , a framework (G,M), where M is a matroid for which we can verify
independence in time \| M\| \scrO (1), and G is a planar graph of treewidth at least g(k),

and two vertices s, t\in V (G), outputs, in time 22
\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1),

\bullet either a report that G contains an (s, t)-path of rank at least k or
\bullet a vertex v \in V (G) such that (G,M,k, s, t) and (G \setminus v,M \setminus v, k, s, t) are equiv-
alent instances of Max Rank (s, t)-Path.

Moreover, g(k) = 2\scrO (k logk).
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 105

Keep in mind that if M is represented over a finite field or \BbbQ , we can verify
independence in time that is a polynomial in \| M\| . In order to prove Lemma 3.3, we
need some additional definitions and results.

Packings of walls. Let G be a planar graph and W be a wall of G. Let z, r \in \BbbN 
and q be a nonnegative odd integer. We say that W admits an (z, r, q)-packing of
walls if W has height at least h for some odd h \geq 2z, and there is a collection
\scrW = \{ W0,W1, . . . ,Wr - 1\} of subwalls of W , such that for every i \in [0, r  - 1], Wi is a
subwall of W of height at least q such that V (Wi) is a subset of V (W (z+1)), and for
every i, j \in [0, r  - 1] with i \not = j, V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi)) and V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wj)) are disjoint.
We call \scrW an (z, r, q)-packing of W (see Figure 3 for a visualization of a packing of a
wall W ).

Observation 3.1. Given z, r \in \BbbN , an odd integer q \in \BbbN , and a planar graph G,
every wall W of G of height at least 2z+ \lceil \surd r\rceil \cdot (q+1)+ 1 admits a (z, r, q)-packing.

Let W be a wall of a planar graph. We use \rho (W ) to denote r(V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ))).

Lemma 3.4. There is a function f :\BbbN 4 \rightarrow \BbbN and an algorithm that, given integers
k, z, r, q \in \BbbN , where q is odd, a framework (G,M), where G is planar and M is a
matroid for which we can verify independence in time \| M\| \scrO (1), and a wall W of G of
height at least f(k, z, r, q) such that \rho (W )\leq k, outputs, in (k+1) \cdot r \cdot (| G| + \| M\| )\scrO (1)

time, a subwall W \prime of W of height h for some odd h \in \BbbN such that h \geq 2z, and a
(z, r, q)-packing \scrW of W \prime such that for every Wi \in \scrW , \rho (Wi) = \rho (W \prime ). Moreover,
f(k, z, r, q) =\scrO (rk/2 \cdot z \cdot q).

Proof. We define the function f :\BbbN 4 \rightarrow \BbbN so that, for every z, r, q \in \BbbN , f(0, z, r, q) =
2z+\lceil \surd r\rceil \cdot (q+1)+1, while for k\geq 1, we set f(k, z, r, q) = 2z+\lceil \surd r\rceil \cdot (f(k - 1, z, r, q)+
1) + 1. Observe that, since q is odd, f(k, z, r, q) is odd for every k, z, r \in \BbbN .

We prove the lemma by induction on k. Clearly, if k = 0, then the lemma
holds trivially, as, by Observation 3.1, there is a (z, r, q)-packing \scrW of W and also,
given that for each Wi \in \scrW \sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi) is a subgraph of \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W ), we have that
0\leq \rho (Wi)\leq \rho (W ) = 0 and thus \rho (Wi) = 0. Then the claim holds for W \prime =W and \scrW .

Suppose now that k\geq 1 and that the lemma holds for smaller values of k. We set
w= f(k - 1, z, r, q). Since W has height at least 2z+\lceil \surd r\rceil \cdot (w+1)+1, Observation 3.1
implies that W admits a (z, r,w)-packing \scrW . Since, by definition, for every Wi \in \scrW ,
V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi)) is a subset of V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W )), it holds that \rho (Wi)\leq \rho (W ) for every
Wi \in \scrW . We compute \rho (W ) and \rho (Wi), for every Wi \in \scrW . This can be done in
r \cdot (| G| + \| M\| )\scrO (1) time. If there is a Wi \in \scrW such that \rho (Wi) < \rho (W ), then, from
the induction hypothesis applied to Wi, we have that there exists a subwall W \prime 

i of
Wi of height h for some odd h \geq 2z and a (z, r, q)-packing \scrW i of W \prime 

i such that all
walls in \scrW i have the same rank. The lemma follows by observing that f(k, z, r, q) =
\scrO (rk/2 \cdot z \cdot q).

We are now ready to prove Lemma 3.3.

Proof of Theorem 3.3. We set

b= h(k), x= k+ 1, z = (k+ 1) \cdot b,
q= f(k - 1, z, x,3), r= \lceil 

\surd 
k\rceil \cdot (q+ 1) + 3, g(k) = 36(r+ 1).

We first assume that G is 2-connected. If G is not connected, then we break the
problem in subproblems, each one corresponding to a 2-connected component B of
G and if the vertices of B are separated from s or t by a cut-vertex v of G, then we
consider the problem where v is set to be s or t, respectively.
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106 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

Since the treewidth of G is at least g(k) = 36(r+ 1), by Proposition 2.1, there is
a (4r+1)-wall of G. We then consider an r-wall W of G such that s, t /\in \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W )
and an (1, k, q)-packing \~\scrW = \{ \~W1, . . . , \~Wk\} of W . This (1, k, q)-packing exists because
of the fact that r = \lceil 

\surd 
k\rceil \cdot (q + 1) + 3 and due to Observation 3.1, and we can find

it in \scrO (n) time. For every i \in [k], we set Ki := V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss ( \~Wi)). Then, compute the
rank of Ki for each i\in [k]. This can be done in time k \cdot (| G| + \| M\| )\scrO (1).

If every Ki has rank at least k, then notice that there is a set S \subseteq V (G) such
that r(S) = k and for every i \in [k], | S \cap Ki| = 1. To obtain an (s, t)-path P such
that S \subseteq V (P ), we do the following: We first pick two disjoint paths Ps, Pt from the
perimeter of W to s and t, respectively (these exist since G is 2-connected). Let D be
the perimeter of W and let s\prime and t\prime be the endpoints of Ps and Pt in D. Also, let L2

be the second layer of W . Observe that, since the compass of a wall is a connected
graph, there is also a path P in G such that the endpoints, say, x, y, of P are in L2,
no internal vertex of P is a vertex of L2, and S \subseteq V (P ). Finally, observe that there
exist two disjoint paths Ps\prime x, Pt\prime y in the closed disk bounded by D and L2 connecting
s\prime with x and t\prime with y, respectively, and that P := Ps \cup Ps\prime x \cup P \cup Pt\prime y \cup Pt is an
(s, t)-path such that S \subseteq V (P ) (see Figure 2).

