
Compound Logics for Modification Problems

FEDOR V. FOMIN and PETR A. GOLOVACH, Department of Informatics, University of Bergen,
Bergen, Norway
IGNASI SAU, LIRMM, Univ Montpellier, CNRS, Montpellier, France
GIANNOS STAMOULIS, Institute of Informatics, University of Warsaw, Warsaw, Poland
DIMITRIOS M. THILIKOS, LIRMM, Univ Montpellier, CNRS, Montpellier, France

We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay
between model theory and algorithmic graph minors. The core of our framework is a new compound logic
operating with two types of sentences, expressing graph modification: the modulator sentence, defining some
property of the modified part of the graph, and the target sentence, defining some property of the resulting
graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSO) and
have models of bounded treewidth, while target sentences express first-order logic (FO) properties. Our logic
captures problems that are not definable in FO and, moreover, may have instances of unbounded treewidth.
Our main result is that, for this compound logic, model-checking can be done in quadratic time on minor-free
graphs. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant
vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle’s
theorem does not apply. The proof of our meta-theorem combines novel combinatorial results related to the
Flat Wall theorem along with elements of the proof of Courcelle’s theorem and Gaifman’s theorem. Our
algorithmic meta-theorem encompasses, unifies, and extends the known meta-algorithmic results for CMSO
and FO on minor-closed graph classes.

CCS Concepts: • Mathematics of computing→ Graph theory; Graph algorithms; • Theory of compu-
tation → Logic;

Additional KeyWords and Phrases: Algorithmicmeta-theorems, Graphmodification problems,Model-checking,
Graph minors, First-order logic, Monadic second-order logic, Flat Wall theorem, Irrelevant vertex technique

The results of this article appeared in the Proceedings of the 50th International Colloquium on Automata, Languages and
Programming (ICALP 2023) [44].
Fedor V. Fomin, Petr A. Golovach, and Dimitrios M.Thilikos were supported by the Franco-Norwegian project PHC AURORA
2024. Fedor V. Fomin and Petr A. Golovach were supported by the Research Council of Norway via the project BWCA
(314528). Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos where supported by the ANR projects DEMOGRAPH
(ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-
20-CE92-0027). Ignasi Sau was also supported by the ANR project ELIT (ANR-20-CE48-0008-01). Most of the research work
for this article was conducted when Giannos Stamoulis was affiliated with LIRMM, Univ Montpellier, CNRS, Montpellier,
France.
Authors’ Contact Information: Fedor V. Fomin, Department of Informatics, University of Bergen, Bergen, Norway;
e-mail: fedor.fomin@uib.no; Petr A. Golovach, Department of Informatics, University of Bergen, Bergen, Norway; e-mail:
petr.golovach@uib.no; Ignasi Sau, LIRMM, Univ Montpellier, CNRS, Montpellier, France; e-mail: ignasi.sau@lirmm.fr;
Giannos Stamoulis (corresponding author), Institute of Informatics, University of Warsaw, Warsaw, Poland; e-mail:
giannos.stamoulis@mimuw.edu.pl; Dimitrios M. Thilikos, LIRMM, Univ Montpellier, CNRS, Montpellier, France; e-mail:
sedthilk@thilikos.info.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-945X/2024/12-ART2
https://doi.org/10.1145/3696451

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://orcid.org/0000-0003-1955-4612
https://orcid.org/0000-0002-2619-2990
https://orcid.org/0000-0002-8981-9287
https://orcid.org/0000-0002-4175-7793
https://orcid.org/0000-0003-0470-1800
mailto:permissions@acm.org
https://doi.org/10.1145/3696451
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696451&domain=pdf&date_stamp=2024-12-13

2:2 F. V. Fomin et al.

ACM Reference format:
Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2024. Compound
Logics for Modification Problems. ACM Trans. Comput. Logic 26, 1, Article 2 (December 2024), 57 pages.
https://doi.org/10.1145/3696451

1 Introduction
Our work is kindled by the current algorithmic advances in graph modification. The core of our
approach is a novel model-theoretic framework that is based on the interplay between model theory
and algorithmic graph minors. Departing from this new perspective, we obtain an algorithmic
meta-theorem that encompasses, unifies, and extends all known meta-algorithmic results for count-
ing monadic second-order logic (CMSO) and first-order logic (FO) on minor-closed graph
classes.

1.1 State of the Art and Our Contribution
Modification Problems. A graph modification problem asks whether it is possible to apply a series

of modifications to a graph in order to transform it to a graph with some desired target property.
Such problems have been the driving force of Parameterized Complexity where parameterization
quantifies the concept of “distance from triviality” [66] and measures the amount of the applied
modification. Classically, modification operations may be vertex or edge deletions, edge addi-
tions/contractions, or combinations of them like taking a minor. In their generality, such problems
are NP-complete [82, 111] and much research in Parameterized Complexity is on the design of algo-
rithms in time 5 (:) · =O(1) , where the parameter : is some measure of the modification operation
[32]. The target property may express desired structural properties that respond to certain algorith-
mic or combinatorial demands. A widely studied family of target properties are minor-closed graph
classes such as edgeless graphs [25], forests [24, 76], bounded treewidth graphs [48, 49, 74], planar
graphs [69, 70, 87], bounded genus graphs [77], or, most generally, minor-excluding graphs [1, 88,
101, 103]. However, other families of target properties have also been considered, such as those
that exclude an odd cycle [41], a topological minor [50], an (induced) subgraph [23, 34, 100], an
immersion [55], or an induced minor [57]. A broad class of graph modification problems concerns
cuts. In a typical cut problem, one wants to find a minimum-size set of edges or vertices- in a graph
� such that in the new graph � \ -, obtained by deleting - from �, some terminal-connectivity
conditions are satisfied. For example, the condition can be that a set of specific terminals becomes
separated or that at least one connected component in the new graph is of a specific size. The
development of parameterized algorithms for cut problems is a popular trend in parameterized
algorithms [20, 33, 67, 73, 75, 85, 86]. More involved modification measures of vertex set removals,
related to treewidth or treedepth, have been considered very recently [3, 21, 22, 39, 68, 88].

AlgorithmicMeta-Theorems. A vibrant line of research in Logic and Algorithms is the development
of algorithmic meta-theorems. According to Grohe and Kreutzer [62], algorithmic meta-theorems
state that certain families of algorithmic problems, typically defined by some logical and some
combinatorial condition, can be solved “efficiently,” under some suitable definition of this term.
Algorithmic meta-theorems play an important role in the theory of algorithms as they reveal
deep interplays between Algorithms, Logic, and Combinatorics. One of the most celebrated meta-
theorems is Courcelle’s theorem asserting that graph properties definable in CMSO are decidable
in linear time on graphs of bounded treewidth [27–29]; see also [5, 18]. Another stream of research
concerns identifying wide combinatorial structures where model-checking for FO can be done in
polynomial time. This includes graph classes of bounded degree [107], graph classes of bounded

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.1145/3696451

Compound Logics for Modification Problems 2:3

local treewidth [51], minor-closed graph classes [42], graph classes locally excluding a minor [35],
and more powerful concepts of sparsity, such as having bounded expansion [38, 89–92], nowhere
denseness [63], or having bounded twin-width [16]. (See [61, 79] for surveys. Also for results
on the combinatorial horizon of FO and CMSO (and its variants) see [15, 16, 63] and [11, 12]
respectively.)

Another line of research, already mentioned in [61], is to prove algorithmic meta-theorems for
extensions of FO of greater expressibility. Two such extensions have been recently presented. The
first one consists in enhancing FO with predicates that can express :-connectivity for every : ≥ 1.
This extension of FO, was introduced independently by Schirrmacher, Siebertz, and Vigny in [106]
(under the name FO+conn) and by Bojańczyk in [13] (under the name separator logic). The second
and more expressive extension, also introduced by Schirrmacher, Siebertz, and Vigny in [106],
is FO+DP, that enhances FO with predicates expressing the existence of disjoint paths between
certain pairs of vertices. For FO+conn, an algorithmic meta-theorem for model-checking on graphs
excluding a topological minor has been very recently given by Pilipczuk, Schirrmacher, Siebertz,
Toruńczyk, and Vigny [97]. For the more expressive FO+DP, an algorithmic meta-theorem for
model-checking on graphs excluding a minor has been very recently given by Golovach, Stamoulis,
and Thilikos in [59] (see [58] for the full version), see also [105].

Research on the meta-algorithmics of FO is quite active and has moved to several directions such
as the study of FO-interpretability [14, 53, 93–96] or the enhancement of FO with counting/numer-
ical predicates [37, 64, 80, 81] (see also [40, 60, 65, 110] for other extensions).

Our Contribution. In this article, we initiate an alternative approach consisting in combining
the expressive power of FO and monadic second-order logic (MSO). We introduce a compound
logic that models computational problems through the lens of the “modulator vs target” duality
of graph modification problems. Each sentence of this logic is a composition of two types of
sentences. The first one, called the modulator sentence, models a modification operation, while the
second one, called the target sentence, models a target property. Informally, our result asserts that if
some appropriate version of the modulator sentence meets the meta-algorithmic assumptions of
Courcelle’s theorem [27] (i.e., CMSO-definability and assuming bounded treewidth) and the target
sentence meets the meta-algorithmic assumptions of the theorem of Flum and Grohe [42] (i.e.,
FO-definability and assuming minor-exclusion), then model-checking for the composed compound
sentence can be done, constructively, in quadratic time on graphs excluding some graph as a minor.
Our main result (Theorem 3) can be seen as a “two-dimensional product” of the two aforementioned
meta-algorithmic results, contains both of them as special cases, and automatically implies the
tractability of wide families of problems that neither are FO-definable nor have instances of bounded
treewidth.

1.2 Our Results
In this subsection we give formal statements of our results. We need first some definitions.

Preliminaries on Graphs. All graphs in this article are assumed to be finite and most of our graph
definitions are compatible with Diestel’s book [36]. Given a graph �, we denote by cc(�) the set
of all connected components of �. For a graph � and a set - ⊆ + (�), the stellation of - in � is
the graph stell(�,-) obtained from � if, for every � ∈ cc(� \ -), we contract all the edges of �
to a single vertex E� .The torso of - in � is the graph torso(�,-) obtained from stell(�,-) if, for
every E� where � ∈ cc(� \ -), we add all edges between neighbors of E� and finally remove all
E� ’s from the resulting graph. See Figure 1 for an example of a pair (�,-), the graph stell(�,-),
and the graph torso(�,-).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:4 F. V. Fomin et al.

Fig. 1. Left: A graph � , a set - , and the vertex sets �1,�2, and �3 of the connected components of � \ - .
Middle: The graph stell(�,-). Right: The graph torso(�,-) .

Given a family of graphs H , we define excl(H) as the class of all graphs minor-excluding the
graphs inH and note that excl(H) is a minor-closed class (see Section 2 for the definition of minor
relation, minor closeness, and minor-exclusion). The Hadwiger number of a graph �, denoted by
hw(�), is the minimum : such that� does not contain : , i.e., the complete graph on : vertices, as
a minor. We also use the well-known parameter of treewidth of a graph�, denoted by tw(�), that is
defined in Section 2. Given a class of graphs G where the treewidth of every graph in G is bounded
by some fixed value, we define tw(G) = max{tw(�) | � ∈ G}. We define hw(G) analogously. We
use Gall for the class of all finite graphs.

Preliminaries on Logic. We use CMSO (resp. FO) for the set of sentences in CMSO (resp. FO)—see
Section 2.3 for the definitions. Given some vocabulary g and a sentence i ∈ CMSO[g], we denote
by Mod(i) the class of all finite models of i, i.e., all finite structures that are models of i. In this
introduction, in order to simplify our presentation, all structures that we consider are either graphs
or annotated graphs, i.e., pairs (�,-) where � is a graph and - ⊆ + (�). In the first case g = {E},
and in the second g = {E, X}.

We define the set CMSOtw [{E, X}] as the set that contains every sentence V ∈ CMSO[{E, X}]
for which there exists some 2V such that the torsos of all the models of V have treewidth at most
2V . Formally,

CMSOtw [{E, X}] = {V ∈ CMSO[{E, X}] | there exists some 2V such that
for every graph � and every - ⊆ + (�)
if (�,-) |= V then tw(torso(�,-)) ≤ 2V }.

For simplicity, we use CMSOtw and FO as shortcuts for CMSOtw [{E, X}] and FO[{E}], respectively.

Algorithmic Meta-Theorems. We are now in position to restate three major meta-algorithmic
results that were mentioned in the previous subsection.

Proposition 1 (Courcelle [27]). For every V ∈ CMSOtw, there is an algorithm deciding member-
ship in Mod(V) in linear time.

Proposition 2 (Flum and Grohe [42]). For every f ∈ FO, there is an algorithm deciding member-
ship in Mod(f) in quadratic time on graphs of bounded Hadwiger number.

Some comments are in order. The statements of Proposition 1 and Proposition 2 have been
adapted so to incorporate the combinatorial demands in the logical condition. While they can both
be stated for structures, we state Proposition 1 for annotated graphs and Proposition 2 for graphs in
order to facilitate our presentation. In the classic formulation of Courcelle’s theorem, we are given
a sentence V ∈ CMSO and a tree decomposition of bounded treewidth. As such a decomposition
can be found in linear time, using e.g., [8, 9, 78], the linearity in the running time of Courcelle’s

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:5

theorem is preserved when it is stated in the form of Proposition 1. For the theorem of Flum and
Grohe, the situation is different as the combinatorial demand is minor-exclusion of a clique, which
is not definable is FO. As we already mentioned, Proposition 1 and Proposition 2 cannot deal, in
general, with modification problems to properties of unbounded treewidth.

We stress that Proposition 1 and Proposition 2 are non-constructive. In order to construct the
algorithms promised by Proposition 1, one should also know the bound 2V on the treewidth of
the models of V ∈ CMSOtw. Similarly, for Proposition 2, one should have an upper bound on the
Hadwiger number of the input graphs.

A Logic for Modification Problems. As a key ingredient of our result, we define the following
operation between sentences. Let V ∈ CMSO[{E, X}] and f ∈ CMSO[{E}] . We refer to V as the
modulator sentence on annotated graphs and to f as the target sentence on graphs. We define V ⊲ f
so that for every non-empty graph � ,

� |= V ⊲ f if there is - ⊆ + (�) such that (stell(�,-), -) |= V and � \ - |= f. (1)

In other words, � |= V ⊲ f means that the stellation of - in �, along with -, is a model of the
modulator sentence V and the � \ - is a model of the target sentence f.That way, V implies the
modification operation and f expresses the target graph property. It is easy to see and we prove
formally in Corollary 6 that V ⊲ f ∈ CMSO[{E}] . Given two sets of formulas L1,L2, we set

L1 ⊲ L2 = {V ⊲ f | V ∈ L1 and f ∈ L2}
Our main result is the following.

Theorem 3. For every i ∈ CMSOtw ⊲ FO, there is an algorithm deciding membership in Mod(i)
in quadratic time on graphs of bounded Hadwiger number.

Note that Theorem 3 expresses the conditions of Proposition 1 and Proposition 2. Indeed, Propo-
sition 1 follows1 if V expresses that - = + (�) and f demands that � \ - is the empty graph
and Proposition 2 follows if V demands that - = ∅. In other words, Proposition 1 follows if the
target sentence becomes void while Proposition 2 follows if the modulator sentence is void. In
this sense, Theorem 3 provides an alternative meta-algorithmic set up between the logical and the
combinatorial condition (see Figure 2).

At this point, we would like to stress that our results become also relevant in the context of
parameterized algorithm design for graph modification problems. For example, our results imply
the existence of fixed-parameter tractable algorithms for deciding the G-treewidth of a graph, a
notion of modulator measure recently introduced by Eiben, Ganian, Hamm, and Kwon [39] (see also
[3, 68]). Having G-treewidth at most : is equivalent to asking that the torso(�,-) has treewidth
at most : and the target property is containment in G. In our case, the class G can be defined as
the models of some given FO-sentence. We refer the reader to [2–4, 19, 21, 22, 39, 47, 68, 84] for
an illustrative and non-exhaustive list of recent results, where alternative quality measures of the
“modulator” to some graph class were considered, other than just its size.