Suppose now that there is an i \in [k] such that the rank of Ki is at most k  - 1.
Since the corresponding wall \~Wi has height at least q= f(k - 1, z, x,3), by Lemma 3.4,
we can find a subwall W \prime of \~Wi of height h, for some odd h\geq 2z and a (z, k + 1,3)-
packing \scrW = \{ W0,W1, . . . ,Wk\} of W \prime , such that for every i \in [0, k], \rho (Wi) = \rho (W \prime ).
We set v to be a central vertex of W0.

We now prove that (G,M,k, s, t) and (G \setminus v,M \setminus v, k, s, t) are equivalent in-
stances of Max Rank (s, t)-Path. We show that if (G,M,k, s, t) is a \sansy \sanse \sanss -instance,
then (G \setminus v,M \setminus v, k, s, t) is also a \sansy \sanse \sanss -instance, since the other implication is triv-
ial. If (G,M,k, s, t) is a \sansy \sanse \sanss -instance, then there is an independent set of vertices
S = \{ u1, . . . , uk\} \subseteq V (G) and an (s, t)-path P in G such that r(S) = k and S \subseteq V (P ).
The fact that z = (k+1) \cdot b implies that there is an i\in [k+1] such that the vertex set
V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ((i - 1)\cdot b+1))\setminus V (\sansi \sansn \sansn (W \prime (i\cdot b)))), which we denote by Di, does not intersect
S. Let Sin be the vertices of S that are contained in \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime (i\cdot b)) and let Sout be
the set S \setminus Sin. We will show that there is a set S\prime \in \scrI (M \setminus v) and a path P \prime such
that r(Sout \cup S\prime )\geq k, Sout \cup S\prime \subseteq V (P \prime ) and V (P \prime )\subseteq V (G \setminus v).

We assume that v \in V (P ); otherwise we set S\prime := Sin and P \prime := P and the lemma
follows. We next apply Lemma 3.2 for the wall W \prime (i - 1)\cdot b+1; recall that W \prime has height
h, where h\geq 2(k+1) \cdot b+1 and therefore for every i\in [k+1], W \prime (i - 1)\cdot b+1 has at least
b layers. By Lemma 3.2 applied to W \prime (i - 1)\cdot b+1, we get a path \~P with the following
properties: Sout \subseteq V ( \~P ) and V ( \~P )\cap V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime (i\cdot b))) is the vertex set of a path \^P
of W \prime 

0 that lies in \sansp \sanse \sansr \sansi \sansm (W \prime (i\cdot b)) and whose endpoints are branch vertices of W \prime (i\cdot b).
Let s \^P and t \^P be the endpoints of \^P .

We can assume that \rho (Wi) = \rho (W \prime )> 0 for every i\in [0, k], since otherwise Sin = \emptyset 
and the claim holds trivially. For every i \in [0, k], since \rho (Wi) = \rho (W \prime ) and Sin is an
independent set of M that is a subset of \sansc \sanso \sansm \sansp \sansa \sanss \sanss (W \prime ), there is an independent set
Si \subseteq V (\sansc \sanso \sansm \sansp \sansa \sanss \sanss (Wi)) such that | Si| = | Sin| . Furthermore, because \rho (Wi) = \rho (W \prime ) for
i \in [0, k], we can choose a set S\prime = \{ v1, . . . , vk\} , where vi is a vertex in Si for i \in [k]
in such a way that r(S\prime ) = \rho (W \prime ). Then r(Sout \cup S\prime ) = | Sout \cup Sin| \geq k. Also, notice
that, for every x, y \in Lz, there is an (x, y)-path P  \star in W \prime (z) \setminus (V (Lz) \setminus \{ x, y\} ) that
contains S\prime and avoids v. It is easy to see that there exist two disjoint paths Q1,Q2 in
\sansc \sanso \sansm \sansp \sansa \sanss \sanss (W

\prime (i\cdot b)
0 ) connecting \{ s \^P , t \^P \} with \{ x, y\} and that these paths can be picked

to be internally disjoint from \^P and P  \star . Thus, if \~P \prime \prime is the graph obtained from
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 107

\~P \prime after removing all internal vertices of \^P , then \~P \prime \prime \cup Q1 \cup Q2 \cup P  \star is the claimed
(s, t)-path that contains S\prime \cup Sout and avoids v (see Figure 3).

4. Dynamic programming for instances of small treewidth. In this sec-
tion, we aim to describe a dynamic programming algorithm that solves Max Rank
(s, t)-Path for frameworks (G,M), where G has treewidth at most q and M is a linear
matroid.

Lemma 4.1. Let \BbbF be a finite field or \BbbQ . There is an algorithm that, given a
framework (G,M), where M is an \BbbF -linear matroid and G is a graph, two nonnegative
integers k and q, where k \leq q, and a tree decomposition of G of width q, outputs, in
time 2q

\scrO (1) \cdot (| G| + \| M\| )\scrO (1), a report whether G contains an (s, t)-path of rank at
least k or not.

As explained in the next subsection, the algorithm of Lemma 4.1 works for linear
matroids represented over any field in which the field operations can be done efficiently,
which in particular includes finite fields or \BbbQ .

The section is organized as follows. In subsection 4.1, we define nice tree de-
compositions, the combinatorial structure on which we will perform the dynamic
programming, and representative sets, which are used to efficiently encode partial
solutions to tables of the dynamic programming. In subsection 4.2, we define the
partial solutions of our problem. Then, in subsection 4.3, we present the dynamic
programming algorithm of Lemma 4.1, and in subsection 4.4 we prove its correctness.
We conclude this section by giving the proof of Theorem 1.1 (subsection 4.5).

4.1. Nice tree decompositions and representative sets. We start this sub-
section with the definition of nice tree decompositions.

Nice tree decompositions. Let G be a graph. A tree decomposition \scrT = (T,\scrX ) of
G is called a nice tree decomposition of G if T is rooted to some leaf r and

\bullet for any leaf l \in V (T ), Xl = \emptyset (we call Xl a leaf node of \scrT , except from Xr,
which we call a root node),

\bullet every t\in V (T ) has at most two children,
\bullet if t has two children t1 and t2, then Xt =Xt1 =Xt2 and Xt is called a join

node,
\bullet if t has one child t\prime , then

-- either Xt =Xt\prime \cup \{ v\} for some v \in V (G) (we call Xt an insert node),
-- or Xt =Xt\prime \setminus \{ v\} for some v \in V (G) (we call Xt a forget node).

It is known that any tree decomposition of G can be transformed into a nice tree
decomposition maintaining the same width in linear time [32]. We use Gt to denote
the graph induced by the vertex set

\bigcup 
t\prime Xt\prime , where t\prime ranges over all descendants of

t, including t.
In the rest of the paper, given an instance (G,M,k, s, t) of Max Rank (s, t)-Path

and a nice tree decomposition (T,\scrX ) of G, we will consider the tree decomposition
(T,\scrX \prime ) obtained from (T,\scrX ) after adding the vertices s and t in every bag in \scrX .
Therefore, the leaf nodes and the root node will be equal to the set \{ s, t\} .

Let (G,M) be a framework and let (T,\scrX ) be a tree decomposition of G. For every

t\in V (T ) and every i\in \BbbN , we define \scrS (i)
t to be the collection of all sets S \subseteq V (Gt)\setminus Xt

that are independent sets of M of size i.
Representative sets. Our algorithms use results obtained by Fomin et al. [18] and

Lokshtanov et al. [37].
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108 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

Definition 4.2 (q-representative set). Let M = (V,\scrI ) be a matroid and let \scrS be
a family of subsets of V . For a positive integer q, a subfamily \widehat \scrS is q-representative
for \scrS if the following holds: for every set Y \subseteq V of size at most q, if there is a set
X \in \scrS disjoint from Y with X \cup Y \in \scrI , then there is \widehat X \in \widehat \scrS disjoint from Y with\widehat X \cup Y \in \scrI .

We write \widehat \scrS \subseteq q
rep \scrS to denote that \widehat \scrS \subseteq \scrS is q-representative for S. It is crucial

for us that representative families can be computed efficiently for linear matroids. To
state these results, we say that a family of sets \scrS is a p-family for an integer p\geq 0 if
| S| = p for every S \in \scrS .

Theorem 4.3 (see [18, Theorem 3.8]). Let M = (V,\scrI ) be a linear matroid and
let \scrS = \{ S1, . . . , St\} be a p-family of independent sets. Then there exists \widehat \scrS \subseteq q

rep

\scrS of size at most
\bigl( 
p+q
p

\bigr) 
. Furthermore, given a representation A of M over a field

\BbbF , there is a randomized algorithm computing \widehat \scrS \subseteq q
rep \scrS of size at most

\bigl( 
p+q
p

\bigr) 
in

\scrO (
\bigl( 
p+q
p

\bigr) 
tp\omega + t

\bigl( 
p+q
q

\bigr) \omega  - 1
) + \| A\| \scrO (1) operations over \BbbF , where \omega is the exponent of

matrix multiplication.1

Observe that the algorithm in Theorem 4.3 is randomized. This is due to the fact
that one of the steps of the algorithm constructs a k-truncation2 of M for k = p+ q.
A k-truncation can be constructed algorithmically for linear matroids, but for general
linear matroids, only a randomized algorithm is known [41]. In [37], Lokshtanov et al.
gave a deterministic algorithm for linear matroid represented over any field in which
the field operations can be done efficiently. In particular, this includes any finite field
and the field of rational numbers. This way, they obtained the following theorem.

Theorem 4.4 (see [37, Theorem 1.3]). Let M = (V,\scrI ) be a linear matroid of rank
r and let \scrS = \{ S1, . . . , St\} be a p-family of independent sets. Let A be an r\times | V | -matrix
representing M over a field \BbbF , and let \omega be the exponent of matrix multiplication. Then
there are deterministic algorithms computing \widehat \scrS \subseteq q

rep \scrS as follows:

\bullet A family \widehat \scrS of size at most
\bigl( 
p+q
p

\bigr) 
in \scrO (

\bigl( 
p+q
p

\bigr) 2
tp3r2+t

\bigl( 
p+q
q

\bigr) \omega 
rp)+(r+ | V | )\scrO (1)

operations over \BbbF .
\bullet A family \widehat \scrS of size at most rp

\bigl( 
p+q
p

\bigr) 
in \scrO (

\bigl( 
p+q
p

\bigr) 
tp3r2 + t

\bigl( 
p+q
q

\bigr) \omega  - 1
(rp)\omega  - 1) +

(r+ | V | )\scrO (1) operations over \BbbF .

4.2. Partial solutions. We start by defining the notion of semimatching, that
intuitively encode parts of a path.

Semimatchings. LetX be a set. LettingH be a graph whose vertex set isX, every
vertex has degree at most two, and it is acyclic. The collection \scrM of the edges and the
isolated vertices of H is called a semimatching of X. Given a semimatching \scrM of a
set X, we use U(\scrM ) to denote X. Observe that | \{ \scrM | \scrM is a semimatching of X\} | =
2\scrO (| X| log | X| ). We denote by \scrM (v)

1 the set \{ \{ v\} \} \cap \scrM , by \scrM (v)
2 the set \{ \{ u, v\} | \{ u, v\} \in 

\scrM \} , and by \scrM (v) the set \scrM (v)
1 \cup \scrM (v)

2 . Notice that | \scrM (v)
2 | \leq 2.

Given a semimatching \scrM of a set X and a v \in X, we denote by \sansr \sanse \sansm (\scrM , v) the
semimatching \scrM \prime = (\scrM \setminus \scrM (v))\cup \{ \{ u\} | \{ u, v\} \in \scrM (v) and u \not \in U(\scrM \setminus \scrM (v))\} . Also,
given a set Y such that X \subsetneq Y and a u\in Y \setminus X, we denote by \sansa \sansd \sansd (\scrM , u) the collection
of all semimatchings \scrM \prime of X \cup \{ u\} such that \scrM = \sansr \sanse \sansm (\scrM \prime , u).

1The currently best value is \omega \approx 2.3728596 [1].
2A matroid M \prime = (V,\scrI \prime ) is a k-truncation of M = (V,\scrI ) if for every X \subseteq V , X \in \scrI \prime if and only if

X \in \scrI and | X| \leq k.
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 109

Linear forests. We say that a graph F is a linear forest if it is an acyclic graph of
maximum degree two. Let G be a graph and let F be a linear forest that is a subgraph
of G. Given a set X \subseteq V (G), we define \sanss \sansi \sansg G,X(F ) to be the set that contains (i) all
vertices in X \cap V (F ) that have degree zero in F and (ii) all pairs \{ u, v\} of vertices in
X \cap V (F ) such that either \{ u, v\} \in E(F ) or there is a (u, v)-path in F that intersects
X only at its endpoints. Notice that \sanss \sansi \sansg G,X(F ) is a semimatching of X \cap V (F ).

We are now ready to define what is considered as a partial solution to our problem.
Partial solutions. Let G be a graph, let s, t \in V (G), and let \scrT = (T,\scrX ) be a

nice tree decomposition of G. Given a t \in V (T ), we define a partial solution at t
to be a quadraple (X,\scrM , i, S), where \{ s, t\} \subseteq X \subseteq Xt, \scrM is a semimatching of X,

i \in [k], and S \in \scrS (i)
t , such that there is a linear forest F \subseteq Gt where X = V (F ) \cap Xt,

\scrM = \sanss \sansi \sansg Gt,Xt
(F ), and S \subseteq V (F ). Keep in mind that S \subseteq V (Gt \setminus Xt) and therefore

S \subseteq V (F \setminus Xt). We also say that the linear forest F certifies that (X,\scrM , i, S) is a
partial solution at t. We denote by \scrB t the set of all partial solutions at t.

We can easily observe the following.

Observation 4.1. Let (G,M) be a framework and k \in \BbbN . Then G contains

an (s, t)-path of rank at least k if and only if there is a set S \in \scrS (k)
r such that

(\{ s, t\} ,\{ \{ s, t\} \} , k,S)\in \scrB r.