Compound Logics: Generalizations of CMSOtw ⊲ FO. Sentences in CMSOtw ⊲ FO provide an
illustrative example of expressing modification problems. One can consider multiple levels of
generalizations of this approach: First of all, one can remove minor-exclusion as a combinatorial
condition for Theorem 3 and add it as a conjunct in the target formula (minor-exclusion is MSO-
definable). Another way to obtain more general target sentences is to ask that the target FO-sentence
is satisfied in each connected component of the graph after the removal of the modulator - . These
1In particular, Theorem 3 gives a quadratic-time algorithm that contains Proposition 1 as a linear-time black-box procedure
for deciding models of bounded treewidth.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:6 F. V. Fomin et al.

Fig. 2. Theorem 3 in the current meta-algorithmic landscape. The vertical axis is the combinatorial one and
is marked by four different types of (structural) sparsity, while the horizontal one is the logical one and is
marked with FO, CMSOtw ⊲ FO, and CMSO.

two approaches can be combined in order to obtain richer, in terms of expressivity, target sentences,
and, going even further, one can consider taking positive boolean combinations of the above target
sentences. Let us denote by Θ0 this general target logic that involves all the above ingredients,
namely FO, minor-exclusion, connectivity, and positive boolean combinations. Aiming to model
more modification problems, one can furthermore consider applying the operator ⊲ recursively, i.e.,
defining the logic Θ =

⋃
8∈N, where Θ8+1 is defined as CMSOtw ⊲ L8 , where L8 is obtained from

closing Θ8 under positive boolean combinations and/or connected components. We stress that in
all the above considered logics one can include minor-exclusion either as a combinatorial condition
for model-checking or as a target demand expressed in the (intermediate or final) target sentence(s).
This versatile framework is presented in [43, 44], where the analog of Theorem 3 is proven for all
the above compound logics (see [44] for an extended abstract of all these results and see [43] for
a more detailed and in-depth presentation and formal proofs). In fact, the results of [43, 44] go
even further, by considering generalizations of Θ by replacing FO by the (Scattered) Disjoint-paths
logic FO+(S)DP. In [43, 44], it is shown that the variant Θ(s)dp of Θ obtained by replacing FO by
FO+(S)DP also admits a quadratic-time model-checking algorithm on graphs of bounded Hadwiger
number (resp. graphs embeddable in some fixed surface).

In this article, we present the simplest and more comprehensive form of the results of the
framework introduced in [43, 44], namely the definition ofCMSOtw ⊲FO and the proof of the model-
checking algorithm of Theorem 3. The reason we opt for this is two-fold. First, we wish to illustrate
in a more concise and visible way the principal ideas behind the definition of the “modulator vs
target” duality of our formulas, already present in the (very special) case of CMSOtw ⊲ FO. Once
familiar with the definition of CMSOtw ⊲FO, one can then attempt to consider all the enhancements
ofCMSOtw⊲FOmentioned above, up toΘ orΘ(s)dp, to express more intricate modification problems.
Also, the algorithm of Theorem 3 can be considered as a functional prototype of the results in [43,
44]. All crucial elements of the proofs in [43, 44] already appear in the proof of Theorem 3 and here
are presented in a more streamlined way, avoiding additional technical overload coming from the
general framework of [43, 44]. Furthermore, for the proof of Theorem 3, many ideas from [43, 44]
are redesigned, improved, and simplified, providing clearer definitions and arguments.

Techniques. The algorithm and the proofs of Theorem 3 use as departure point core techniques
from the proofs of Propositions 1 and 2, such as Courcelle’s theorem for dealing with CMSO-
sentences, the use of Gaifman’s theorem for dealing with FO-sentences, and an extended version

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:7

of the irrelevant vertex technique, introduced by Robertson and Seymour in [98], along with
some suitable version of the Flat Wall theorem which appeared recently in [72, 104] (see also
[6, 101–103]). The algorithm produces equivalent and gradually “strictly simpler” instances of an
annotated version of the problem. Each equivalent instance is produced in linear time and this
simplification is repeated until the graph has bounded treewidth (here we may apply Courcelle’s
theorem, that is Proposition 1). This yields a (constructive) quadratic-time algorithm. We stress
that our approach avoids techniques that have been recently used for this type of problems such as
recursive understanding (in [3]) or the use of important separators (in [68]) that give worst running
times in =.

Organization of the Article. In Section 2 we provide some basic definitions that will be used
throughout the article. In Section 3 we provide an overview of our proof. To describe the algorithm
forTheorem 3, we first introduce an annotated version of the problem; this is done in Section 4.Then,
in Section 5, we give some preliminary concepts and results and, in Section 6, we present the general
scheme of the algorithm for Theorem 3. Section 7 is devoted to the gradual presentation of the main
subroutine of the algorithm of Theorem 3 and its correctness. In Appendix A, we present some
additional logical background and in particular the framework of logical transductions. We conclude
the article with Section 8 by mentioning the limitations of our approach, possible extensions, and
open research directions. In Appendix B we present the flat wall framework that we use in this
article, which was introduced in [104].

2 Basic Definitions
Next sections are devoted to the formal statement and proof of our results. We present here some
basic definitions.

2.1 Integers, Sets, and Tuples
We denote by N the set of non-negative integers. Given two integers ? and @, the set [?, @] refers
to the set of every integer A such that ? ≤ A ≤ @. For an integer ? ≥ 1, we set [?] = [1, ?] and
N≥? = N \ [0, ? − 1] . Given a non-negative integer G, we denote by odd(G) the minimum odd
number that is not smaller than G . For a set (, we denote by 2(the collection of all subsets of (and,
given an integer A ∈ [|(|], we denote by

(
(
A

)
the collection of all subsets of (of size A . Given two sets

�, � and a function 5 : � → �, for a subset- ⊆ �we use 5 (-) to denote the set {5 (G) | G ∈ - }. Let
S be a collection of objects where the operations ∪ and ∩ are defined. We denote

⋃S =
⋃
- ∈S - .

2.2 Graphs
Basic Concepts on Graphs. All graphs considered in this article are undirected, finite, and without

loops or multiple edges. We use standard graph-theoretic notation and we refer the reader to
[36] for any undefined terminology. Let � be a graph. We say that a pair (!, ') ∈ 2+ (�) × 2+ (�)

is a separation of � if ! ∪ ' = + (�) and there is no edge in � between a vertex in ! \ ' and a
vertex in ' \ !. Given a vertex E ∈ + (�), we denote by #� (E) the set of vertices of � that are
adjacent to E in �. Also, given a set (⊆ + (�), we set #� (() =

⋃
E∈(#� (E). For (⊆ + (�), we set

� [(] = ((, � ∩
(
(
2

)
) and use the shortcut � \ (to denote � [+ (�) \ (] . Given a graph � and a set

- ⊆ + (�), we denote by m� (-) the set of vertices in - that are adjacent to vertices of � \ - .
Given a graph � and a set (⊆ + (�), we define cc(�, () to be the collection of the vertex sets of

the connected components of � \ (.

Treewidth. A tree decomposition of a graph � is a pair (), j) where) is a tree and j : + ()) →
2+ (�) such that

⋃
C ∈+ ()) j (C) = + (�), for every edge 4 of � there is a C ∈ + ()) such that j (C)

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:8 F. V. Fomin et al.

contains both endpoints of 4, and for every E ∈ + (�), the subgraph of) induced by {C ∈ + ()) |
E ∈ j (C)} is connected. The width of (), j) is equal tomax

{
|j (C) | −1

�� C ∈ + ())
}
and the treewidth

of � is the minimum width over all tree decompositions of �.

Contractions and Minors. The contraction of an edge 4 = {D, E} of a simple graph � results in a
simple graph � ′ obtained from � \ {D, E} by adding a new vertex DE adjacent to all the vertices in
the set #� (D) ∪ #� (E) \ {D, E}. A graph � ′ is a minor of a graph �, denoted by � ′ �m �, if � ′ can
be obtained from� by a sequence of vertex removals, edge removals, and edge contractions. Given
a finite collection of graphs F and a graph �, we use the notation F �m � to denote that some
graph in F is a minor of �. Given a family of graphs F , we denote by excl(F) the graph class
containing every graph that excludes all graphs in F as minors. A graph class G is minor-closed if
every minor of a graph in G is also a member of G.

2.3 FO and MSO
In this subsection, we present some basic notions on logical structures, we define FO and CMSO
on structures, and present Gaifman’s locality theorem. We refer the reader to [30] for a broader
discussion on logical structures and MSO, from the viewpoint of graphs (see also [83]).

Structures. A vocabulary is a finite set of relation and constant symbols (we do not use function
symbols). Every relation symbol R is associated with a positive integer that is called the arity of R,
which we denote ar(R). A structureA of vocabulary g , in short a g-structure, consists of a non-empty
set + (A), called the universe of A, an A -ary relation RA ⊆ + (A)A for each relation symbol R ∈ g
of arity A ≥ 1, and an element2 cA ∈ {∅} ∪+ (A) for each constant symbol c ∈ g . We refer to RA

(resp. cA) as the interpretation of the symbol R (resp. c) in the structure A. A structure A is finite if its
universe + (A) is a finite set. We denote by STR[g] the family of all finite g-structures.

Let A andB be g-structures (both containing ∅ to their universe). We say that A is a substructure
ofB, and we writeA ⊆ B, if+ (A) ⊆ + (B), for every constant symbol c ∈ g, cA = cB if cB ∈ + (A)
and cA = ∅ otherwise, and for every relation symbol R ∈ g of arity A ≥ 1we have RA ⊆ RB∩+ (A)A .
We also say that A is an induced substructure of B, if A ⊆ B and for every relation symbol R ∈ g of
arity A ≥ 1we have RA = RB∩+ (A)A . Given a set (⊆ + (A), we useA [(] to denote the g-structure
with universe (, where RA [(] = RA ∩ (A for each relation symbol R ∈ g of arity A ≥ 1 and for each
constant symbol c ∈ f, cA [(] = cA, if cA ∈ (, while cA = ∅, if otherwise.

Let g be a vocabulary without constant symbols. Given two g-structures A and B, we define
the disjoint union of A and B, and we denote it by A ¤∪B, as the g-structure where + (A ¤∪B) is
the disjoint union of + (A) \ {∅}, + (B) \ {∅} and {∅} and for every relation symbol R ∈ g,

RA ¤∪B = RA ∪ RB .

An undirected graph without loops can be seen as an {E}-structureG = (+ (G), EG), where EG
is a binary relation that is symmetric and anti-reflexive. A vocabulary of annotated graphs is a
vocabulary that contains the binary relation E that is interpreted as a symmetric and anti-reflexive
relation and a collection R1, . . . ,Rℎ of ℎ unary relations, for some ℎ ∈ N.

First-Order and Monadic Second-Order Logic. We now define the syntax and the semantics of
FO and MSO of a vocabulary g .We assume the existence of a countably infinite set of first-order
variables, usually denoted by lowercase symbols x1, x2, . . . , and of a countably infinite set of set

2We stress that we allow constant symbols to be interpreted as the element ∅, where ∅ is an element that is not in+ (A) .
Throughout this article, we assume that the universe of every given structure is extended by adding the extra element ∅,
while all relation symbols are interpreted as tuples of elements of+ (A) , not containing ∅. Moreover, we assume that for
every formula that we consider, quantified first order variables are interpreted as elements of the original universe of the
structure (and not ∅).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:9

variables, usually denoted by uppercase symbols X1, X2, A first-order term is either a first-order
variable or a constant symbol. A FO formula of vocabulary g is built from atomic formulas x = y
and (x1, . . . , xA) ∈ R, where R ∈ g and has arity A ≥ 1, on first-order terms x, y, x1, . . . , xA , by using
the logical connectives ∨, ∧, ¬ and the quantifiers ∀, ∃ on first-order variables. We denote by FO[g]
the set of all FO-formulas of vocabulary g .

A MSO formula of vocabulary g is obtained by enhancing the syntax of FO-formulas by allowing
the atomic formulas x ∈ X, for some first-order term x and some set variable X, and allowing
quantification both on first-order and set variables. We denote by MSO[g] the set of all MSO-
formulas of vocabulary g .Wemake clear that what we call hereMSO is what is commonly referred in
the literature as MSO1, in which, for the vocabulary of graphs, first-order variables are interpreted
as vertices and set variables are interpreted as sets of vertices. Our approach uses Courcelle’s
theorem for bounded treewidth structures (Proposition 1) as a black-box, which applies for a more
general logic than MSO1, that is MSO2. For the vocabulary of graphs, MSO2 extends MSO1 by
also allowing quantification over edges and edge sets (see [30, Subsection 9.2] for formal definition
of MSO2 for general relational vocabularies). Using this fact, our results hold also in the case we
define MSO to be MSO2.

A CMSO formula of vocabulary g is obtained by enhancing the syntax of MSO-formulas by
allowing predicates of the form Card? (X), expressing that |X| is a multiple of an integer ? > 1. We
denote by CMSO[g] the set of all CMSO-formulas of vocabulary g .

The formulas in FO[g] and CMSO[g] are evaluated on g-structures by interpreting every symbol
in g as its interpretation in the structure and every first-order (resp. set) variable as an element
(resp. set of elements) of the universe of the structure. Given a formula i, the free variables of i
are its variables that are not in the scope of any quantifier. We write i (x1, . . . , x: , X1, . . . , Xℓ) to
indicate that the free variables of the formula i are x1, . . . , x: (first-order variables) and X1, . . . , Xℓ
(set variables). A sentence is a formula without free variables.

Given a g-structure A, a formula i (x1, . . . , x: , X1, . . . , Xℓ) ∈ CMSO[g], 01, . . . , 0: ∈ + (A), and
�1, . . . , �ℓ ⊆ + (A), we write A |= i (01, . . . , 0: , �1, . . . , �ℓ) to denote that i (x1, . . . , x: , X1, . . . , Xℓ)
holds in A if, for every 8 ∈ [:], the variable x8 is interpreted as 08 and, for every 9 ∈ [ℓ], the variable
X9 is interpreted as � 9 . Two formulas i (x1, . . . , x: , X1, . . . , Xℓ), k (x1, . . . , x: , X1, . . . , Xℓ) ∈ CMSO[g]
are equivalent if for every g-structure A, every 01, . . . , 0: ∈ + (A), and every�1, . . . , �ℓ ⊆ + (A), we
have A |= i (01, . . . , 0: , �1, . . . , �ℓ) ⇔ A |= k (01, . . . , 0: , �1, . . . , �ℓ).We call the set {A ∈ STR[g] |
A |= i} the family of models of i and we denote it by Mod(i).

For simplicity, we use CMSOtw and FO as shortcuts for CMSOtw [{E, X}] and FO[{E}],
respectively.

Gaifman’s Locality Theorem. We now aim to present one of the key tools of our proofs, Gaifman’s
locality theorem. For this, we first give some definitions. The Gaifman graph �A of a g-structure A
is the graph with vertex set + (A) and an edge between two distinct vertices 0,1 ∈ + (A) if there is
an R ∈ g of arity A ∈ N≥1 and a tuple (01, . . . , 0A) ∈ RA such that 0,1 ∈ {01, . . . , 0A }. Notice that in
the particular case of graphs (seen as structures), the original graph and its Gaifman graph are the
same.

The distance 3A (0,1) in A between two elements 0,1 ∈ + (A) is the length of a shortest path
in �A connecting 0 and 1. Given an A ≥ 1 and an 0 ∈ + (A), we define the A -neighborhood of 0
in A to be the set # (≤A)

A
(0) = {1 ∈ + (A) | 3A (0,1) ≤ A }. We use 3 (0,1) instead of 3A (0,1) and

(≤A) (0) instead of # (≤A)
A

(0) when A is clear from the context. A first-order formula k (x) with
one free variable x is called A -local if its validity at an element 0 in the universe of a structure A
only depends on the A -neighborhood of 0 in A, that is A |= k (0) ⇔ A [# (≤A)

A
(0)] |= k (0).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:10 F. V. Fomin et al.

Observe that, for every A ∈ N, there is a first-order formula XA (x, y) such that for every g-structure
A and 0,1 ∈ + (A) we have A |= XA (0,1) if and only if 3A (0,1) ≤ A (see [109, Lemma 2.4.2] for a
proof). In what follows, we write 3 (x, y) ≤ A instead of XA (x, y) and 3 (x, y) > A instead of ¬XA (x, y).
Let ℓ, A ∈ N≥1 . A basic local sentence with parameters ℓ and A is a first-order sentence of the form

∃x1 . . . ∃xℓ
(∧
1≤8< 9≤ℓ

3 (x8 , x9) > 2A ∧
ℓ∧
8=1

k (x8)
)
,

wherek is A -local. A Gaifman sentence is a Boolean combination of basic local sentences.

Proposition 4 (Gaifman’s locality theorem [52]). Every first-order sentence f is equivalent to
a Gaifman sentence f̆ . Moreover, f̆ can be computed effectively from f .