4.3. A dynamic programming algorithm. We are now ready to describe
the dynamic programming algorithm of Lemma 4.1. For every t \in V (T ), we aim to
construct a collection \scrF t \subseteq \scrB t of partial solutions whose size is ``small"" since we cannot
afford to store all independent sets of size i and therefore all partial solutions in \scrB t.
For this reason, we will use representative sets, instead of all possible independent
sets using Theorem 4.4, and thus, for every X \subseteq Xt, every semimatching \scrM of X,
and every i \in [k], we will keep only a ``representative"" collection of independent sets\widehat \scrS \subseteq \scrS (i)

t such that for every S \in \scrS (i)
t , there is a S\prime \in \widehat \scrS such that (X,\scrM , i, S) \in \scrB t if

and only if (X,\scrM , i, S\prime )\in \scrF t. Given a p-family \scrS of independent sets of a matroid M ,
we use \sansR \sanse \sansp (\scrS ) to denote the k-representative subfamily \widehat \scrS for \scrS given by Theorem 4.4.

Leaf node t. Here, as Xt = \{ s, t\} , the graph Gt \setminus Xt is empty and therefore we set
\scrF t = \{ (\{ s, t\} ,\{ \{ s\} ,\{ t\} \} ,0,\emptyset )\} .

Insert node t with child t\prime . We know that Xt \supseteq Xt\prime and | Xt| = | Xt\prime | +1. Let v be
the vertex in Xt \setminus Xt\prime . For every X \subseteq Xt that contains s and t, every semimatching
\scrM of X, and every i\in [0, k], we set

\scrS t[X,\scrM , i] =

\left\{     
\{ S | (X,\scrM , i, S)\in \scrF t\prime \} if v /\in X,

\{ S | (X \setminus \{ v\} , \sansr \sanse \sansm (\scrM , v), i, S)\in \scrF t\prime \} if v \in X and \scrM (v)
2 \subseteq E(Gt),

\emptyset if otherwise.

We set \scrF t = \{ (X,\scrM , i, S) | S \in \sansR \sanse \sansp (\scrS t[X,\scrM , i])\} .
Forget node t with child t\prime . We know that Xt \subseteq Xt\prime and | Xt| = | Xt\prime |  - 1. Let v be

the vertex in Xt\prime \setminus Xt. For every X \subseteq Xt that contains s and t, every semimatching
\scrM of X, and every i\in [0, k], we set

\scrS t[X,\scrM , i] = \{ S | (X,\scrM , i, S)\in \scrF t\prime \} 
\cup 

\bigl\{ 
S | \exists \scrM \prime \in \sansa \sansd \sansd (\scrM , v) : (X \cup \{ v\} ,\scrM \prime , i, S)\in \scrF t\prime 

\bigr\} 
\cup 

\bigl\{ 
S \cup \{ v\} | \exists \scrM \prime \in \sansa \sansd \sansd (\scrM , v) : (X \cup \{ v\} ,\scrM \prime , i - 1, S)\in \scrF t\prime and

S \cup \{ v\} \in \scrI (M)
\bigr\} 
.

We set \scrF t = \{ (X,\scrM , i, S) | S \in \sansR \sanse \sansp (\scrS t[X,\scrM , i])\} .
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110 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

Join node t with children t1 and t2. We know that Xt = Xt1 = Xt2 . Given a
semimatching \scrM of a set X, we denote by \xi (\scrM ) the set of all pairs (\scrM 1,\scrM 2) such
that \scrM 1 \cup \scrM 2 = \scrM and \scrM 1 \cap \scrM 2 = \emptyset . For every X \subseteq Xt that contains s and t,
every semimatching \scrM of X, and every i\in [0, k], we set

\scrS t[X,\scrM , i] = \{ S1 \cup S2 | \exists (\scrM 1,\scrM 2)\in \xi (\scrM ) \exists i1, i2 \in [0, k],\exists S1, S2 \in 2V (G) \cap \scrI (M) :

i1 + i2 = i, S1 \cup S2 \in \scrI (M), and

(X1,\scrM 1, i1, S1)\in \scrF t1 and (X2,\scrM 2, i2, S2)\in \scrF t2 ,

where Xi =U(\scrM i), i\in [2]\} .

We set \scrF t = \{ (X,\scrM , i, S) | S \in \sansR \sanse \sansp (\scrS t[X,\scrM , i])\} .
Our dynamic programming algorithm computes \scrF t for every t\in V (T ) in a bottom-

up manner and checks whether there is a set S \in 2V (G) \cap \scrI (M) of size k such that
(\{ s, t\} ,\{ \{ s, t\} \} , k,S) \in \scrF r. If so, it outputs a report that there is an (s, t)-path of G
of rank at least k; otherwise it outputs a report that such a path does not exist.

4.4. Proof of correctness of the dynamic programming algorithm. To
prove the correctness of the algorithm presented in subsection 4.3, we first prove the
following.

Lemma 4.5. For every t \in V (T ), \scrF t \subseteq \{ (X,\scrM , i, S) | S \in \scrS t[X,\scrM , i]\} \subseteq \scrB t and

| \scrF t| = 2q
\scrO (1)

.

Proof. We prove the lemma by bottom-up induction on the decomposition tree.
Let t\in V (T ). We distinguish cases depending on the type of node Xt.

Case 1: Xt is a leaf node.
In this case, the statement of the lemma holds trivially.
In the following cases (i.e., when Xt is either an insert node, a forget node, or a

join node), it suffices to show that \{ (X,\scrM , i, S) | S \in \scrS t[X,\scrM , i]\} \subseteq \scrB t, since, due to

Theorem 4.4, \scrF t \subseteq \{ (X,\scrM , i, S) | S \in \scrS t[X,\scrM , i]\} and | \scrF t| = 2q
\scrO (1)

. Recall that a
tuple (X,M, i,S) belongs to \scrB t if there is a linear forest F \subseteq Gt, where X = V (F )\cap Xt,

\scrM = \sanss \sansi \sansg Gt,Xt
(F ), and S \subseteq V (F ), while also it holds that S \in \scrS (i)

t .
Case 2: Xt is an insert node.
Let t\prime be the child of t. Let (X,\scrM , i, S) such that S \in \scrS t[X,\scrM , i]. If v /\in X,

then (X,\scrM , i, S) \in \scrF t\prime . By the induction hypothesis, there is a linear forest F \prime that
certifies that (X,\scrM , i, S) \in \scrB t\prime . Since v /\in X and Xt = Xt\prime \cup \{ v\} , F \prime is also a linear
forest in Gt where X = V (F \prime )\cap Xt and \scrM = \sanss \sansi \sansg Gt,Xt

(F \prime ). Therefore, F \prime certifies that

(X,\scrM , i, S)\in \scrB t. If v \in X and\scrM (v)
2 \subseteq E(Gt), then (X\setminus \{ v\} , \sansr \sanse \sansm (\scrM , v), i, S)\in \scrF t\prime and

therefore, by the induction hypothesis, (X \setminus \{ v\} , \sansr \sanse \sansm (\scrM , v), i, S) \in \scrB t\prime . This implies
that there is a linear forest F \prime certifying that (X \setminus \{ v\} , \sansr \sanse \sansm (\scrM , v), i, S) \in \scrB t\prime . Since

\sanss \sansi \sansg Gt\prime ,Xt\prime 
(F \prime ) = \sansr \sanse \sansm (\scrM , v), \scrM is a semimatching of X, and \scrM (v)

2 \subseteq E(Gt), we have

that F \prime \cup \{ v,\scrM (v)
2 \} is a linear forest, which we denote by F . Observe that F certifies

that (X,\scrM , i, S)\in \scrB t.
Case 3: Xt is a forget node.
Let t\prime be the child of t and let (X,\scrM , i, S) such that S \in \scrS t[X,\scrM , i]. Observe that

if (X,\scrM , i, S)\in \scrF t\prime , there is a linear forest F
\prime certifying that (X,\scrM , i, S)\in \scrB t\prime and the

fact that v /\in Xt (and therefore v /\in X) implies that F \prime also certifies that (X,\scrM , i, S)\in 
\scrB t. If there is an \scrM \prime \in \sansa \sansd \sansd (\scrM , v) such that (X \cup \{ v\} ,\scrM \prime , i, S) \in \scrF t\prime , then there is a
linear forest F \prime certifying that (X \cup \{ v\} ,\scrM \prime , i, S)\in \scrB t\prime . In this case, V (F \prime )\cap Xt =X
and \sanss \sansi \sansg Gt,Xt

(F \prime ) = \scrM . Therefore, F \prime certifies that (X,\scrM , i, S) \in \scrB t. Finally, if
S = S\prime \cup \{ v\} and there is an \scrM \prime \in \sansa \sansd \sansd (\scrM , v) such that (X\cup \{ v\} ,\scrM \prime , i - 1, S\prime )\in \scrF t\prime and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

8/
25

 to
 1

29
.1

77
.1

46
.1

86
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 111

S\prime \cup \{ v\} \in \scrI (M), there is a linear forest F \prime that certifies that (X \cup \{ v\} ,\scrM \prime , i - 1, S\prime )\in 
\scrB t\prime . The same linear forest F \prime certifies that (X,\scrM , i, S)\in \scrB t.

Case 4: Xt is a join node.
Let t1 and t2 be the two children of t and let (X,\scrM , i, S) such that S \in \scrS t[X,\scrM , i].

By definition, there exist a pair (\scrM 1,\scrM 2)\in \xi (\scrM ), two integers i1, i2 \in [0, k], and sets
S1, S2 \in 2V (G)\cap \scrI (M) such that i1+i2 = i, S = S1\cup S2 \in \scrI (M), and (X1,\scrM 1, i1, S1)\in 
\scrF t1 , (X2,\scrM 2, i2, S2) \in \scrF t2 , where Xi = U(\scrM i), i \in [2]. By the induction hypothesis,
there is a linear forest F1 \subseteq Gt1 certifying that (X1,\scrM 1, i1, S1)\in \scrB t1 and a linear forest
F2 \subseteq Gt2 certifying that (X2,\scrM 2, i2, S2)\in \scrB t2 . Since \scrM 1\cup \scrM 2 =\scrM and \scrM 1\cap \scrM 2 =
\emptyset , it holds that F1 \cup F2 is a linear forest of Gt such that \sanss \sansi \sansg Gt,Xt

(F1 \cup F2) = \scrM .
Therefore, we get that F1 \cup F2 certifies that (X,\scrM , i, S)\in \scrB t.

We now show the following lemma, which is an intermediate step toward the proof
of correctness of our dynamic programming algorithm.

Lemma 4.6. Let P be an (s, t)-path of G and let S be a subset of V (P ) that is an
independent set of M of size at least k. For every t\in V (T ), if Ft is the graph P \cap Gt,
St = S\cap V (Gt\setminus Xt), | St| = i, and X = V (P )\cap Xt, and \scrM = \sanss \sansi \sansg Gt,Xt

(Ft), then for every
S\prime \in \scrS t[X,\scrM , i], if F \prime certifies that (X,\scrM , i, S\prime )\in \scrB t, then F \prime \cup (P \setminus \sansi \sansn \sanst (V (Ft))), where
\sansi \sansn \sanst (Ft) denotes the vertices of Ft in V (Gt) \setminus Xt, is an (s, t)-path of G that contains
the set S\prime \cup (S \setminus St).

Proof. We prove the lemma by bottom-up induction on the decomposition tree.
Let P be an (s, t)-path of G and let S be a subset of V (P ) that is an independent set of
M of size at least k. Also, let t\in V (T ). Let Ft be the graph P\cap Gt, St = S\cap V (Gt\setminus Xt),
| St| = i, and X = V (P )\cap Xt, and \scrM = \sanss \sansi \sansg Gt,Xt

(Ft).
Case 1: Xt is an leaf node.
In this case, the lemma holds trivially.
Case 2: Xt is an insert node.
Let t\prime be the child of t. By the induction hypothesis, if Ft\prime is the graph P \cap Gt\prime ,

St\prime = S\cap V (Gt\prime \setminus Xt\prime ), | St\prime | = i, X \prime = V (P )\cap Xt\prime , and \scrM \prime = \sanss \sansi \sansg Gt\prime ,Xt\prime 
(Ft\prime ), then if S\prime \prime \in 

\scrS t\prime [X
\prime ,\scrM \prime , i] such that (X \prime ,\scrM \prime , i, S\prime \prime )\in \scrB t\prime and F \prime \prime certifies that (X \prime ,\scrM \prime , i, S\prime \prime )\in \scrB t\prime 

then F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) is an (s, t)-path of G that contains the set S\prime \prime \cup (S \setminus St\prime ). We
will prove that for every S\prime \in \scrS t[X,\scrM , i], if F \prime certifies that (X,\scrM , i, S\prime ) \in \scrB t, then
F \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) is an (s, t)-path of G that contains the set S\prime \cup (S \setminus St).

If v /\in X, then the fact that Xt =Xt\prime \cup \{ v\} implies that Ft = Ft\prime , St = St\prime , X =X \prime ,
and \scrM = \scrM \prime . Therefore, since in this case \scrS t[X,\scrM , i] = \{ S | (X,\scrM , i, S) \in \scrF t\prime \} ,
it holds that (X,\scrM , i, S\prime ) \in \scrF t\prime . Also, by Lemma 4.5, \scrF t\prime \subseteq \{ (X,\scrM , i, S) | S \in 
\scrS t\prime [X,\scrM , i]\} \subseteq \scrB t\prime . Therefore, if F \prime certifies that (X,\scrM , i, S\prime ) \in \scrB t\prime , then F \prime \cup (P \setminus 
\sansi \sansn \sanst (Ft\prime )) is an (s, t)-path of G that contains the set S\prime \cup (S \setminus St\prime ). Observe that
F \prime also certifies that (X,\scrM , i, S\prime ) \in \scrB t and since Ft = Ft\prime and St = St\prime , we have
F \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) = F \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) and S\prime \cup (S \setminus St) = S\prime \cup (S \setminus St\prime ). Thus,
F \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) is an (s, t)-path of G that contains the set S\prime \cup (S \setminus St).