Here, “computed effectively” means that there is a computable function that maps f to f̆ . For
every sentence f ∈ FO[g], we use f̆ to denote a Gaifman sentence that is equivalent to f.

2.4 Our Compound Logic
Translating Sentences. One can observe that stell is an MSO-transduction (see Appendix A).

Using the Backwards Translation Theorem [30, Theorem 1.40] (see also [12, Lemma B.1]) one can
obtain the following result (more formally, the next result follows by combining Lemma 19 and
Proposition 17, which are presented in Appendix A).

Observation 5. For every CMSO-sentencek on annotated graphs, there is a CMSO-formulak |stellX
on annotated graphs, such that for every annotated graph (�,-), it holds that (�,-) |= k |stellX ⇔
(stellX (�,-), -) |= k .

We also setk |rmX to be the sentence obtained fromk after replacing, for each first-order variable,
every occurrence of “∃/∀ x” with “∃/∀ x ∉ XA” and, for each set variable ., every occurrence of
“∃/∀ Y” with “∃/∀ Y(Y ∩ XA = ∅).”

Compound Sentences. We define the operation ⊲ as follows. Given V ∈ CMSO[g ∪ {X}] and
f ∈ CMSO[g], we define

V ⊲ f := ∃X (V |stellX ∧ f |rmX). (2)

As a byproduct of Observation 5, we get the following.

Corollary 6. If V ∈ CMSO[g ∪ {X}] and f ∈ CMSO[g], then V ⊲ f ∈ CMSO[g] .
On a semantical level, given a formula V (X) ∈ CMSO and a sentence f ∈ CMSO, � satisfies

V ⊲ f if and only if there is a set - ⊆ + (�) such that (stell(�,-), -) |= V and� \- |= f. For every
sentence V ⊲f , we call V themodulator sentence of V ⊲f and f the target sentence of V ⊲f . We stress
that, since V ∈ CMSOtw [{E, X}], the fact that (stell(�,-), -) |= V implies that there is a constant
2V ∈ N≥1, such that the graph torso(�,-) has treewidth at most 2V . We call 2V the treewidth of
V ⊲ f . We assume that 2V is upper bounded by a function of V .

3 Overview of the Proof
In this section we summarize some of the main ideas involved in the proof of Theorem 3, while
keeping the description at an intuitive level. We would like to stress that some of the informal
definitions given in this section are deliberately imprecise, since providing the precise ones would
result in a huge overload of technicalities that would hinder the flow of the proof.

In Section 3.1 we present the general scheme of the algorithm (see Section 6, in particular Figure 4,
for a more detailed presentation). In Section 3.2 we present the sketch of proof of correctness of
the algorithm presented in Section 3.1 (see Section 7).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:11

3.1 General Scheme of the Algorithm
We use the irrelevant vertex technique introduced by Robertson and Seymour [98]. Our overall
strategy is the “typical” one when using this technique: if the treewidth of the input graph � is
bounded by an appropriately chosen function, depending only on the sentence V ⊲ f, then we use
Courcelle’s theorem [27–29] and solve the problem in linear time, using the fact that our compound
formula V ⊲ f is a fragment of CMSO (see Section 2.4). Otherwise, we identify an irrelevant vertex
in linear time, that is, a vertex whose removal produces an equivalent instance. Naturally, the
latter case concentrates all our efforts and, in what follows, we sketch the main ingredients that
we use in order to identify such an irrelevant vertex. In a nutshell, our approach is based on
introducing a robust combinatorial framework for finding irrelevant vertices. In fact, what we find
is annotation-irrelevant flat territories, building on our previous recent work [6, 45, 101–104], which
is formulated with enough generality so as to allow for the application of powerful tools such as
Gaifman’s locality theorem (see Proposition 4) or a variant of Courcelle’s theorem on boundaried
graphs (see Proposition 11).

Flat Walls. An essential tool of our approach is the notion of flat wall, originating in the work
of Robertson and Seymour [98]. Informally speaking, a flat wall, is a structure made up of
(non-necessarily planar) pieces, called flaps, that are glued together in a bidimensional grid-like way
defining the so-called bricks of the wall (see Figure B3). While such a structure may not be planar,
it enjoys some topological properties that are similar (in spirit) to those of planar graphs. Namely,
two paths that are not routed entirely inside a flap cannot “cross,” except at a constant-sized vertex
set � whose vertices are called apices. Hence, flat walls are only “locally non-planar,” and after
removing apices we can apply useful locality arguments, in the sense that two vertices that are
in “distant” flaps should also be “distant” in the whole graph without the apices. One of the most
celebrated results in the theory of Graph Minors by Robertson and Seymour [98, 99], known as the
Flat Wall theorem (see Proposition 26 for a variant recently proved in [72, 104]), informally states
that graphs of large treewidth contain either a large clique minor or a large flat wall. In this article
we use the framework recently introduced in [104] that provides a more accurate view of some
previously defined notions concerning flat walls, particularly in [72]. We provide these precise
definitions in Subsection B.4, including the concepts of flatness pair, regularity, tilt, and influence,
and we stress that they are not critical in order to understand the main technical contributions of
the current article (however, they are critical for their formal correctness). In what follows, when
considering a flat wall, with an apex set � in a graph �, for simplicity we refer to, by using
indistinguishably the terms “wall” and “compass of a wall,” which can be roughly described as the
component containing, in the graph obtained from � by removing � and the “boundary” of,
(see Section B.4 for the formal definition).

Working with an Annotated Version of the Problem. We start by defining a convenient equivalent
version of the problem (see Section 4), by replacing our sentence \ ∈ CMSOtw ⊲ FO with an
equivalent enhanced sentence \R,c.This is done in two steps, presented in Sections 4.1 and 4.2.

Assuming the existence of a flat wall and an apex set in our input graph �, we first transform
(see Section 4.1) the question \ on� to a question on a structure obtained from� by “neutralizing”
the apex set (Observation 7). The goal of this step is to ask the target FO-sentence f of our sentence
\ in a “flattened” structure, where apices can no longer “bring close” any distant parts of the wall.
This transformation of the problem, which we call apex-projection, will allow for the application of
the locality-based strategy discussed in the definition of the in-signature of a wall in Section 3.2. To
do this, we introduce some additional constant symbols c to our vocabulary that will be interpreted
as the apex vertices.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:12 F. V. Fomin et al.

Fig. 3. Sequence of walls considered in the general scheme of our algorithm, along with the results used to
obtain them, where the first wall is obtained by applying Proposition 26 to the input graph �.

The second step (Section 4.2) consists in defining an equivalent annotated version of the problem
in order to deal with the target FO-sentence f , inspired by the approach of [45]. To do so, we
introduce a vertex set ' ⊆ + (�), and require that the vertices interpreting the variables of (the
equivalent Gaifman sentence of) f belong to the annotated set '.We prove that the initial sentence
\ and the obtained sentence, denoted by \R,c and called an enhanced sentence, are equivalent for
any choice of the apex set interpreting c and when R is interpreted as the whole vertex set of the
graph (see Lemma 9 and Lemma 10). This independence of the choice of the apex set is strongly
used in the proofs since, as discussed below, we will consider a number of different flat walls, each
of which is associated with a different apex set.

Our algorithms will work with the enhanced sentence \R,c. Starting with the input graph� with
+ (�) as the annotated set ', we will create successive equivalent annotated instances, in which
vertices from � are removed and such that the annotated set ' is only reduced.

Zooming Inside a Flat Wall. Our next step is to find, in�, a large flat wall,0 to work with. Since
we work on graphs of bounded Hadwiger number, i.e., graphs that exclude 2 as a minor for some
fixed constant 2 ∈ N, we can apply Proposition 26 to the input graph � and, assuming that the
treewidth of� is large enough as a function of 2 and \ , we can find in linear time a flat wall,0 and
an apex set � in � such that the height of,0 is a sufficiently large function of 2 and \ . Moreover,
another crucial property guaranteed by Proposition 26 is that the treewidth of,0 is bounded from
above by a function of 2 and \ .This will be exploited in Section 3.2 in order to compute the so-called
\ -characteristic of a wall. We will now apply a series of “zooming” arguments to the wall,0, which
are illustrated in Figure 3 (see the proof of Lemma 15 for the precise constants).

As our next step, we apply Lemma 14 to,0, and obtain in linear time a still large subwall,1

such that its associated apex set �1 is “tightly tied” to,1, in the sense that the neighbors in,1 of
every vertex in �1 are spread in a “bidimensional” way. This combinatorial technical condition is
critically used in the proof of Lemma 16.

Finding an Irrelevant Subwall. So far, we have found a large wall,1 that satisfies the conditions
listed in the statement of Lemma 16. Now, in order to identify an irrelevant vertex inside,1, we
proceed as follows (see the algorithm Find_Equiv_FlatPairs discussed informally in Section 6.3
and presented with all details in Section 7.4). The strategy of the proof is to find, inside the wall
,1, a collection W of pairwise disjoint subwalls, and to associate each of these subwalls with
an appropriately defined \ -characteristic that captures its behavior with respect to the partial
satisfaction of the sentence \ . Then the idea is that, if there are sufficiently many subwalls in
W with the same \ -characteristic (called \ -equivalent), then some subwall in the interior of one
of them can be declared annotation-irrelevant and this implies some progress in simplifying the
current problem instance.

The above strategy is formalized in Lemma 15, which allows to identify a subwall,★ inside
W such that its central part can be removed from the annotated set ', and such that a central

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:13

vertex of,★ can be removed from � (the blue subwall and the red vertex in the rightmost wall of
Figure 3, respectively). The proof of Lemma 15 boils down to proving Lemma 16, which is the main
technical part of this article, and whose full proof is postponed to Section 7. The proof is based on
the algorithm Find_Equiv_FlatPairs mentioned above, which is in turn based on an appropriate
definition of the \ -characteristic of a wall. A brief explanation of the proof strategy of Lemma 16 is
given in Section 6.3 and in what follows we sketch the main ingredients and key ideas.

3.2 Defining the Characteristic of a Wall
In order to provide some intuition of the proof of Lemma 16, let us fix some notation. A sentence
\ ∈ CMSOtw ⊲ FO in a semantical level is defined as follows: Given a general graph � as input,
we seek for a vertex set - ⊆ + (�), called modulator, such that, using the notation defined in
the introduction, stell(�,-) satisfies the so-called modulator sentence V , which is a sentence in
CMSOtw, and the graph � \ -, satisfies the so-called target sentence f , which is an FO-sentence.

Given the decomposition of \ into two questions (modulator and target), our “irrelevancy”
arguments also decompose into two parts. For this, we need to define the characteristic of a wall
with respect to \, denoted by \ -char (see Equation (3)). This characteristic is composed of two parts:
the out-signature (see Section 7.2) corresponding to the satisfiability of the sentence V, and the
in-signature (see Section 7.3) corresponding to the FO-sentence f. Let us now explain how we
define the out-signature and the in-signature, and sketch why we can eventually declare a subwall
irrelevant.

Splitting the Modulator into Two Parts. When - is a modulator, the fact that torso(�,-) has
bounded treewidth implies that every connected component of � \ - has a “small interface” to -
and thus the flat wall,0 (and any large subwall of it) is not significantly “damaged” by the removal
of - (see Lemma 13). Intuitively (see Section 5.2 for the definition), this means that - intersects a
small number of so-called “bags” of the wall. Informally, the bags of a wall, in a graph � with
apex set � define a partition of � \� into connected sets, such that each bag, except the external
one, contains the part of the wall, between two neighboring degree-3 vertices of the wall, as
illustrated in Figure B4 (see Section B.6 for the definition). This is a property of every modulator -
(as long as torso(�,-) has bounded treewidth) and it will be used to argue that every modulator -
leaves an “intact buffer” in each large enough wall, as explained in the following paragraph.

Defining the Out-Signature of a Wall. Dealing with the irrelevancy with respect to the modulator
formula V turns out to be the most interesting part of the proof of Lemma 16, and we introduce
several ideas which are, in our opinion, some of the main conceptual contributions of this article.
The goal is, for each wall, in the collection W, to encode all the necessary information that
concerns the satisfiability of V in the modulator - . To do this, for each, ∈ W with apex set �,
we define a family of ℓ-boundaried graphs (i.e., graphs in which ℓ “boundary” vertices are equipped
with labels), constructed as we describe below, and where ℓ depends only on \ . The boundary
corresponds to (the boundary of) the part of modulator that is inside the wall. Also, we need to
“guess” how to complement this boundary by the part of the modulator that is not inside the
wall. Note that, since V is a CMSO-sentence, by a variant of Courcelle’s theorem for boundaried
graphs [27–29] (see Proposition 11), there exists a finite collection rep(ℓ) (V |stell) of sentences on
ℓ-boundaried graphs that are “representatives” of the sentence V |stell and that can be effectively
constructed. We next describe how these ℓ-boundaried graphs are constructed.

We observe that, by Lemma 13 (which uses the bounded-treewidth property of the modulator
sentence V), there exists a “buffer” � in,, consisting of a set of consecutive layers of the wall,
which is disjoint from a hypothetical modulator - . We guess with an integer 3 where this “buffer”
� is placed in the wall and we denote its inner part by � (3) . This naturally induces a partition of

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:14 F. V. Fomin et al.

- into -in and -out, with -in being the part of - that is inside � (3) (see Figure 10). We also guess
which subset of the apex set� will belong to the modulator - and we denote it by+! (a), where ! is
the set containing the indices of the corresponding apex vertices. Since parts of the modulator may
lie outside the considered wall, we need to guess the part of the modulator (namely, its boundary
towards the component) that lies outside the wall. More precisely, we need to guess as well which
subset � ′ of -out, other than +! (a), will belong to the neighborhood of the component containing
the intact buffer. This is achieved by guessing all ways an (abstract) graph � ′ with a bounded
number of vertices can extend the boundary (see Figure 5). We let � be the graph obtained from the
union of +! (a) and � ′ . Finally, we also need to consider a set / that corresponds to -in together
with the part inside � (3) that has been “chopped off” by the modulator -, that is, the part of,
inside � (3) that will not belong to the component containing the buffer after the removal of the
modulator - .We denote by m(/) the set of vertices in / that have a neighbor in � (3) . Altogether,
these guesses result in the ℓ-boundaried graph (3,/,!,�) obtained from the graph induced by � (3)
and the set � after contracting � (3) \ / to a vertex. The boundary is the set m(/) ∪ � ; see Figure 6
for an illustration of (3,/,!,�) .

With each such a guess (3, !, /, -) we associate the out-signature defined as follows and denoted
by out-sig (see Section 7.2). Its elements are pairs (H, \̄), where H encodes how the set +! (a) in
the boundary has been extended by the “abstract” graph � ′, and \̄ ∈ rep(ℓ) (V |stell) prescribes the
equivalence class, within the set of Courcelle’s representatives mentioned above, of the considered
ℓ-boundaried graph. This concludes the description of the out-signature.

While this out-signature indeed encodes the behavior of the considered wall with respect to the
modulator sentence V, a crucial issue has been overlooked so far: in order to be able to identify an
irrelevant subwall inside the collection W within the claimed running time, we need to be able to
compute the (in- and out-) signature of a wall in linear time. To do this using Courcelle’s theorem,
we need to consider a graph that has treewidth bounded by a function of hw(�) and \ and has
small boundary. By the condition guaranteed by Proposition 26 discussed in the paragraph above
Figure 3, we have that the treewidth of, is bounded by a function of hw(�) and \, hence the
treewidth of the ℓ-boundaried “subwall” (3,/,!,�) , for which we want to compute the out-signature,
is also bounded by a function of hw(�) and \ . However, the graph (3,/,!,�) \+ (�) “lives” inside a
whole component� of the graph� \- , and we cannot guarantee that the treewidth of� is bounded
by a function of hw(�) and \ . We overcome this problem with the following trick, which is an
important tool in the proof of Claim 1. We observe that the satisfaction of V |stell is preserved if,
instead of the whole privileged component �, we consider the graph (3,/,!,�) , which is obtained
by “shrinking” � to a single vertex D� and which has bounded treewidth as we need (compare the
left part of Figure 11 with Figure 12). Indeed, after this modification and by adding edges from the
“guessed extended boundary” � ′ to D� in order to preserve connectivity (see Figure 6), the resulting
graph stell(�,-) remains unchanged with this transformation, and therefore the satisfaction of
the modulator sentence V is also preserved.