If v \in X and \scrM (v)
2 \subseteq E(Gt), then observe that Ft\prime = Ft \setminus \{ v\} , St = St\prime (since St =

S\cap V (Gt\setminus Xt) = S\cap V (Gt\prime \setminus Xt\prime )), X
\prime =X\setminus \{ v\} , and \scrM \prime = \sansr \sanse \sansm (\scrM , v). Therefore, since

\scrS t[X,\scrM , i] = \{ S | (X \setminus \{ v\} , \sansr \sanse \sansm (\scrM , v), i, S)\in \scrF t\prime \} , and S\prime \in \scrS t[X,\scrM , i], we have that
(X \prime ,\scrM \prime , i, S\prime )\in \scrF t\prime . Also, by Lemma 4.5, \scrF t\prime \subseteq \{ (X,\scrM , i, S) | S \in \scrS t\prime [X,\scrM , i]\} \subseteq \scrB t\prime .
Therefore, if F \prime \prime certifies that (X \prime ,\scrM \prime , i, S\prime )\in \scrB t\prime , then F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) is an (s, t)-

path of G that contains the set S\prime \cup (S \setminus St\prime ). Let F
\prime = F \prime \prime \cup (\{ v\} ,\scrM (v)

2 ). Notice that
F \prime is a linear forest and this follows from the fact that Ft and F \prime \prime are linear forests,
Ft\prime = Ft \setminus \{ v\} , \sanss \sansi \sansg Gt\prime ,Xt\prime 

(Ft\prime ) = \sanss \sansi \sansg Gt\prime ,Xt\prime 
(F \prime \prime ), and \scrM (v)

2 \subseteq E(Gt). Therefore, F \prime 
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112 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

certifies that (X,\scrM , i, S\prime \prime )\in \scrB t. Also, we have that F \prime \cup (P \setminus V (Ft)) = F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime ))
and S\prime \prime \cup (S \setminus St) = S\prime \prime \cup (S \setminus St\prime ). Thus, F \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) is an (s, t)-path of G
that contains the set S\prime \prime \cup (S \setminus St). To conclude Case 2, observe that if v \in X and

E(Gt) \setminus \scrM (v)
2 \not = \emptyset , \scrS t[X,\scrM , i] = \emptyset .

Case 3: Xt is a forget node.
Let t\prime be the child of t and let v be the vertex in Xt\prime \setminus Xt. By the induc-

tion hypothesis, if Ft\prime is the graph P \cap Gt\prime , St\prime = S \cap V (Gt\prime \setminus Xt\prime ), | St\prime | = i,
X \prime = V (P )\cap Xt\prime , and \scrM \prime = \sanss \sansi \sansg Gt\prime ,Xt\prime 

(Ft\prime ), then if S\prime \prime \in \scrS t\prime [X
\prime ,\scrM \prime , i] and F \prime \prime certifies

that (X \prime ,\scrM \prime , i, S\prime \prime ) \in \scrB t\prime then F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) is an (s, t)-path of G that contains
the set S\prime \prime \cup (S \setminus St\prime ). Let S

\prime \in \scrS t[X,\scrM , i].
If (X,\scrM , i, S\prime ) \in \scrF t\prime , then, by Lemma 4.5, (X,\scrM , i, S\prime ) \in \scrB t\prime , and therefore

there is a linear forest F \prime \prime \subseteq Gt\prime certifying that (X,\scrM , i, S\prime ) \in \scrB t\prime . Observe that
since V (F \prime \prime ) \cap Xt\prime = X, we have that F \prime \prime is also a linear forest in Gt certifying
that (X,\scrM , i, S\prime ) \in \scrB t. Therefore, since F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) = F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) and
S\prime \prime \cup (S \setminus St) = S\prime \prime \cup (S \setminus St\prime ), we have that F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) is an (s, t)-path of G
that contains the set S\prime \cup (S \setminus St).

If there is an \scrM \prime \in \sansa \sansd \sansd (\scrM , v) such that (X \cup \{ v\} ,\scrM \prime , i, S\prime ) \in \scrF t\prime , then, by
Lemma 4.5, (X \cup \{ v\} ,\scrM \prime , i, S\prime ) \in \scrB t\prime and therefore there is a linear forest F \prime \prime \subseteq Gt\prime 

certifying that (X \cup \{ v\} ,\scrM \prime , i, S\prime ) \in \scrB t\prime . Notice that, since Xt = Xt\prime \setminus \{ v\} , we have
that V (F \prime \prime ) \cap Xt and \sanss \sansi \sansg Gt,Xt

(F \prime \prime ) = \scrM . Thus, F \prime \prime certifies that (X,\scrM , i, S\prime ) \in \scrB t.
Moreover, since F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) = F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) and S\prime \prime \cup (S\setminus St) = S\prime \prime \cup (S\setminus St\prime ),
we have that F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) is an (s, t)-path of G that contains the set S\prime \cup (S \setminus St).

If S\prime = S\prime \prime \cup \{ v\} and there is an\scrM \prime \in \sansa \sansd \sansd (\scrM , v) such that (X\cup \{ v\} ,\scrM \prime , i - 1, S\prime \prime )\in 
\scrF t\prime and S\prime \in \scrI (M), then by Lemma 4.5, (X \cup \{ v\} ,\scrM \prime , i - 1, S\prime \prime ) \in \scrB t\prime and therefore
there is a linear forest F \prime \prime \subseteq Gt\prime certifying that (X \cup \{ v\} ,\scrM \prime , i - 1, S\prime \prime )\in \scrB t\prime . The fact
that Xt =Xt\prime \setminus \{ v\} implies that S\prime \subseteq V (Gt \setminus Xt), V (F \prime \prime )\cap Xt and \sanss \sansi \sansg Gt,Xt

(F \prime \prime ) =\scrM .
Therefore, F \prime \prime certifies that (X,\scrM , i, S\prime ) \in \scrB t. Moreover, since F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft\prime )) =
F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft)) and S\prime \prime \cup (S \setminus St) = S\prime \prime \cup (S \setminus St\prime ), we have that F \prime \prime \cup (P \setminus \sansi \sansn \sanst (Ft))
is an (s, t)-path of G that contains the set S\prime \cup (S \setminus St). This concludes Case 3.

Case 4: Xt is a join node.
Let t1, t2 be the two children of t and assume that the induction hypothesis holds

for both t1, t2. Keep in mind that Xt1 = Xt2 = Xt. Also, let S\prime \in \scrS t[X,\scrM , i].
By definition, S\prime = S1 \cup S2 such that there is a pair (\scrM 1,\scrM 2) \in \xi (\scrM ) and two
integers i1, i2 \in [0, k] such that i1 + i2 = i, and if Xi = U(\scrM i), i \in [2], then S1 \cup 
S2 \in \scrI (M), (X1,\scrM 1, i1, S1) \in \scrF t1 , and (X2,\scrM 2, i2, S2) \in \scrF t2 . Due to Lemma 4.5,
(X1,\scrM 1, i1, S1)\in \scrB t1 and (X2,\scrM 2, i2, S2)\in \scrB t2 , and therefore there are linear forests
F1 \subseteq Gt1 and F2 \subseteq Gt2 such that for every i\in [2], Fi certifies that (Xi,\scrM i, ii, Si)\in \scrB ti .
Moreover, by the induction hypothesis, Fi \cup (P \setminus \sansi \sansn \sanst (Fti)) is an (s, t)-path of G that
contains the set Si \cup (S \setminus Sti). The fact that (\scrM 1,\scrM 2) \in \xi (\scrM ) implies that F1 \cup F2

is a linear forest of Gt such that V (F1 \cup F2) \cap Xt = X and \sanss \sansi \sansg Gt,Xt
(F1 \cup F2) = \scrM .

Moreover, since S1 \cup S2 \in \scrI (M) and i1 + i2 = i, we get that F1 \cup F2 certifies that
(X,\scrM , i, S1 \cup S2) \in \scrB t. Also, the fact that for every i \in [2], Fi \cup (P \setminus \sansi \sansn \sanst (Fti)) is an
(s, t)-path of G that contains the set Si \cup (S \setminus Sti) implies that F1 \cup F2 \cup (P \setminus \sansi \sansn \sanst (Ft))
is an (s, t)-path of G that contains the set S1\cup S2\cup (S \setminus St). This concludes Case 4.

We conclude this subsection by proving Lemma 4.1.

Proof of Theorem 4.1. We first observe that we can transform a given tree de-
composition of width q to a nice tree decomposition (T,\chi ) of width q in time \scrO (q2 \cdot n).
Moreover, | V (T )| = q\scrO (1) \cdot n. Then, for every t \in V (T ), we compute the set \scrF t in a

bottom-up way. By Lemma 4.5, | \scrF t| = 2q
\scrO (1)

and each \scrF t can be computed in time
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 113

2q
\scrO (1) \cdot (| G| +\| M\| )\scrO (1), resulting in the claimed overall running time. If there is a set

S \subseteq V (G) such that \{ \emptyset ,\{ \emptyset \} , k,S\} \in \scrF r, then we output a report that G contains an
(s, t)-path of rank at least k; otherwise we report that such a path does not exist in
G. The correctness of the algorithm follows from Observation 4.1, Lemma 4.6, and
the fact that, by Theorem 4.4, for every t\in V (T ), \scrF t is a k-representative family and
\scrF t \subseteq \{ (X,\scrM , i, S) | S \in \scrS t[X,\scrM , i]\} .

4.5. Proof of Theorem 1.1. In the proof of Theorem 1.1, we will use the single-
exponential time 2-approximation algorithm for the treewidth of Korhonen [34].

Proposition 4.7. There exists an algorithm that given a graph G and an integer
k \in \BbbN , outputs, in time 2\scrO (k) \cdot | G| , either a tree decomposition of G of width at most
2k+ 1 or a report that the treewidth of G is larger than k.

Proof of Theorem 1.1. Let (G,M) be a framework, where G is a planar graph
and M is a linear matroid given by its representation over a finite filed or the field of
rationals, and let k \in \BbbN . We set q= g(k), where g is the function of Lemma 3.3. Keep
in mind that g(k) = 2\scrO (k logk). We describe an algorithm \scrA that solves Max Rank
(s, t)-Path.

Our algorithm \scrA first calls the algorithm of Proposition 4.7 for G and q which runs
in time 2q \cdot n= 22

\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot n and outputs either a tree decomposition of G of width at
most 2q or a report that the treewidth ofG is larger than q. In the first possible output,
we use the algorithm of Lemma 4.1, which runs in time 2q

\scrO (1) \cdot (| G| + \| M\| )\scrO (1) =

22
\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1), and we solve Max Rank (s, t)-Path. In the second

possible output (i.e., where G has treewidth at least q), we apply the algorithm

of Lemma 3.3 and, in time 22
\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1), we either report a positive

answer to Max Rank (s, t)-Path or find a vertex v \in V (G) such that (G,M,k, s, t)
and (G \setminus v,M \setminus v, k, s, t) are equivalent instances of Max Rank (s, t)-Path. If the
latter happens, we recursively run \scrA for the framework (G \setminus v,M \setminus v). Observe that

the overall running time of \scrA is 22
\scrO (k \mathrm{l}\mathrm{o}\mathrm{g}k) \cdot (| G| + \| M\| )\scrO (1).

5. Computational lower bound for MAX RANK (\bfits , \bfitt )-PATH. In this
section, we prove the unconditional computational lower bound given in Theorem
1.2, which we restate.

Theorem 1.2. There is no algorithm solving Max Rank (s, t)-Path for frame-
works with matroids represented by the independence oracles using f(k) \cdot no(k) oracle
calls for any computable function f . Furthermore, the lower bound holds for frame-
works with planar graphs of treewidth at most two.

Proof. Let p and q be positive integers. We construct the framework (Gp,q,MP ),
where MP is constructed for a given path P in Gp,q, as follows.

First, we construct Gp,q on 2pq + q + 1 vertices with two terminals s and t (see
Figure 7).

\bullet Construct q+ 1 vertices w0, . . . ,wq, and set s=w0 and t=wq.
\bullet For each i\in [q], construct 2p vertices ui

1, . . . u
i
p and vi1, . . . , v

i
p, make ui

j and vij
adjacent for all j \in [p], make ui

1, . . . u
i
p adjacent to wi - 1, and make vi1, . . . , v

i
p

adjacent to wi.
It is easy to see that Gp,q is a planar graph of treewidth at most two.

To define MP , consider an (s, t)-path P in Gp,q. We also set W =
\bigcup q

i=1

\bigcup p
j=1

\{ ui
j , v

i
j\} . We define \scrI \subseteq 2V (Gp,q) to be the set containing all sets X \subseteq W of size at

most 2q such that
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vqjq

w1 t = wq

u1
1 v11

u1
p v1p

u1
j1 v1j1

uq
p vqp

P
s = w0

uq
1 vq1

uq
jq

Fig. 7. Construction of Gp,q; P is shown by a dashed line.

\bullet either | X| < 2q,
\bullet or | X| = 2q and X \subseteq V (P ),
\bullet or | X| = 2q and there is no (s, t)-path Q in Gp,q with X \subseteq V (Q).

Claim 5.1. MP = (V (Gp,q),\scrI ) is a matroid.