Defining the In-Signature of a Wall. To deal with the irrelevancy with respect to the FO-sentence
f, we use arguments strongly inspired by those of [45]. The core tool here is Gaifman’s locality
theorem (see Proposition 4), which states that every FO-sentence f is a Boolean combination of
basic local sentences f1, . . . , f? , in the sense that the satisfaction of each f8 depends only on the
satisfaction of a set of sentencesk1, . . . ,kℓ8 evaluated on single vertices that can be assumed to be
pairwise far apart (see Section 4.2). As discussed before, taking care of the domain of these vertices
is the main reason why we consider an annotated version of the problem, corresponding to the
enhanced sentence \R,c. Extending the approach of [45] (which does not deal with apices), the
in-signature of a wall, denoted by in-sig, encodes all (partial) sets of variables, one set for each basic

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:15

local sentence of the so-called Gaifman sentence f̆, such that these variables lie inside an “inner
part” of the wall, they are scattered in the “apex-projection” of this inner part, and they satisfy the
local sentencesk8 ; see Section 7.3 for the formal definition.

Declaring a Subwall Irrelevant. We now sketch the remaining of the proof of Lemma 16 for
sentences in CMSOtw ⊲ FO, presented in Section 7.5. As mentioned above, suppose that we have
already found, inside the collection W, a large (as a function of \) subcollection W′ ⊆ W of walls
all having the same \ -characteristic. We pick one of these walls, say,★ ∈ W′, and we declare its
central part irrelevant (see Figure 3). We need to prove that the input graph � satisfies \, if and
only if the graph � ′ obtained from� by removing the central part of,★, also satisfies \ .That is,
given a modulator - in the original instance�, we need to construct another set - ′ ⊆ + (�) that is
disjoint from,★ and that is a modulator in � ′ . For this, we proceed as follows.

The cardinality of W′ and the fact that - intersects few bags of the wall,3 (see Lemma 13)
imply that there exists a large (again, as a function of \) subcollection W′′ ⊆ W′ of walls that
are disjoint from - . We take such a wall ,̂ ∈ W′′ and, using the fact that,★ and ,̂ have the
same \ -characteristic, we show that we can “replace” the part of the modulator - that intersects
,★ with another part in ,̂ (see Figure 15), together with an alternative assignment of variables
that satisfies the corresponding sentences. This results in another set - ′ that is a modulator in � ′,
hence yielding the annotation irrelevancy of (the central part of),★.

Showing these facts is far from being easy and we need a number of technical details that
are structured into two parts, corresponding to Claim 1 and Claim 2. Each of these claims deals,
respectively, with the irrelevancy with respect to V and f. In particular, an important idea in the
proof of Claim 1 is that, changing from - to - ′, we obtain a new boundaried graph, which is in fact
the same graph but with a new boundary (see Figure 15). In the proof of Claim 2, the replacement
arguments for the in-signature work because of the aforementioned distance-preservation property
of the apex-projection.

4 An Annotated Version of the Problem
In this section we aim to define an enhanced version of every \ ∈ CMSOtw ⊲FO. This is done in two
steps. In Section 4.1, we focus on “neutralizing” a tuple a of vertices of a graph � and transforming
a question on � to a question on the structure obtained after “neutralizing” a (Observation 7). We
will apply this tool under the existence of an apex set and a flat wall in the Gaifman graph of our
structure, in order to “neutralize” the apex set by adding additional colors in the vertices of our
graph and ask the final FO-question of our sentence in a “flattened” colored graph, where apices can
no longer “bring close” any distant parts of the wall. This transformation of the problem will allow
the application of the “locality-based” strategy that uses Gaifman’s locality theorem. In Section 4.2
we define an enhanced version of the problem, by replacing, in a given \ ∈ CMSOtw ⊲ FO, the
target sentence f of \ with the sentence obtained from f after (i) “projecting” it with respect to a
set c of constant symbols (using the definitions in Section 4.1), (ii) taking a Gaifman equivalent
sentence of the obtained sentence, and (iii) requiring that the “scattered” variables of the basic local
sentences of the Gaifman sentence belong to an annotated set '. We prove that the initial sentence
\ and the obtained sentence, denoted by \R,c, are “equivalent” for any choice of a interpreting c
and when R is interpreted as the whole universe of the given structure (Lemma 9). Our algorithms
will work with the sentence \R,c .

4.1 Dealing with Apices
In this subsection we introduce all necessary tools to handle the (possible) apices in the Gaifman
graph of the input graph. As we mentioned in the overview (see Section 3), apices are an obstacle

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:16 F. V. Fomin et al.

to the locality arguments needed for the part of the proof that concerns FO. To be able to work
in a “flat” graph, without the presence of the apices that possibly connect “distant” parts of the
graph, we introduce an apex-projection of our graph and the corresponding apex-projection of a
given FO-sentence. This trick appears in [42] and gives an equivalent sentence (see Observation 7).

Apex-Tuples of Structures. Let g be a vocabulary, let A be a g-structure, and let ; ∈ N. Tuples
of the form a = (01, . . . , 0;) where each 08 ∈ + (A) ∪ {∅}, we also call them apex-tuples of A
of size ; . We use + (a) for the set containing the non-∅ elements in a. Also, if (⊆ + (A), we
define a ∩ (= (0′1, . . . , 0′;) so that if 08 ∈ (, then 0′8 = 08 , and otherwise 0′8 = ∅. We also define
a \ (= a ∩ (+ (A) \ ().

Constant-Projections of Vocabularies. Let g be a vocabulary of annotated graphs, let ; ∈ N, and let
c be a collection of ; constant symbols. We define the constant-projection g 〈c〉 of (g ∪ c) to be the
vocabulary obtained from (g ∪ c) by adding ; new unary relation symbols C1, . . . ,C; .

Projecting a Structure with Respect to an Apex-Tuple. Let ℎ, ; ∈ N. Let g = {E,R1, . . . ,Rℎ} be a
vocabulary of annotated graphs and let c = {c1, . . . , c; } be a collection of ; constant symbols. Let
also g 〈c〉 be the constant-projection of (g∪c) . Given a (g∪c)-structure (A, a),where a = (01, . . . , 0;)
is an apex-tuple of A of size ; and, for every 8 ∈ [;], cA

8
= 08 , we define the structure apc (A, a) to be

the g 〈c〉-structure obtained as follows:

—+ (apc (A, a)) = + (A),
—Eapc (A,a) = EA ∩ (+ (A) \+ (a))2,
— for every 8 ∈ [ℎ], Rapc (A,a)

8
= RA

8
,

— for every 8 ∈ [;], capc (A,a)
8

= cA
8
= 08 , and

— for every 8 ∈ [;], Capc (A,a)
8

= {x ∈ + (apc (A, a)) | {08 , G} ∈ EA}.

Notice that if 08 = ∅, C8 is interpreted in apc (A, a) as the empty set. It is crucial to see that the
Gaifman graph of apc (A, a) is a subgraph of�A . In fact,�apc (A,a) is obtained from�A after removing
every edge that is incident to a vertex in+ (a). This removal permits us to deal with “flat structures”
that are amenable to the application of Gaifman’s Theorem.

Apex-Projected Sentences. Let g be a vocabulary of annotated graphs, let ; ∈ N, and let c =

{c1, . . . , c; } be a collection of ; constant symbols. For every sentence f ∈ FO[g], we define its
;-apex-projected sentence f; to be the sentence obtained from f by replacing every term E(x, y) by

E(x, y) ∨
∨
8∈[;]

((
x = c8 ∧ y ∈ C8

)
∨
(
y = c8 ∧ x ∈ C8

))
.

The definition of the ;-apex-projected sentence f; implies the following (see [42, Lemma 26]).

Observation 7. Let g be a vocabulary of annotated graphs, let ; ∈ N, and let c be a collection of ;
constant symbols. For every f ∈ FO[g], every g-structure A, and every apex-tuple a of A of size ;, it
holds that A |= f ⇔ apc (A, a) |= f; (where c is interpreted as a).

Backwards Translating an Apex-Projected Sentence. The above transformation can be expressed
in terms of FO-transductions (see Observation 20 in Appendix A). Therefore, given a vocabulary
g, an ; ∈ N, a collection c of ; constant symbols, and a sentence f ∈ FO[g], we can find a
sentence f ′ ∈ FO[g ∪ c] such that for every g-structure A and every apex-tuple a of A of size ;,
(A, a) |= f ′ ⇔ apc (A, a) |= f; . Again, following the Backwards Translation Theorem (Proposition
17), we get the following:

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:17

Table 1. List of Notations Used on Formulas, with Their Respective Meaning and the Results Indicating
Their Relation to an Initial Formula f

Formulas Relation with f Supporting results
f̆ Equivalent Gaifman sentence of a sentence f ∈ FO[g] Proposition 4
f; Formula obtained after “projecting” w.r.t. a tuple c of size ; Observation 7
f |apc (A, a) |= f |apc ⇔ apc (A, a) |= f Corollary 8

Corollary 8. Let g be a vocabulary of annotated graphs, let ; ∈ N, let c be a collection of ; constant
symbols, and let g 〈c〉 be the constant-projection of g ∪ c. For every sentence i ∈ FO[g 〈c〉], there
exists a sentence i |apc ∈ FO[g ∪ c] such that for every g 〈c〉-structure B, if B = apc (A, a) for some
(g ∪ c)-structure (A, a), it holds that (A, a) |= i |apc ⇔ apc (A, a) |= i.

Concluding this subsection, we present Table 1 that summarizes the notations introduced above
for the different kinds of formulas that we consider.

4.2 Introducing an Annotation
In this subsection we present a way to “slightly modify” our sentences in order to construct an
enhanced version of every sentence in CMSOtw ⊲ FO. Let \ ∈ CMSOtw ⊲ FO and let f be its target
FO-sentence. Based on the results of Section 4.1, we first consider the ;-apex-projected sentence
f; of f . We then take an equivalent Gaifman sentence of f; . Finally, we add an additional unary
relation symbol R to our vocabulary and we ask that the interpretations of the “scattered” variables
of each Gaifman sentence belong to the interpretation of R in our structure. This idea is borrowed
from [45] but here, on the top of it, we also incorporate the “apex-projection” in order to be able to
apply locality arguments inside a “flat” graph.

Restricting the Domain of Variables. Let ; ∈ N, let c be a collection of ; constant symbols, and let
R be a unary relation symbol. We now describe how to define an enhanced version \R,c of a sentence
\ ∈ CMSOtw ⊲ FO. The sentence \R,c will be evaluated on ({E,R} ∪ c)-structures.

Let f ∈ FO[{E}] be the target sentence of \ . We consider the ;-apex-projected sentence f; ∈
FO[{E}〈c〉] and we denote it by Z . By Proposition 4, there is a Gaifman sentence Z̆ ∈ FO[{E}〈c〉] that
is equivalent to Z . Since Z̆ is a Gaifman sentence, there exist ? ∈ N≥1, A1, . . . , A? , ℓ1, . . . , ℓ? ∈ N≥1, and
a collection of sentences Z1, . . . , Z? ∈ FO[{E}〈c〉] such that Z̆ is a Boolean combination of Z1, . . . , Z?
and, for every ℎ ∈ [?], every Zℎ is a basic local sentence with parameters ℓℎ and Aℎ, i.e.,

Zℎ = ∃x1 . . . ∃xℓℎ
©«

∧
1≤8< 9≤ℓℎ

3 (x8 , x9) > 2Aℎ ∧
∧
8∈[ℓℎ]

kℎ (x8)
ª®¬ ,

wherekℎ is an Aℎ-local formula in FO[{E}〈c〉] with one free variable. Given a Gaifman sentence
Z̆ ∈ FO[{E}〈c〉] as above that is a Boolean combination of sentences Z1, . . . , Z? ∈ FO[{E}〈c〉], we
define the sentence Z̆R to be the sentence in FO[{E}〈c〉 ∪ {R}] that is the same Boolean combination
of sentences Z̃1, . . . , Z̃? ∈ FO[{E}〈c〉 ∪ {R}] such that, for every ℎ ∈ [?],

Z̃ℎ = ∃x1 . . . ∃xℓℎ
©«
∧
8∈[ℓℎ]

x8 ∈ R ∧
∧

1≤8< 9≤ℓℎ
3 (x8 , x9) > 2Aℎ ∧

∧
8∈[ℓℎ]

kℎ (x8)
ª®¬ .

We define an enhanced version \R,c of \ to be a sentence obtained from \ after replacing f by Z̆R |apc ,
where Z = f; , i.e., \R,c = V⊲Z̆R |apc . Note that since Z̆R ∈ FO[{E}〈c〉∪{R}] and {E}〈c〉∪{R} = {E,R}〈c〉 ,

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:18 F. V. Fomin et al.

Table 2. List of Formulas to Define an Enhanced Version of a Sentence \ ∈ CMSOtw ⊲ FO

Formulas Meaning

V the modulator CMSOtw-sentence of \
f the target FO-sentence of \
Z the ;-apex-projected sentence f; of f
Z̆ a Gaifman sentence equivalent to Z
kℎ A -local formulas of the basic local sentences of Z̆
Z̆R the Gaifman sentence Z̆ after adding R (whose model is of the form apc (�, ', a))

Z̆R |apc the “backwards translation” of Z̆R to structures without “projecting” c
\R,c V ⊲ Z̆R |apc

it holds that Z̆R |apc ∈ FO[{E,R} ∪ c], which in turn implies that \R,c ∈ CMSO[{E,R} ∪ c] . We also
stress that, because of Gaifman’s theorem (Proposition 4), for every sentence Z , there may exist many
different Gaifman sentences that are equivalent to Z . Due to this fact, a sentence \ ∈ CMSOtw ⊲ FO
can have many enhanced versions. However, all the enhanced versions of \ are equivalent. On
the other hand, the proof of Gaifman’s theorem implies that there is one effectively computable
Gaifman sentence that is equivalent to the given sentence Z .

We now prove the equivalence between \ and an enhanced version \R,c of \ .

Lemma 9. Let R be a unary relation symbol, and c be a collection of ; constant symbols, where
; ∈ N≥1. Also, let \ ∈ CMSOtw ⊲ FO and let \R,c be an enhanced version of \ . For every graph � and
every apex-tuple a of � of size ; , it holds that � |= \ ⇔ (�,+ (�), a) |= \R,c, where R is interpreted as
+ (�) and c is interpreted as a.

Proof. Let f be the target sentence of \ and let Z = f; . By Observation 7, for every graph
� and every apex-tuple a of � of size ; , it holds that � |= f ⇔ apc (�, a) |= Z , where c is
interpreted as a. Also, observe that since R is a unary relation symbol and by the definition of
the function apc, the structures (apc (�, a),+ (�)) and apc (�,+ (�), a) are the same. This implies
that apc (�, a) |= Z ⇔ apc (�,+ (�), a) |= Z̆R, where R is interpreted as + (�).Thus, by Corollary 8,
� |= f ⇔ (�,+ (�), a) |= Z̆R |apc . �

Observe that, for every FO-sentence f , by Observation 7, for every graph � and every two
apex-tuples a1, a2 of � of size ; , it holds that apc (�, a1) |= f; ⇔ apc (�, a2) |= f; .Therefore, using
Corollary 8, it is easy to prove the following:

Lemma 10. Let R be a unary relation symbol and let c be a collection of ; constant symbols, where
; ∈ N≥1 . Also, let \ ∈ CMSOtw ⊲ FO and let \R,c be an enhanced version of \ . For every graph �,
for every ' ⊆ + (�), and every two apex-tuples a1, a2 of � of size ; , it holds that (�, ', a1) |= \R,c ⇔
(�, ', a2) |= \R,c.

In Table 2, we present all formulas needed to define \R,c.

5 Preliminary Tools
In this section we present a series of preliminary results required for our algorithm and its proof of
correctness.

Our first tool, presented in Section 5.1, deals with boundaried structures (a generalization
of boundaried graphs). Given a sentence i ∈ CMSO[g], we define an equivalence relation on

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:19

boundaried structures with respect to the (partial) satisfaction of i. A variant of Courcelle’s
theorem (Proposition 11) indicates that there is a finite set of sentences that are evaluated on
boundaried structures and are “representatives” of the equivalence classes defined by the above
equivalence relation. These “representatives” will help us to “finitize” the way a sentence is partially
satisfied (or not) in a boundaried part of our structure.

In Section 5.2 we define a concept that measures the “dispersion” of - inside the “bidimensional
territories” of a flatness pair. By flatness pair, here, we mean a flat wall, together with a tuple ℜ
that certifies its flatness, as defined in [104]; see Section B.4 for a formal definition. We present two
results on these notions, namely Lemma 13 and Lemma 14. These two results will be crucial for our
algorithm and its correctness.