Proof of Claim 5.1. To show the claim, we have to verify that the independence
axioms are fulfilled for \scrI . The definition of \scrI immediately implies that (I1) and (I2)
hold and it remains to verify (I3). For this, we consider X,Y \in \scrI such that | X| < | Y | .
Recall that we have to show that there is x \in Y \setminus X such that X \cup \{ x\} \in \scrI . This
is trivial if | X| \leq 2q  - 2 because for every x \in Y \setminus X, | X \cup \{ x\} | < 2q, and therefore
X \cup \{ x\} \in \scrI . Suppose that | X| = 2q - 1. If there is no (s, t)-path Q in Gp,q such that
X \subseteq V (Q), then X \cup \{ x\} has the same property for any x \in Y \setminus X and X \cup \{ x\} \in \scrI 
by the definition of \scrI . Assume that X \subseteq V (Q) for some (s, t)-path Q. By the
construction of Gp,q, for each i \in [q], Q contains exactly two vertices ui

ji
and viji for

some ji \in [p]. Furthermore, because | X| = 2q  - 1 and X \subseteq W , there is unique i\prime \in [q]
such that | \{ ui

ji
, viji\} \cap X| = 1 and ui

ji
, viji \in X for all other i\in [q]. This implies that if

there is x \in Y such that x /\in V (Q), then x \in Y \setminus X and X \cup \{ x\} in not contained in
any (s, t)-path. Thus, X \cup \{ x\} \in \scrI . From now on, we assume that Y \subseteq V (Q). This
means that Q= P . We have that X \subseteq Y and | Y \setminus X| = 1. For the unique x \in Y \setminus X,
we obtain that X \cup \{ x\} = Y \in \scrI . This concludes the proof.

The proof of Theorem 1.2 is based on the following crucial claim about solving
Max Rank (s, t)-Path for instances (Gp,q,MP ,2q).

Claim 5.2. Solving Max Rank (s, t)-Path for instances (Gp,q,MP , k) for k=
2q with the matroids MP defined by the independence oracle for an (unknown) (s, t)-
path P in Gp,q demands at least pq  - 1 oracle queries.

Proof of Claim 5.2. Observe that P is a unique (s, t)-path of rank at least k= 2q.
Thus, the task is to find P which is known only to the oracle. Querying the oracle for
X \subseteq V (Gp,q) such that X \setminus W \not = \emptyset does not provide any information about P because
all such sets are not independent. Similarly, querying the oracle for X \subseteq W such that
either | X| < k or | X| > k does not help to find P as all sets of size at most k - 1 are
independent and all sets of size at least k + 1 are not independent. If X \subseteq W of size
k is not a subset of vertices of an (s, t)-path, then X is always independent. Thus,
we can assume that the oracle is queried only for X \subseteq W of size k = 2q such that
X \subseteq V (Q) for some (s, t)-path Q in Gp,q. Suppose that the oracle is queried for at
most qp  - 2 sets X of this type and for all these queries the oracle returned that the
sets are not independent. Notice that Gp,q has pq distinct (s, t)-paths. Then there are
two distinct (s, t)-paths Q,Q\prime such that the oracle was not queried for X = V (Q)\cap W
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COMPUTING PATHS OF LARGE RANK IN PLANAR FRAMEWORKS 115

and X \prime = V (Q\prime )\cap W . The previous queries do not help to distinguish between Q and
Q\prime . Hence, at least one more query is unavoidable. This proves the claim.

Now we are ready to show the claim of Theorem 1.2. Suppose that there is an
algorithm \scrA solving Max Rank (s, t)-Path with at most f(k)\cdot ng(k) oracle queries for
some computable functions f and g such that g(k) = o(k). Without loss of generality,
we assume that f and g are monotone nondecreasing functions. Because g(k) = o(k),
there is a positive integer K such that g(k) < k/8 for all k \geq K. Then for each
k \geq K, there is a positive integer Nk such that for every n \geq Nk, f(k) \cdot ng(k) <

n2g(k) < nk/4 \leq 
\bigl( 
n
k  - 1

\bigr) k/2  - 1, and therefore f(k) \cdot ng(k) <
\bigl( 
n
k  - 1

\bigr) k/2  - 1. Consider
instances (Gp,q,MP , k) for even k \geq K, where q = k/2 and p \geq Nk/k. Then k = 2q
and n = 2pq + q + 1. In particular, n \geq pk \geq Nk. Then \scrA would solve the problem

with at most f(k) \cdot ng(k) <
\bigl( 
n
k  - 1

\bigr) k/2 - 1\leq pq - 1 oracle queries. However, this would
contradict Claim 5.2. This completes the proof.

6. Conclusion. In this paper, we provide a deterministic FPT algorithm for
Max Rank (s, t)-Path for frameworks (G,M), where G is a planar graph and M is
represented over a finite field or the rationals. We complement this result by proving
that there is no FPT algorithm for the problem when the input matroids are given
by their independence oracles even if the input graphs are planar graphs of treewidth
at most two. Let us conclude by discussing some open research directions.

Since the algorithm of [16] for Max Rank (s, t)-Path runs in 2\scrO (k2 log(k+q))n\scrO (1)

time, a natural question is whether one can drop the double-exponential dependence
on the parameter k on the running time of the algorithm of Theorem 1.1. The main
bottleneck is the bound the treewidth of a graph that contains no irrelevant vertices.
In particular, our approach to detect irrelevant vertices requires a recursive zooming
into a given wall of the graph in order to find a packing of k + 1-many k-walls with
compasses of specific rank. To perform this zooming, one should ask for the initial
wall to be of height at least k\scrO (k). It is unclear whether we can circumvent this
argument and detect irrelevant vertices if the initial wall has height linear (or even
polynomial) in k.

As mentioned in the introduction, the method of [16] gives a randomized algorithm
for the more general problem of Maximum Rank (S,T )-Linkage. In this paper, we
focus on the special case where | S| = | T | = 1 and one could ask whether our techniques
can be applied to solve the general problem of detecting (S,T )-linkages of large rank
for frameworks with planar graphs and matroids represented over finite fields. Such
a generalization of our results does not seem to be trivial, and therefore we leave this
as an open research direction.

Another natural question to ask is whether our approach can be generalized to
obtain deterministic FPT algorithms for frameworks with more general classes of
graphs. While it seems plausible to extend the applicability of the irrelevant vertex
technique arguments up to graphs that exclude a graph as a minor, such a proof would
be highly technical. For frameworks with general graphs, it is very unclear whether
one can achieve rerouting that does not decrease the rank and therefore allow an
irrelevant vertex argument to go through.

Also, in the lines of [16], an interesting open question is whether we can obtain a
deterministic FPT algorithm for Max Rank (s, t)-Path for frameworks with matroids
not representable in finite fields of small order or in the field of rationals. For example,
uniform matroids, and more generally transversal matroids, are representable over a
finite field, but the field of representation must be large enough. While the approach of
[16] also gives a randomized FPT algorithm for frameworks of transversal matroids, our
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116 FOMIN, GOLOVACH, KORHONEN, AND STAMOULIS

dynamic programming subroutine relies on the efficient computation of representative
sets, which requires a linear representation of the input matroid. We stress that
this is the only place in the proof of Theorem 1.1 requiring a linear representation
of the matroid. However, Theorem 1.2 demonstrates limitations by establishing an
unconditional computational lower bound for matroids given by their independence
oracles.
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