5.1 A Variant of Courcelle’s Theorem
In this subsection we aim to present a variant of Courcelle’s theorem (Proposition 11). We start
with some definitions on boundaried structures.

Boundaried Structures. Given a vocabulary g of annotated graphs and a non-negative integer ℓ, an
ℓ-boundaried g-structure is a tuple (A, G1, . . . , Gℓ), also denoted by (A, x), where A is a g-structure
and G8 ∈ + (A), 8 ∈ [ℓ] . A boundaried g-structure is an ℓ-boundaried g-structure, for some ℓ ∈ N.
We denote by Bg the class of all boundaried g-structures and, given an ℓ ∈ N, we denote by B (ℓ)

g

the class of all ℓ-boundaried g-structures. We treat CMSO-sentences evaluated on ℓ-boundaried
g-structures, as sentences in CMSO[g ∪ {b1, . . . , bℓ }], where b1, . . . , bℓ are constant symbols not
contained in g .

Let ℓ ∈ N. We say that two ℓ-boundaried g-structures (A, x), (B, y) ∈ B (ℓ)
g are compatible if

the function that maps G8 to ~8 , for every 8 ∈ [ℓ] is an isomorphism from A [+ (x)] to B[+ (y)] .
Given two compatible ℓ-boundaried g-structures (A, x) and (B, y), we define (A, x) ⊕ (B, y) as the
g-structure obtained if we take the disjoint union of A and B and then, for every 8 ∈ [ℓ], identify
the elements G8 and ~8 , i.e., remove ~1, . . . , ~ℓ from the universe of the structure and replace for
every 8 ∈ [ℓ] each occurence of ~8 with G8 in the tuples in the interpretation of each relational
symbol.

Let g be a vocabulary and let i ∈ CMSO[g] . We say that two ℓ-boundaried g-structures
(A, x), (B, y) ∈ B (ℓ)

g are (i, ℓ)-equivalent, and we denote it by (A, x) ≡i,ℓ (B, y), if they are
compatible and for every (ℭ, z) ∈ B (ℓ)

g that is also compatible with (A, x) (and (B, y)) it holds that
(ℭ, z) ⊕ (A, x) |= i ⇔ (ℭ, z) ⊕ (B, y) |= i.

Note that ≡i,ℓ is an equivalence relation on B (ℓ)
g .

The following result is a variant of Courcelle’s theorem [27–29]. It essentially says that the
dynamic programming tables constructed by the proof of Courcelle’s theorem are also definable
in CMSO. This fact is implicit in the proof of Courcelle’s theorem. For instance, it can easily be
derived from the proof of [10, Lemma 3.2].

Proposition 11 (Courcelle). There is a function 5 : N3 → N such that for every vocabulary g,
every i ∈ CMSO[g], and every ℓ ∈ N, it holds that |B (ℓ)

g /≡i,ℓ
| ≤ 5 (|i |, ℓ, |g |).

An alternative way to see Proposition 11 is to say that, for every vocabulary g, every i ∈
CMSO[g], and every ℓ ∈ N, there is a collection rep(ℓ)

g (i) = {i1, . . . , i<} of sentences on ℓ-
boundaried g-structures (i.e., sentences in CMSO[g ∪ {b1, . . . , bℓ }]) where< ≤ 5 (|i |, ℓ, |g |) and
such that

— for every (A, x) ∈ B (ℓ)
g there exists exactly one 8 ∈ [<] such that (A, x) |= i8 and

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:20 F. V. Fomin et al.

— for every compatible (A, x), (B, y) ∈ B (ℓ)
g and every 8 ∈ [<], if (A, x) |= i8 and (B, y) |= i8 ,

then (A, x) ≡i,ℓ (B, y).

The elements of rep(ℓ)
g (i) are called types and can be seen as an CMSO-definable encoding of

the tables of the dynamic programming generated by Courcelle’s theorem. This representation of
i, in what concerns boundary structures, provides an abstract representation that does not depend
on the “internal part” of a boundary graph and will be used as a key ingredient of the encodings in
Section 7.

5.2 Dispersion of Sets in Flatness Pairs
Brambles. Let � be a graph. Two sets +1,+2 ⊆ + (�) are said to touch if they have a vertex in

common or there is an edge {E1, E2} ∈ � (�) with E1 ∈ +1 and E2 ∈ +2 . A set B of pairwise touching
vertex sets of + (�) that induce connected subgraphs of � is called a bramble of �.The order of a
bramble B is the minimum size of a hitting set of B, i.e., a vertex set that intersects every element
of B .

The following relation between treewidth and a maximum order bramble is proved in [108] (see
also [7, Theorem 5]).

Proposition 12. Let : be a non-negative integer, let � be a graph. The treewidth of � is at most :
if and only if every bramble of � has order at most : + 1.

We will prove the following key result. We refer to Section B.4 for the definition of flatness pairs
and to Section B.6 for the definition of canonical partitions.

Lemma 13. Let C ∈ N, let � be a graph and let (,,ℜ) be a flatness pair of � . For every set
- ⊆ + (�), if torso(�,-) has treewidth at most C, then - intersects at most (C + 1)2 internal bags of
any (,,ℜ)-canonical partition of � .

Proof. Let - ⊆ + (�) such that torso(�,-) has treewidth at most C . Also, let Q̃ be a (,,ℜ)-
canonical partition of �. We will show that - intersects at most (C + 1)2 internal bags of Q̃ . Let
ℎ be the height of (,,ℜ). For every 8 ∈ [ℎ], let %8 be the union of the vertex sets of all internal
bags of Q̃ that intersect the 8-th horizontal path of,, i.e., %8 :=

⋃
9∈[2,ℎ−1] + (& (8, 9)). Also, let !8 be

the union of the vertex sets of all internal bags of Q̃ that intersect the 8th vertical path of,, i.e.,
!8 :=

⋃
9∈[2,ℎ−1] + (& (9,8)).We also define) (8, 9) := %8 ∪ ! 9 , 8, 9 ∈ [ℎ] .We let) (8, 9)

-
:=) (8, 9) ∩ - .We

now consider the collection

D = {torso(�,-) [) (8, 9)
-

] | 8, 9 ∈ [ℎ] and) (8, 9)
-

≠ ∅}.
We will prove that D is a bramble of torso(�,-). For this, we have to prove that D consists of

pairwise touching connected subgraphs of torso(�,-).Weuse the fact that the graph compassℜ (,)
is connected (see Section B.4 for the formal definition of compassℜ (,)). Notice that if E,D ∈ - and
there is a path % in compassℜ (,) connecting E and D such that no internal vertex of % is in -, then
{E,D} ∈ � (torso(�,-)) .This implies that every � ∈ D is connected and every two �1, �2 ∈ D are
touching, thus D is a bramble.

By Proposition 12, we have that tw(torso(�,-)) ≤ C implies that D has order at most C + 1.This,
in turn, implies that - intersects at most (C + 1)2 internal bags of Q̃ . �

The next result intuitively states that given a flat wall and some apices, we can find another flat
wall inside the first one such that the set of apices that are adjacent to the compass of the new flat
wall are adjacent to “many enough” internal bags of every canonical partition of the graph defined
by the latter flat wall. We refer the reader to Section B.4 for the definition of the tilt of a wall inside
a flatness pair.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:21

Lemma 14. There is a function 51 : N3 → N and an algorithm that receives as an input two integers
;, 3 ∈ N, an odd integer A ≥ 3, a graph �, a set � ⊆ + (�) of size at most ;, and a flatness pair (,,ℜ)
of � \� of height 51 (A, ;, 3), and outputs, in time OA,;,3 (=), a set �′ ⊆ � and a flatness pair (,̃ , ℜ̃) of
� \�′ of height at least A that is a, ′-tilt of some subwall, ′ of, and for every 0 ∈ �′ is adjacent
to at least 3 internal bags of every (,̆ , ℜ̆)-canonical partition of � \�′ .

Proof. Let ;, 3 ∈ N and let an odd integer A ≥ 3.We define the function 51 : N3 → N so that, for
every G, I ∈ N, 51 (G, 0, I) := G,while, for~ ≥ 1,we set 51 (G,~, I) := odd(d

√
I + 1e)·(51 (G,~−1, I)+2).

Let � be a graph, let � ⊆ + (�) of size at most ;, and let (,,ℜ) be a flatness pair of � \ � of
height 51 (A, ;, 3).We will prove the lemma by induction on ; . In the case that ; = 0, , has height
51 (A, 0, 3) = A and � = ∅, so the lemma holds trivially for (,,ℜ). Suppose now that ; ≥ 1 and that
the lemma holds for smaller values of ; . We set @ := 51 (A, ; − 1, 3). Let Q̃ be a (,,ℜ)-canonical
partition of � \ �. If every vertex in � is adjacent in � to at least 3 internal bags of &̃, then the
algorithm outputs� and (,,ℜ). Otherwise, there is a vertex 0 ∈ � that is adjacent, in�, to less than
3 internal bags of Q̃ . In this case, we consider a collection W = {,1, . . . ,,3+1} of 3 + 1 subwalls of
, of height @ such that, for every 8, 9 ∈ [3 + 1], 8 ≠ 9, if (,̃8 , ℜ̃8) and (,̃9 , ℜ̃9) are some,8 -tilt and
,9 -tilt of (,,ℜ) respectively, then + (⋃influence

ℜ̃8
(,̃8)) and + (⋃influence

ℜ̃9
(,̃9)) are disjoint.

The existence of this collection is guaranteed by the fact that 51 (A, ;, 3) ≥ d
√
3 + 1e · (@ + 2) and it

can be found in time OA,;,3 (=). Now notice that since 0 is adjacent, in�, to less than 3 internal bags
of Q̃, then there is a wall,8 , 8 ∈ [3 + 1] inW such that 0 is adjacent, in�, to no internal bag of any
(,̃8 , ℜ̃8)-canonical partition of� \�. From the induction hypothesis, we have that we can compute,
in time OA,;,3 (=), a, ′′-tilt (,̆ , ℜ̆) of (,,ℜ), for some, ′′ that is a subwall of,8 (and therefore of
,), that has height at least A and set �′ ⊆ � \ {0} of � of size ; ′ < ; such that every vertex in �′ is
adjacent, in �, to at least 3 internal bags of every (,̆ , ℜ̆)-canonical partition of � \�′ . �

6 The Algorithm
In this section we aim to present the general scheme of our algorithm for Theorem 3. In Section 6.1,
we present the main subroutine of our algorithm that reduces the annotated set ' and removes a
vertex from the graph under the presence of a flatness pair of “big enough” height in our structure,
which is a certificate that the treewidth of the structure is “big enough” (Lemma 15). The proof of
Lemma 15 is an almost direct corollary of Lemma 16, whose proof is the main technical part of this
article and is postponed to Section 7. A brief explanation of the proof idea is given in Section 6.3.
Assuming the claimed algorithm of Lemma 15, in Section 6.2 we show how to use this subroutine
to design an algorithm for Theorem 3 and we provide the proof of the latter.

6.1 Reducing the Instance
As we mention in the overview of the proof presented in Section 3, we use the irrelevant vertex
technique to reduce the problem to instances of bounded treewidth. This idea is materialized in the
next lemma that provides an algorithm that, given an instance (�, ', a), where a is an apex-tuple of
�, and a regular flatness pair (,,ℜ) of � \+ (a) of “big enough” height, such that compassℜ (,)
has bounded treewidth, outputs an instance (� ′, '′, a) such that + (� ′) (+ (�), '′ (', and
(�, ', a) |= \R,c ⇔ (� ′, '′, a) |= \R,c.

Lemma 15. Let R be a unary relation symbol and let c be a collection of ; constant symbols, where
; ∈ N≥1.There is a function 52 : N2 → N and an algorithm that receives as an input

—an enhanced version \R,c of a sentence \ ∈ CMSOtw ⊲ FO,
—a C ∈ N,

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:22 F. V. Fomin et al.

—a graph �, a set ' ⊆ + (�), and an apex-tuple a of � of size ;, and
—a regular flatness pair (,,ℜ) of � \ + (a) of height 52 (|\ |, ;) such that compassℜ (,) has
treewidth at most C,

and outputs, in time O|\R,c |,;,C (=), a vertex set . ⊆ + (A) \ + (a) and a vertex E ∈ . such that
(A, ', a) |= \R,c ⇔ (A \ E, ' \ ., a) |= \R,c.

To prove Lemma 15, we aim to reduce the annotated set' and to characterize some non-annotated
vertex as “irrelevant” to the existence of a solution to the problem, which allows us to reduce our
problem to “simpler” equivalent instances. Since our problem has two basic elements3

1) the satisfaction of the modulator formula in the modulator sets and
2) the satisfaction of the target FO-sentence in the remaining “terminal part” of the structure,

our “irrelevancy” arguments also decompose into two parts.

Lemma 16. Let R be a unary relation symbol and c be a collection of ; constant symbols, where
; ∈ N≥1.There are two functions 53 : N3 → N and 54 : N → N and an algorithm that receives as an
input

(1) a sentence \ ∈ CMSOCF ⊲ FO and an enhanced version \R,c of \,
(2) a I ∈ N,
(3) a graph �, a set ' ⊆ + (�), and an apex-tuple a of � of size ; , and
(4) a regular flatness pair (,,ℜ) of � \+ (a) of height at least 53 (tw(\), 2, ;), where 2 is the size

of the target sentence of \, such that
—compassℜ (,) has treewidth at most I and
—every 0 ∈ + (a) is adjacent to at least 54 (tw(\)) internal bags of every (,,ℜ)-canonical
partition of � \+ (a),

and outputs, in time4 O|\ |,;,I (=), a set . ⊆ + (�) \ + (a) and a vertex E ∈ . such that (�, ', a) |=
\R,c ⇔ (� \ E, ' \ ., a) |= \R,c .

The proof of Lemma 16 is based on the algorithm Find_Equiv_FlatPairs, presented in Sec-
tion 7.4 (also informally sketched in Section 6.3).

We now provide the proof of Lemma 15, assuming the correctness of Lemma 16. See the down-
right green rectangle of Figure 4 for a summary of the main ideas and supporting results of the
proof of Lemma 15.

Proof of Lemma 15. Let 2 be the size of the target sentence of \ .We set

3 :=54 (tw(\)), A :=53 (tw(\), 2, ;), and 52 (|\ |, ;) :=51 (A, ;, 3).

We apply the algorithm of Lemma 14 for A, ;, 3, �, + (a), and (,,ℜ). In time O|\R,c | (=), we obtain
an apex-tuple a′ of � of size ; ′ ≤ ; and a flatness pair (,̃ , ℜ̃) of � \ + (a′) of height A with the
following properties: 1) (,̃ , ℜ̃) is a,★-tilt of a subwall,★ of, and 2) every 0 ∈ + (a′), is adjacent
to at least 3 internal bags of any (,̃ , ℜ̃)-canonical partition of� \+ (a′). Note that by Observation
23, (,̃ , ℜ̃) is also regular. The wall ,̃ corresponds to the selected wall inside the second wall of
Figure 3. By applying Lemma 16, we can find, in time O|\R,c |,I (=), a set . ⊆ + (�) \ + (a′) and a
vertex E ∈ . such that (�, ', a) |= \R,c ⇔ (� \ E, ' \ ., a) |= \R,c. �

3Throughout the reminder of the article, we use consistently this color coding using blue/green to easily identify these two
parts of our problem.
4Given two functions j,k : N → N, we write j (=) = OG (k (=)) to denote that there exists a computable function
5 : N → N such that j (=) = O(5 (G) ·k (=)) .

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:23

Fig. 4. The flow of the algorithm in the proof of Theorem3 along with the supporting results.

6.2 The Algorithm of Theorem 3
We are now ready to present the proof of Theorem 3 (assuming the correctness of Lemma 16 and
therefore of Lemma 15 as well).

Proof of Theorem 3. Given a sentence \ ∈ CMSOtw ⊲ FO, we set 2 = hw(�),
; := 56 (2) where 56 is the function of Proposition 26, and
A := 52 (|\ |, ;, 3).

Our algorithm consists of four steps, which are summarized in Figure 4, along with the supporting
results:

Step 1. Consider an enhanced version \R,c of \ . Consider an arbitrary apex-tuple a0 of� of size ; .
By Lemma 9, we have that � |= \ ⇔ (�,+ (�), a0) |= \R,c, where R is interpreted as + (�) and c is
interpreted as a0.We set '0 := + (�) and we proceed to Step 2.

Step 2. Run the algorithm of Proposition 26 for�, A, and 2. Since 2 �m �, this algorithm outputs,
in linear time, either a tree decomposition of � of width at most 57 (2) · A, or a set � ⊆ + (�),
where |�| ≤ ;, a regular flatness pair (,,ℜ) of � \ � of height A, and a tree decomposition of
compassℜ (,) of width at most 57 (2) · A . In the first possible output, i.e., a tree decomposition of�
of width at most 57 (2) · A, proceed to Step 4. In the second possible output, proceed to Step 3.

Step 3. We first consider an ordering 01, . . . , 0; of the vertices in �, and set a = (01, . . . , 0;). By
Lemma 10, we have that (�, '0, a0) |= \R,c ⇔ (�, '0, a) |= \R,c. We run the algorithm of Lemma
15 for \R,c, �, '0, a, and (,,ℜ), and we obtain, in linear time, a set . ⊆ + (�) \+ (a) and a vertex
E ∈ - such that (�, '0, a) |= \R,c ⇔ (� \ E, '0 \ ., a) |= \R,c. Then, we set � := � \ E, a0 := a,
'0 := '0 \ ., and we run again Step 2.

Step 4. Given a tree decomposition of� ofwidth atmost 57 (2)·A, and since\R,c ∈CMSO[{E,R}∪c],
we decide whether (�, '0, a0) |= \R,c in linear time by using Courcelle’s theorem.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:24 F. V. Fomin et al.

Observe that the second and the third step of the algorithm are executed in linear time and they
can be repeated no more than a linear number of times. Therefore, the overall algorithm runs in
quadratic time, as claimed.

�

6.3 Sketch of Proof of Lemma 16
In the next section, we aim to provide a proof for Lemma 16. In this subsection we give a brief
description of the main ideas of this proof. Consider a sentence \ ∈ CMSOtw ⊲ FO, a formula
V ∈ CMSOtw, and a sentence f ∈ FO such that \ can be written as V ⊲f. Also, consider an enhanced
version \R,c of \ . This can be written as V ⊲ Z̆R |apc . To deal with the sentences V and Z̆R |apc , we define
the out-signature (Section 7.2) and the in-signature (Section 7.3) of a flatness pair, respectively, and
the combination of these two constitutes the characteristic of a flatness pair. This characteristic
is an “encoding” of the partial satisfaction of V and Z̆R |apc inside the flatness pair, and it is worth
noting that it is CMSO-definable. After defining this characteristic, we use the following algorithm,
that is formally presented in Section 7.4.

The Algorithm Find_Equiv_FlatPairs. The algorithm has the following four steps.

—Compute a collection of I subwalls,1, . . . ,,I of,, where I is some “big enough” integer
depending on the sentence \, such that the compasses of all,8-tilts of (,,ℜ) are pairwise
disjoint (this collection of walls virtually corresponds to the walls inside the third wall of
Figure 3).

—Compute a,8 -tilt of (,,ℜ) for each 8 ∈ [I] .These define a collection W̃ of I flatness pairs.
—For each of the flatness pairs in W̃, compute its characteristic.
—Output a collection W̃′ of at least< flatness pairs, a vertex subset . , and a vertex E with the
following properties:
(1) all flatness pairs in W̃′ have the same characteristic,
(2) the set . is the vertex set of compass

ℜ̆′ (,̆ ′), where (,̆ ′, ℜ̆′) is a ,̆ -tilt of (,,ℜ) and
,̆ is the central 9 ′-subwall of,0, for some (,0,ℜ0) ∈ W̃′ (,0 virtually corresponds to
the fourth wall in Figure 3), and

(3) E is a central vertex E of,0.
In the fourth wall of Figure 3, . corresponds to the light blue area and E belongs to the
innermost part of the wall.

After detecting . and E , it remains to prove that (�, ', a) |= \R,c ⇔ (� \ E, ' \ ., a) |= \R,c.The
proof of the above is presented in Subsection 7.5 and is split into two parts, corresponding to Claim
1 and Claim 2.

7 Proof of Lemma 16
This section is structured as follows. In Section 7.1, we define the extended compass of a flat-
ness pair, that is a tuple that contains all necessary information around a flatness pair. In Sec-
tions 7.2 and 7.3, we define the out-signature and the in-signature of the extended compass of
a flatness pair that encodes how a partial solution (partial assignment of vertices to the vari-
ables) satisfies the two parts of \ respectively. Finally, in Section 7.4, we present the algorithm
Find_Equiv_FlatPairs and, in Section 7.5, we prove that this algorithm correctly returns the
claimed output of Lemma 16.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:25

7.1 Extended Compasses of Flatness Pairs
Extended Compasses of Flatness Pairs. Let ;, A ∈ N and 9 ∈ N≥3. Let � be a graph, let a be

an apex-tuple of � of size ; , and let (,,ℜ) be a flatness pair of � \ + (a) of height 2A + 9 . For
every subwall, ′ of,, we denote by influenceℜ (, ′) the set of the flaps of the flat wall, that
either contain an edge of the perimeter of, ′ or are “embedded” inside the disk “cropped” by
the perimeter of, ′ . Intuitively, influenceℜ (, ′) contains all flaps “captured” by the wall, ′ .The
graph compassℜ (,) is always assumed to be connected. See Section B.4 for a formal definition of
the above notions. We set := compassℜ (,) and a := � [+ (a) ∪+ ()] . Also, for every 8 ∈ [A],
let � (8) = + (⋃influenceℜ (, (28+9))) and let I = (� (1) , . . . , � (A)).

Let � be a graph, let a = (01, . . . , 0;) be an apex-tuple of �, and let (,,ℜ) be a flatness pair of
� \+ (a) of height 2A + 9 .We call the tuple K = (� [+ (a)], a, I) the extended compass of the flatness
pair (,,ℜ) of � \+ (a). Given a / ⊆ + (), we define mK (/) to be the set m (/) (we remind here
that m (/) is the set of vertices in / that are adjacent to vertices of \ /). Also, if ! ⊆ [;], then
+! (a) contains all non-∅ elements in a indexed by !.

Intuitively, K = (� [+ (a)], a, I) contains all the “useful information” around the flatness pair
(,,ℜ). The structure � [+ (a)] induced by the union of the ℜ-compass of,, the apices + (a),
the homocentric zones of influence of the layers of, (away from its 9-central part).

7.2 Out-Signature
In this subsection we aim to “encode” all necessary information that concerns the satisfiability
of the sentence V in the “modulator” part of the input structure. To do this, given an extended
compass of a flatness pair, we define a certain boundaried structure and we will use the finite
set of representatives of V |stellX given by Proposition 11, to “associate” this boundaried structure
with a representative. Since parts of the modulator - may lie outside the extended compass of the
considered flatness pair, we may have to “extend” the boundary of our structure in order to encode
which disjoint parts of the modulator have neighbors in the same connected components of � \ - .
This is achieved by “guessing” all ways an (abstract) graph with a bounded number of vertices can
“extend” the boundary.

Before presenting some additional definitions, we first set up the sentences and the constants in
which we will build the out-signature. Let R be a unary relation symbol and let c be a collection of
; constant symbols, where ; ∈ N≥1 . Let \ ∈ CMSOtw ⊲ FO, let @ := (tw(\) + 1)2 + 1, and let \R,c be
an enhanced version of \ . Recall that \R,c = V ⊲ Z̆R |apc and Z̆R |apc ∈ FO[{E,R} ∪ c] .

For the rest of this subsection, keep in mind that @ = (tw(\) + 1)2 + 1. Let A ∈ N and an odd
9 ∈ N≥3. Also, we setF = (A + 2) · @.

To give an intuition for the above, let us explain what 9 andF represent: First, 9 is the size of the
wall whose compass we want to declare annotation-irrelevant in the proof of Lemma 16, i.e., the set
. will be the ℜ̆′-compass of a wall ,̆ ′ of height 9 . We will consider a wall, of height 2F + 9 that,
apart from its 9-central part (corresponding to .), contains @ “annulus buffers” of thickness (A + 2).
We stress that while, for now, A is a given constant, in Section 7.3, it will be a particular constant
depending on the parameters of the basic local sentences in the definition of Z̆R. As a modulator -
cannot affectmore than (tw(\) + 1)2 = @−1 of these@ “annulus buffers” (Lemma 13), one of themwill
not be affected by the solution. This “buffer” will allow us to focus on a single connected component
of the graph � \ - (the one that contains this buffer) and take the union of all parts of - that are
“cropped” by this buffer and all other components of � \ - containing some piece of the compass
to obtain a single set / . This trick will allow us to argue that the graph induced by / (with a small
number some extra vertices) has a small boundary (since the neighborhood of - to a component
of � \ - is bounded by tw(\), due to the fact that the torso of - should have bounded treewidth).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:26 F. V. Fomin et al.

Fig. 5. A set (of 6 vertices of a graph, a graph � ′ on 5 vertices and a set � of edges between vertices of (and
of + (� ′) . The graph (� ′ ∪ ((∪+ (� ′), �)) belongs to F (11 .

Fig. 6. Left: The position of / in � (3) , where / is depicted in blue and the set � (3−A) is depicted in green.
Right: The graph (3,/,!,�) .

Guessing an Extension of a Vertex Set. Let � be a graph. Given a set of vertices (⊆ + (�) and an
ℓ ∈ N, we define the collection of graphs F (

ℓ , such that � ∈ F (
ℓ if and only if there exists a graph � ′

on max{ℓ − |(|, 0} vertices and a set � of edges each with one endpoint in (and the other endpoint
in + (� ′), such that � = � ′ ∪ ((∪+ (� ′), �) (see Figure 5 for an example). We stress that, for every
� ∈ F (

ℓ , � [(] is an edgeless graph.
Notice that if ℓ ≤ |(| then F (

ℓ contains only the graph with vertex set (and no edges.

Towards Constructing a Boundaried Structure. Let @, 9, A,F, and ; as above. Let � be a graph, let a
be an apex-tuple of � of size ; , and let (,,ℜ) be a flatness pair of � \+ (a) of height 2F + 9 . Also,
let K = (� [+ (a)], a, I) be the extended compass of the flatness pair (,,ℜ) of � \+ (a) and let
ℓ ∈ [0, tw(\) − 1] . Given a 3 ∈ [A,F], an ! ⊆ [;], a vertex set / ⊆ � (3−A+1) , and a graph � ∈ F+! (a)

ℓ
,

we define the graph (3,/,!,�) as the one obtained from a [/ ∪+! (a)] ∪ � by adding an extra
vertex E and making it adjacent to all vertices in mK (/) ∪+ (�). See Figure 6 for a visualization of
 (3,/,!,�) . Intuitively, it contains the set / that is the part of � (3−A) that is cropped out after the
removal of the modulator - (except of the part that contains the buffer � (3) \ � (3−A)), the apices
that we guess that will belong to -, and the part � ′ of � that corresponds to -out, i.e., the portion
of the modulator - that will not be part of � (3) . The graph � in Figure 6 is the graph containing all
vertices +! (a) and the “extra” guessed part � ′ together with the extra edges from + (� ′) to +! (a).
Let us explain the motivation behind adding these extra edges: The reason we consider the graph
 (3,/,!,�) is to “focus” inside � (3) and temporarily “forget” what happens outside � (3) . However, we
need to keep record of the fact that � (3) \ / is in the same connected component as + (� ′).This is
why we add the extra vertex and we make it adjacent to mK (/) ∪+ (�).

Strongly Isomorphic Graphs. Let � be a graph. A nice 3-partition of � is an ordered partition
V = (+1,+2,+3) of+ (�) such that (+1∪+2,+2∪+3) is a separation of� (see Figure 7 for an example).

For every ℓ ∈ N, let

H (ℓ) = {(�,V) | � is a graph on ℓ vertices and V is a nice 3-partition of H }.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:27

Fig. 7. An example of a nice 3-partition (+1,+2,+3) of a graph.

Let � and � be two graphs and V = (+1,+2,+3) and U = (*1,*2,*3) be nice 3-partitions of � and
�, respectively. We say that� is strongly isomorphic to � with respect to (V,U), if� is isomorphic
to �, � [+1 ∪+2] is isomorphic to � [*1 ∪*2], � [+2 ∪+3] is isomorphic to � [*2 ∪*3], and these
two last isomorphisms are identical when restricted to +2.

Let us exlain why we introduce strongly isomorphic graphs. Having defined the graph (3,/,!,�) ,
we aim to define a boundaried structure that we will associate with a representative of V |stell .
The boundary of our boundaried structure will be the set mK (/) ∪+ (�). By definition, the graph
induced by this set has an obvious nice 3-partition (since there is no edge between � ′ and mK (/)).
The information we want to store is not just a boundary but the “inner-structure” of this boundary,
which is mirrored by the nice 3-partition. We demand this “stronger” notion of isomorphism to be
able to find another boundaried structure that corresponds to the same representative of V and still
its boundary is “nicely 3-partitioned” in the same way as the boundary of the initial boundaried
structure, since (as we will see later in the course of the proof) the set + (�) remains “invariant” no
matter of which flatness pair the extended compass we consider—thus, our isomorphism needs to
keep + (�) “intact.”

The Out-Signature of an Extended Compass. We now define the out-signature of an extended
compass. First, we encode all possible sets � ∈ F+! (a)

8−|mK (/) | , where 8 ∈ [0, tw(\) −1] .We also consider
some set (⊆ / such that mK (/) ⊆ ((this set corresponds to the part of - that is contained in /).
Then, we consider all representatives ī of V |stell (recall that V |stell is a formula on annotated graphs)
such that when extending mK (/) ∪+! (a) to mK (/) ∪+ (�), the boundaried structure obtained from
(� (3,/,!,�) , (∪+ (�)) after considering mK (/) ∪+ (�) as its boundary, satisfies ī .

We set g ′ := {E, X} and, for every ℓ ∈ [0, tw(\) − 1], following Proposition 11, we consider the
collection rep(ℓ)

g ′ (V |stellX) of sentences on ℓ-boundaried g ′-structures that are “representatives” of
the sentence V |stellX (that is a sentence in CMSO[g ′]). We set

SIGout := {(H, ī) | ∃ℓ ∈ [0, tw(\) − 1]such that H ∈ H (ℓ) and ī ∈ rep(ℓ)
g ′ (V |stellX)}.

Let K = (� [+ (a)], a, I) be the extended compass of a flatness pair (,,ℜ) of� \+ (a) of height
2F + 9, ' ⊆ + (a), 3 ∈ [A,F], ! ⊆ [;], / ⊆ � (3−A+1) , and (⊆ / such that mK (/) ⊆ (.

We define

out-sig(K, ', 3, !, /, () = {(H, ī) ∈ SIGout | ∃ � ∈ F+! (a)
|+ (�) |− |mK (/) | , such that if H = (�,U)

and V = (mK (/),+! (a),+ (�) \+! (a)), then
V is a nice 3-partition of a [mK (/) ∪+! (a)] ∪ �
and a [mK (/) ∪+! (a)] ∪ � is strongly isomorphic
to � with respect to (V,U), and

∃ an ordering b of mK (/) ∪+ (�) such that(
� (3,/,!,�) , (∪+ (�), b

)
|= ī}.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:28 F. V. Fomin et al.

Fig. 8. The set - and the connected components of � \ - .

Intuitively, the set (is the portion of the solution that will be part of � (3) . Also, for each
H ∈ H (ℓ) , where ℓ ∈ [0, tw(\) − 1] and H is a graph � together with a nice 3-partition, and each
ī ∈ rep(ℓ)

g ′ (V |stell), we are asked to guess two objects: a graph � ∈ F+! (a)
|+ (�) |− |mK (/) | and an ordering

b of mK (/) ∪+ (�). The guessed additional part � ′ of � represents the boundary of -out that is the
portion of the modulator that will be away from � (3) . The set mK (/) ∪+ (�) is the boundary of the
boundaried structure

(
� (3,/,!,�) , (∪+ (�), b

)
.This |mK (/) ∪+ (�) |-boundaried structure should be

a model of ī and its boundary (that is the union of � and a [mK (/) ∪+! (a)]) should be isomorphic
to �.The ordering b of the boundary is guessed. See Figures 8 and 9 for the situation of these sets
inside the 3-layer. Also, keep in mind that, since V |stell ∈ CMSO[{E, X}] and ī ∈ rep(ℓ)

g ′ (V |stell), we
have that ī ∈ CMSO[{E, X} ∪ {b1, . . . , bℓ }], where b1, . . . , bℓ are constant symbols. When asking
whether

(
� (3,/,!,�) , (∪+ (�), b

)
|= ī, we interpret b1, . . . , bℓ by b.

In the proof of Lemma 16, we will find two extended compasses (K, '), (K′, '′) with the same
out-sig for a particular choice of 3 and ! and some choices / and / ′, respectively. In the proof,
/ and / ′ will be exchanged. Here it is important to notice that the graph � is always the same
(for both (K, ') and (K′, '′)) and constitutes the fictitious “invariant” part of the graph, that is not
affected during this exchange. See Figure 8 for the great picture—what is � will not be exchanged,
while mK (/) will be substituted by the isomorphic mK′ (/ ′) (see also Figure 15).

7.3 In-Signature
Recall that Z̆R is a Gaifman sentence in FO[{E}〈c〉∪{R}].Thus, there are ?, ℓ1, . . . , ℓ? , A1, . . . , A? ∈ N≥1,

and sentences Z̃1, . . . , Z̃? ∈ FO[{E}〈c〉 ∪ {R}] such that Z̆R is a Boolean combination of Z̃1, . . . , Z̃? and
for every ℎ ∈ [?], Z̃ℎ is a basic local sentence with parameters ℓℎ and Aℎ, i.e.,

Z̃ℎ = ∃x1 . . . ∃xℓℎ
©«
∧
8∈[ℓℎ]

x8 ∈ R ∧
∧

1≤8< 9≤ℓℎ
3 (x8 , x9) > 2Aℎ ∧

∧
8∈[ℓℎ]

kℎ (x8)
ª®¬ ,

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:29

Fig. 9. An example of a set � (3) inside the extended compass of a flatness pair of a given graph and the
position of /,-in, -out,+! (a), and � ′ .

where kℎ is an Aℎ-local formula in FO[{E}〈c〉] with one free variable. Keep in mind that, since
Z̆R ∈ FO[{E}〈c〉 ∪ {R}], distances are measured in the Gaifman graph of {E}〈c〉-structures.

We set Â := maxℎ∈[?]{Aℎ}, ℓ̂ := maxℎ∈[?]{ℓℎ}, and A := 2 · (ℓ̂ + 3) · Â . As in the previous subsection,
we set @ = (tw(\) + 1)2 + 1 andF = (A + 2) · @. The reason that A is set to be equal to 2 · (ℓ̂ + 3) · Â
will be clear in the proof of Lemma 16 and is based on an idea already present in [45].

Scattered Sets in Structures. Let A be a g-structure and let - ⊆ + (A). We say that - is (ℓ, A)-
scattered in A, if |- | = ℓ and for every two distinct vertices in -, their distance in the Gaifman
graph �A is more than 2A, i.e., for every 0,1 ∈ -, 0 ≠ 1, it holds that 3A (0,1) > 2A .

The In-Signature of an Extended Compass. We now define the in-signature of an extended compass.
In this, using the approach of [45], we encode all (partial) sets of variables, one set for each basic
local sentence of the Gaifman sentence Z̆R, such that these variables are lying inside an “inner part”
of the compass, they are scattered in this inner part, and they satisfy the local formulask8 .These
arguments are always applied in some {E}〈c〉-structure of the form apc (�, a).We define

SIGin = 2[ℓ1] × · · · × 2[ℓ?] × [F] .
Let K = (� [+ (a)], a, a, I) be an extended compass of the flatness pair (,,ℜ) of � \+ (a) of

height 2F + 9, ' ⊆ + (a), 3 ∈ [A,F], ! ⊆ [;], / ⊆ � (3−A+1) , and (⊆ / such that mK (/) ⊆ (. We set

in-sig(K, ', 3, !, /, () := {(.1, . . . , .? , C) ∈ SIGin | C ≤ 3 and ∃(-̃1, . . . , -̃?) such that ∀ℎ ∈ [?]
-̃ℎ = {Gℎ8 | 8 ∈ .ℎ},
-̃ℎ ⊆ (� (C−Â+1) \ /) ∩ ', and
if a′ = a \+! (a), then
-̃ℎ is (|.ℎ |, Aℎ)-scattered in apc (�, a′) [� (C) \ (]

and apc (�, a′) [� (3) \ (] |=
∧
G∈-̃ℎ

kℎ (G)}.

Notice that � (3) \ (is a more restricted part of the component of� \ (that contains � (3) \ � (3−A) ,
but it is also “flat.” Then, we guess how the scattered sets of each of the basic local sentences of

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:30 F. V. Fomin et al.

Table 3. List of Formulas Used in the Proof of Lemma 16 for Sentences in CMSOtw ⊲ FO with Their
Respective Meanings

Formulas Meaning

V modulator sentence expressing CMSO-property on bounded treewidth structures
f target FO-sentence
\ ∃X V |stellX ∧ f | rmX or, alternatively, V ⊲ f
Z the ;-apex-projected sentence f; of f
Z̆ a Gaifman sentence equivalent to Z
kℎ A -local formulas of the basic local sentences of Z̆
Z̆R the Gaifman sentence Z̆ after adding R (whose model is of the form apc (�, '))

Z̆R |apc the “backwards translation” of Z̆R to structures without “projecting” c
\R,c the sentence V ⊲ Z̆R |apc
ī a representative of V |stellX given by Courcelle’s theorem
kℎ A -local formulas of the basic local sentences of the Gaifman sentence Z̆

the Gaifman sentence can intersect this graph (a buffer that “crops” the area that contains the
vertices that intersect an inner-area of � corresponds to C, and the numbers of the selected vertices
correspond to the sets .1, . . . , .?) and how these variables satisfy the A8-local formulas k8 . The
“scatteredness” and the satisfaction of k8 are evaluated on the structure after “projecting” with
respect to the apices.

We finally define

CHAR = [A,F] × 2[;] × 2SIGout × 2SIGin

and

\ -char(K, ') = {(3, !, sigout, sigin) ∈ CHAR | ∃ / ⊆ � (3−A+1) and ∃ (⊆ / such that (3)
mK (/) ⊆ (,
out-sig(K, ', 3, !, /, () = sigout, and
in-sig(K, ', 3, !, /, () = sigin}.

Observe that |CHAR| = O|\ |,;,@, 9 ′ (1).

7.4 An Algorithm for Finding Equivalent Flatness Pairs
In this subsection we present an algorithm Find_Equiv_FlatPairs that will serve as the algorithm
for Lemma 16. Given the inputs in Lemma 16, the algorithm Find_Equiv_FlatPairs will return,
in linear time, a set . ⊆ + (�) \+ (a) and a vertex E ∈ . , where � is the input graph and a is an
apex-tuple of �, with the property that (�, ', a) |= \R,c ⇔ (� \ E, ' \ ., a) |= \R,c. The proof of
correctness of the algorithm Find_Equiv_FlatPairs will prove Lemma 16 and it is in Section 7.5.

Before presenting the the algorithm Find_Equiv_FlatPairs, we present Table 3 that summarizes
all different formulas that we consider up to this point, with their corresponding meanings.

The Algorithm Find_Equiv_FlatPairs. The algorithm has four steps. First, recall that there
exist ? ∈ N≥1, ℓ1, . . . , ℓ? , A1, . . . , A? ∈ N≥1, and sentences Z̃1, . . . , Z̃? ∈ FO[g 〈c〉 ∪ {R}] such that Z̆R
is a Boolean combination of Z̃1, . . . , Z̃? and for every ℎ ∈ [?], Z̃ℎ is a basic local sentence with

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:31

parameters ℓℎ and Aℎ, i.e.,

Z̃ℎ = ∃x1 . . . ∃xℓℎ
©«
∧
8∈[ℓℎ]

x8 ∈ R ∧
∧

1≤8< 9≤ℓℎ
3 (x8 , x9) > 2Aℎ ∧

∧
8∈[ℓℎ]

kℎ (x8)
ª®¬ ,

wherekℎ is an Aℎ-local formula in FO[g 〈c〉] with one free variable.
Let Â := maxℎ∈[?]{Aℎ} and ℓ̂ := maxℎ∈[?]{ℓℎ}.We set 2 to be the size of the FO-target sentence f

of \,

@ := (tw(\) + 1)2 + 1,

54 (tw(\)) := max{@, 2},
I := 2Â + 3,

A := 2 · (ℓ̂ + 3) · Â ,
F := (A + 2) · @,
< := 2 |CHAR | · @ · (ℓ̂ + 3), and

53 (hw(\), tw(\), 2, ;, I) := d(2F + I) ·
√
<e .

Step 1. We first find a “packing” of subwalls of,, i.e., a collection W of< (2F + 9)-subwalls
of, such that their influences are pairwise disjoint. This collection exists because, has height
at least 53 (hw(\), tw(\), |f |, ;, I) = d(2F + 9) ·

√
<e and because, due to Observation 21, for every

distinct,8 ,,9 ∈ W, there are no cells ofℜ that are both,8 -perimetric and,9 -perimetric. Observe
that the collection W can be computed in linear time.

Step 2. For every wall,8 ∈ W, we compute a,8-tilt of (,,ℜ), which we denote by (,̃8 , ℜ̃8),
and we consider the collection W̃ := {(,̃8 , ℜ̃8) |,8 ∈ W} of< flatness pairs of� \+ (a) of height
2F + I. Note that W̃ can be computed in time O(=), due to Proposition 24.

Step 3. For every 8 ∈ [<], let 8 := compass
ℜ̃8
(,̃8) and a

8 := � [+ (a) ∪ + (8)]. Also, for
every 3 ∈ [F], let � (3)

8
:= + (⋃influence

ℜ̃8
(, (23+I)

8
)) and let I8 := (� (1)

8
, . . . , �

(F)
8

). Let K8 :=

(� [+ (a
8)], a, I8) be the extended compass of (,̃8 , ℜ̃8) in� \+ (a), '8 := '∩+ (a

8), and observe that
for every 8, 9 ∈ [<], '8 ∩' 9 = '∩+ (a) . After defining the above collection {(K1, '1), . . . , (K<, '<)}
of extended compasses of flatness pairs of � \ + (a), we compute their characteristics: Since,
by the hypothesis of the lemma, 8 , 8 ∈ [<] has treewidth at most C, by Courcelle’s theorem
(Proposition 1), \ -char(K8 , '8) can be computed in time O|\ | (=). We say that two flatness pairs
(,̃8 , ℜ̃8), (,̃9 , ℜ̃9) ∈ W̃ are \ -equivalent if \ -char(K8 , '8) = \ -char (K9 , ' 9).

Step 4. Since< = 2 |CHAR | · @ · (ℓ̂ + 3) and for every 8 ∈ [<], \ -char(K8 , '8) ⊆ CHAR, we can find
a collection W̃′ ⊆ W̃ of pairwise \ -equivalent flatness pairs such that |W̃′ | = @ · (ℓ̂ + 3).Without
loss of generality, we assume that (,̃1, ℜ̃1) ∈ W̃′ .We set ,̆ to be the central I-subwall of ,̃1 and
keep in mind that I = 2Â + 2. Note that ,̆ is also the central I-subwall of,1 and, therefore, it is a
subwall of, of height I. Again, using Proposition 24, we compute, in time O(=), a ,̆ -tilt (,̆ ′, ℜ̆′)
of (,,ℜ) and a central vertex E of,1. We set . := + (compass(,̆ ′, ℜ̆′)). We output the set . and
the vertex E .

Observe that the overall algorithm runs in linear time.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:32 F. V. Fomin et al.

Fig. 10. The wall ,̃1 together with some “zones” of A consecutive layers. The area bounded by the orange
layer corresponds to the set � (8 ·A)1 , while the area bounded by the green layer corresponds to the set � (8 ·A−A+1)1 .

The sets -in and -out are depicted with blue and orange, repectively. With light blue (resp. pink) we depict
the “non-privileged” connected components of � \ - that are adjacent to vertices of -in (resp. -out).

7.5 Proof of Correctness of the Algorithm
In order to complete the proof of Lemma 16 for a sentence \ ∈ CMSOtw ⊲ FO, we have to prove
that (�, ', a) |= \R,c ⇔ (� \ E, ' \ ., a) |= \R,c. Suppose that (�, ', a) |= \R,c . This means that there
exists a set - ⊆ + (�) such that (stell(�,-), -) |= V and (�, ', a) [+ (�) \ -] |= Z̆R |apc .

Observations on the Collection W̃′. Recall that for every (,̃8 , ℜ̃8) ∈ W̃′, 8 denotes the graph
compass

ℜ̃8
(,̃8). Also, recall that for every 8, 9 ∈ [<], 8 ≠ 9 , the walls ,8 and ,9 in W have

disjoint influences. This implies that + (8) ∩+ (9) = ∅. Moreover, observe that if Q̃ is a (,,ℜ)-
canonical partition of� \+ (a), then no internal bag of Q̃ intersects both+ (⋃influenceℜ (,8)) and
+ (⋃influenceℜ (,9)), for every 8, 9 ∈ [<], 8 ≠ 9 .

Finding a \ -Equivalent Extended Compass That Is Disjoint from - . Recall that W̃′ is a collection
of @ · (ℓ̂ + 3) flatness pairs of � \ + (a) of height 2F + I that are \ -equivalent to (,̃1, ℜ̃1). The
fact that (stell(�,-), -) |= V and V ∈ CMSOtw implies that torso(�,-) has treewidth at most
tw(\).Therefore, by Lemma 13, - intersects at most (tw(\) + 1)2 = @ − 1 internal bags of every
(,,ℜ)-canonical partition of � \ + (a). This, together with the fact that |W̃′ | = @ · (ℓ̂ + 3) and
that, if Q̃ is a (,,ℜ)-canonical partition of � \+ (a), then no internal bag of Q̃ intersects both the
vertex set of the influence of,8 and of the influence of,9 , for every 8, 9 ∈ [<], 8 ≠ 9, implies that
there is a collection W̃′′ ⊆ W̃′ of size ℓ̂ + 2 such that (,̃1, ℜ̃1) ∉ W̃′′, every flatness pair in W̃′′

is \ -equivalent to (,̃1, ℜ̃1), and the vertex set of its influence is disjoint from - . Assume, without
loss of generality, that (,̃2, ℜ̃2) ∈ W̃′′, which implies that \ -char(K1, '1) = \ -char (K2, '2) and
�
(F)
2 ∩ - = ∅.

Every Modulator Leaves an Intact Buffer. We fix some (,̃1, ℜ̃1)-canonical partition Q̃ of� \+ (a).
By Lemma 13,- intersects at most @−1 bags of Q̃ .This implies that, given that,̃1 has height 2F +I
andF = (A + 2) · @, there is an 8 ∈ [@] such that - ∩ (� (8 ·A−1)1 \ � (8 ·A−A)1) = ∅. Let -in = - ∩ � (8 ·A−A)1

and -out = - \ � (8 ·A−1)1 (see Figure 10 for a visualization of an example). We set 3 := 8 · A − 1.
We remind the reader that, to prove our lemma, our objective is to show that we can replace -in

by another set - ′ that is “away” from a central part . of,1 and therefore “away” from any central
vertex E of,1, so that -out ∪ - ′ is also a “solution,” i.e., (stell(�,-out ∪ - ′), -in ∪ - ′) |= V and

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:33

apc (�, ', a) [+ (�) \ (-out ∪- ′)] |= Z̆R. This will allow us to argue that (�, ', a) and (� \ E, ' \., a)
are equivalent with respect to the satisfaction of \R,c. To do this, we will use the equality of
characteristics of the extended compasses of the above collection of flatness pairs. Before this, we
need to prove that - ∩ + (a) ⊆ m� (-). This will allow us to keep the part of a that intersects -
“intact,” meaning that the same vertices will be present also in -out ∪ - ′ and therefore the apex set
will not change after replacing - by -out ∪ - ′.

All Apices in - Are Adjacent to + (�) \- . We set +! (a) = - ∩+ (a) and ! be the set of indices of
the vertices of a in - .We claim that +! (a) ⊆ m� (-). More generally, we show that for every set (
that intersects at most @ − 1 bags of Q̃, +! (a) ⊆ m� (().

Let (⊆ + (�) be a set that intersects at most @ − 1 bags of Q̃ . By assumption, every vertex in
+ (a) is adjacent, in �, to at least @ internal bags of Q̃ . Therefore, for every 0 ∈ + (a), there is an
internal bag & of Q̃ that is disjoint from (and to which 0 is adjacent, i.e., + (&) ⊆ + (� \ () and 0
is adjacent, in�, to a vertex in+ (&).This implies that every 0 ∈ + (a) is either in m� (() or belongs
to + (�) \ (.Therefore, +! (a) ⊆ m� (().

Defining the Set / . Let �̆ be the connected component of � \ - that contains � (3)1 \ � (3−A+1)1 . Let
/ = �

(3−A+1)
1 \ �̆ and observe that mK1 (/) ⊆ -in (in Figure 10, / corresponds to the union of the set

-in and all connected components of� \- that are depicted in yellow). Note that / is the union of
-in and of every � ∈ cc(�,-) \ {�̆} that contains a vertex that is adjacent to a vertex of -in . Keep
in mind that / \ - ⊆ + (�) \ - .

The fact that \ -char(K1, '1) = \ -char (K2, '2) implies that there is a / ′ ⊆ �
(3−A+1)
2 and a set

- ′ ⊆ / ′ such that mK2 (/ ′) ⊆ - ′,

—out-sig(K1, '1, 3, !, /, -in) = out-sig(K2, '2, 3, !, /
′, - ′), and

— in-sig(K1, '1, 3, !, /, -in) = in-sig(K2, '2, 3, !, /
′, - ′).

Note that / ′ ∩ � (F)
1 = ∅.

We first prove the following:

Claim 1. (stell(�,-), -) |= V ⇔ (stell(� \ E, -out ∪ - ′), -out ∪ - ′) |= V .

Proof of Claim 1: Let ℎ := |#� (�̆) |. Recall that torso(�,-) has treewidth at most tw(\). Since
the set #� (�̆) induces a complete graph on ℎ vertices in the graph torso(�,-), we have that
ℎ ∈ [0, tw(\) − 1] .

The idea here is to build an ℎ-boundaried annotated graph (with respect to,1) to fit the out-sig.
By Proposition 11, this annotated graph is associated with a sentence ī ∈ rep(ℎ)

{E,X} (V |stellX). Next,
we will consider another ℎ-boundaried annotated graph (with respect to,2) that satisfies the same
sentence, using the fact that,1 and,2 have the same out-sig. The fact that both these boundaried
annotated graphs, when “completed” from the other side by the same annotated graph, give the
same annotated graph, will imply that they are (V |stellX , ℎ)-equivalent.

Defining the Boundary of Our Boundaried Structure. We set � ′ to be the graph� [(-out \+! (a)) ∩
#� (�̆)] . In other words, � ′ is the subgraph of � induced by the vertices of -out that are not apices
and are adjacent to vertices in �̆ (see Figure 8 for an example). Also, we set �★ to be the graph
obtained from � [+! (a) ∪ + (� ′)] after removing every edge that has both endpoints in +! (a).
Intuitively, we extend � ′ to �★ by adding the vertices in +! (a) and the edges connecting vertices of
+! (a) and + (� ′), but not the edges that have both endpoints in +! (a).This graph �★ will be later
associated with a graph � ∈ F+! (a)

ℎ−|mK1 (/) |
.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:34 F. V. Fomin et al.

Fig. 11. The graph� from Figures 8 and 9, “separated” into two parts. Left: The graph�★ with the set + (b★1)
as boundary. Right: The graph �★

out with the set + (b★1) as boundary.

Separating � into Two Boundaried Structures. We now aim to “break” � into two boundaried
structures, to be able to encode, using representatives, the “partial satisfaction” of V inside �̆ and
/ . Let

�★
out = � \ (�̆ ∪ (/ \ mK1 (/))) and �★ = � [�̆ ∪ / ∪+ (�★)] .

Keep in mind that / = �
(3−A+1)
1 \ �̆ . See Figure 11 to get some intuition of the graphs �★

out and
�★. Verbally, the graph �★

out is obtained from � by removing from its vertex set the sets �̆ and
/ \ mK1 (/). In other words, apart from the vertices in mK1 (/) ∪+ (�★) (that are in the vertex set
of both �★

out and �
★), the graph �★

out corresponds to the part of � that is “away” from �̆ and /,
while the graph �★ corresponds to the part of � induced by the union of �̆, / and + (�★). Keep
in mind that + (�★

out) ∩+ (�★) = mK1 (/) ∪+ (�★). Next, we will define two boundaried structures
corresponding to �★

out and �
★, whose boundary will be the set mK1 (/) ∪+ (�★).

AnOrdering on the (Common) Boundary of the Two Structures. Wenext claim that mK1 (/)∪+ (�★) =
#� (�̆), which directly implies that |mK1 (/) ∪+ (�★) | = ℎ. To see why mK1 (/) ∪+ (�★) = #� (�̆),
first observe that, since �̆ ∈ cc(�,-), it holds that #� (�̆) ⊆ - and also notice that -in ∩ #� (�̆) =
mK1 (/). Since +! (a) = + (a) ∩ #� (�̆) and + (� ′) = (-out \+! (a)) ∩ #� (�̆), we have that #� (�̆) =
mK1 (/) ∪+! (a) ∪+ (� ′) = mK1 (/) ∪+ (�★).Therefore, |mK1 (/) ∪+ (�★) | = ℎ. Consider an ordering
b★1 = (E1, . . . , Eℎ) of the vertices in mK1 (/)∪+ (�★) and recall that+ (�★

out)∩+ (�★) = mK1 (/)∪+ (�★).
Now, consider the ℎ-boundaried graph (�★

out, b
★
1) and (�★, b★1). Notice that (�★

out, b
★
1) and (�★, b★1)

are compatible and that (�★
out, b

★
1) ⊕ (�★, b★1) = �.

Adding + (�★) to -in. Let -̃★
1 = -in ∪ + (�★). Now, the fact that mK1 (/) ⊆ -in implies that

+ (b★1) ⊆ -̃★
1 . Since + (�★) ⊆ -out, it holds that -out ∪ -̃★

1 = - .

Separating (�,-) into Two Boundaried Structures. Observe that

(�,-) = (�★
out, -out, b

★
1) ⊕ (�★, -̃★

1 , b
★
1). (4)

We set -̃★
2 := - ′ ∪+ (�★). Our aim is to prove that there is an ordering b★2 of m� (/ ′) ∪+ (�★) such

that

(�★, -̃★
1 , b

★
1) and (�★, -̃★

2 , b
★
2) are (V |stellX , ℎ)-equivalent.

Let ī ∈ rep(ℎ)
{E,X} (V |stellX) such that

(
�★, -̃★

1 , b
★
1

)
|= ī .

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:35

Fig. 12. The graph �1 .

Shifting from �★ to � (3,/,!,�1) . Now, consider a graph �1 ∈ F+! (a)
ℎ−|mK1 (/) |

that is isomorphic5 to �★,
via a bijection b : + (�1) ↔ + (�★) that maps every 0 ∈ +! (a) to itself. Let � ′1 := �1 \+! (a).We set
V1 := (mK1 (/),+! (a),+ (� ′1)) and observe that V1 is a nice 3-partition of a

1 [mK1 (/) ∪+! (a)] ∪ �1 .
Also, observe that the graph+ (a

1 [mK1 (/) ∪+! (a)] ∪ �1) has ℎ vertices and therefore (a
1 [mK1 (/) ∪

+! (a)] ∪ �1,V1) ∈ H (ℎ) . Let H := (a
1 [mK1 (/) ∪+! (a)] ∪ �1,V1).

A Boundaried Structure of Bounded Treewidth That Satisfies ī . Let b1 be the tuple obtained
from b★1 after replacing, in b★1 , each vertex E ∈ + (�★) with the vertex b−1 (E) ∈ + (�1). Also, let
�1 =

(3,/,!,�1)
1 (see Figure 12 for a visualization of �1). We set -̃1 := -in ∪+ (�1). Keep in mind

that -̃1 is obtained from -̃★
1 after replacing + (�★) with + (�1), i.e., -̃1 = (-̃★

1 \ + (�★)) ∪ + (�1).
Also, observe that -̃1 ⊆ + (�1).

We aim to show that (H, ī) ∈ out-sig(K1, '1, 3, !, /). To show this, by the definition of out-sig
it remains to prove that

(
�1, -̃1, b1

)
|= ī . To prove the latter, first notice that, since �1 and �★

are isomorphic, we have that �1 [+ (b1)], �★[+ (b★1)], and �★
out [+ (b★1)] are (pairwise) isomorphic.

This implies that (�1, b1), (�★, b★1), and (�★
out, b

★
1) are (pairwise) compatible. We consider the ℎ-

boundaried annotated graphs
(
�★, -̃★

1 , b
★
1

)
and

(
�1, -̃1, b1

)
.These ℎ-boundaried annotated graphs

are also compatible. We now show that, moreover, they are (V |stellX , ℎ)-equivalent, which will imply
that

(
�★, -̃★

1 , b
★
1

)
|= ī ⇔

(
�1, -̃1, b1

)
|= ī .

Subclaim.
(
�★, -̃★

1 , b
★
1

)
and

(
�1, -̃1, b1

)
are (V |stellX , ℎ)-equivalent.

Proof of Subclaim. Let�◦ be a graph,- ◦ ⊆ + (�◦), and b◦ be an apex-tuple of�◦ of sizeℎ, such that
(�◦, - ◦, b◦) is anℎ-boundaried annotated graph that is compatible with theℎ-boundaried annotated
graphs

(
�★, -̃★

1 , b
★
1

)
and

(
�1, -̃1, b1

)
.We set �★ := (�◦, b◦) ⊕ (�★, b★1) and � := (�◦, b◦) ⊕ (�1, b1).

Our goal is to show that

(�★, - ◦ ∪ -̃★
1) |= V |stellX ⇔ (�,- ◦ ∪ -̃1) |= V |stellX .

To prove this, we will argue that the graph stellX (�,- ◦ ∪ -̃1) is isomorphic to the structure
stellX (�★, - ◦ ∪ -̃★

1). To see this, let E★ be the vertex of + (stellX (�★, - ◦ ∪ -̃★
1)) \ (- ◦ ∪ -̃★

1) that
corresponds to the component of �★ \ (- ◦ ∪ -̃★

1) that contains + (�★) \ (/ ∪ + (�★)). Also,
let E ′ be the vertex of + (stellX (�,- ◦ ∪ -̃1)) \ (- ◦ ∪ -̃1) that corresponds to the component of
� \ (- ◦∪ -̃1) that contains the vertex in+ (�1) \ (/ ∪+ (�1)). Observe that stellX (�★, - ◦∪ -̃★

1) \E★

5In the rest of the proof of the claim, we will usually consider a subgraph of�, or a structure with universe + (�), and
isomorphic graphs/structures of them, and the latter will be “abstract” graphs/structures. For example, here we consider
an “abstract” graph �1 that is isomorphic to the graph �★ that is a subgraph of�.We will always use superscript “★” in
order to denote the subgraphs/structures that are being given by the graph, while the lack of superscript reflects to the
corresponding isomorphic “abstract” graphs/structures.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:36 F. V. Fomin et al.

Fig. 13. The graph �2 .

and stellX (�,- ◦ ∪ -̃1) \ E ′ are isomorphic graphs, obtained by replacing �★ by �1 (and vice-versa),
which are isomorphic. Moreover, note that this isomorphism can be extended by mapping E★ to E ′.
Thus, (�★, - ◦ ∪ -̃★

1) |= V |stellX ⇔ (�,- ◦ ∪ -̃1) |= V |stellX and the subclaim follows. �
Since by the above subclaim,

(
�★, -̃★

1 , b
★
1

)
and

(
�1, -̃1, b1

)
are (V |stellX , ℎ)-equivalent,(

�★, -̃★
1 , b

★
1

)
|= ī ⇔

(
�1, -̃1, b1

)
|= ī . (5)

Therefore, �1 and b1 certify that (H, ī) ∈ out-sig(K1, '1, 3, !, /, -in). Equality of out-signatures
implies that (H, ī) ∈ out-sig(K2, '2, 3, !, /

′, - ′).Thus,

(a) there is an �2 ∈ F+! (a)
ℎ−|mK2 (/ ′) | such that ifH = (�,U) andV2 = (mK2 (/ ′),+! (a),+ (�2) \+! (a)),

then V2 is a nice 3-partition of a
2 [mK2 (/ ′) ∪ +! (a)] ∪ �2 and a

2 [mK2 (/ ′) ∪ +! (a)] ∪ �2 is
strongly isomorphic to � with respect to (V2,U) and

(b) there is an ordering b2 of mK2 (/ ′) ∪+ (�2) such that
(

(3,/ ′,!,�2)
2 , - ′ ∪+ (�2), b2

)
|= ī .

Observe that, since a
1 [mK1 (/)∪+! (a)]∪�1 and a

2 [mK2 (/ ′)∪+! (a)]∪�2 are strongly isomorphic
to� with respect to (V1,U) and (V2,U), respectively, we also have that a

1 [mK1 (/) ∪+! (a)] ∪�1 is
strongly isomorphic to a

2 [mK2 (/ ′)∪+! (a)]∪�2 with respect to (V1,V2) .We now set � ′2 = �2\+! (a)
and �2 =

(3,/ ′,!,�2)
2 (see Figure 13 for a visualization of �2).

Notice that the fact that a
1 [mK1 (/)∪+! (a)]∪�1 is strongly isomorphic to a

2 [mK2 (/ ′)∪+! (a)]∪�2
with respect to (V1,V2) implies that theℎ-boundaried annotated graphs

(
�2, -̃2, b2

)
and

(
�1, -̃1, b1

)
are compatible. Thus, given that

(
�2, -̃2, b2

)
|= ī, we have that

(
�2, -̃2, b2

)
and

(
�1, -̃1, b1

)
are

(V |stellX , ℎ)-equivalent. Therefore,(
�1, -̃1, b1

)
|= ī ⇔

(
�2, -̃2, b2

)
|= ī . (6)

At this point, to give some intuition, we underline that even if (�2, -̃2, b2) and (�1, -̃1, b1) are
(V |stellX , ℎ)-equivalent, we did not yet provide a boundaried structure that is a substructure of
(�,-) and that is (V |stellX , ℎ)-equivalent to (�★, -̃★

1 , b
★
1). To find such a substructure (�★, -̃★

2 , b
★
2)

of (�,-), we have to “shift” from (�2, -̃2, b2) to (�★
2 , -̃

★
2 , b

★
2), by replacing + (�2) with + (�★). This

substructure (�★, -̃★
2 , b

★
2) will replace (�★, -̃★

1 , b
★
1) in Equation (4), thus proving the claim.

Defining a Substructure of the Initial Structure with a Different Boundary. Let us now define this
substructure (�★, -̃★

2 , b
★
2) from

(
�2, -̃2, b2

)
.We set b★2 to be the tuple obtained from b2 after replacing

each E ∈ + (�2) with the corresponding D ∈ + (�★). See Figure 14 for an example. We stress that the
ℎ-boundaried graph (�★, b★2) of Figure 14 can also be defined as the one obtained from (�★, b★1) of
Figure 11 after replacing mK1 (/) with mK2 (/ ′) in the boundary. Also, let -̃★

2 = (-̃2 \+ (�2)) ∪+ (�★).
For the tuple (�★, -̃★

2 , b
★
2) to be an ℎ-boundaried annotated graph, we need to show that -̃★

2 ⊆
+ (�★) and+ (b★2) ⊆ + (�★). To show that+ (b★2) ⊆ + (�★), we first notice that � (3)2 ⊆ �̆ .Therefore,

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:37

Fig. 14. The graph �★, when adding mK2 (/ ′) to the boundary. The set - ′ is the set -̃2 \+ (�★) and �̆′ is the
set + (�★) \ (/ ′ ∪+ (�★)).

since / ′ ⊆ �
(3−A+1)
2 , we have that / ′ ⊆ �̆ .The latter implies that mK2 (/ ′) is a subset of + (�★). By

the definition of b★2 and since + (b2) = mK2 (/ ′) ∪+ (�2), we have that + (b★2) = mK2 (/ ′) ∪+ (�★).
Hence, given that mK2 (/ ′) ⊆ + (�★) and + (�★) ⊆ + (�★), it holds that + (b★2) ⊆ + (�★). Also,
observe that -̃★

2 ⊆ + (�★), since -̃★
2 = (-̃2 \+ (�2)) ∪+ (�★), -̃2 \+ (�2) ⊆ / ′, and / ′ ⊆ + (�★).

All Considered Boundaried Structures Are (V |stellX , ℎ)-Equivalent. As a next step, we argue that
the ℎ-boundaried annotated graphs (�★, -̃★

2 , b
★
2), (�2, -̃2, b2), and (�★, -̃★

1 , b
★
1) are (pairwise) com-

patible. To see why this holds, notice that, since a
1 [mK1 (/) ∪+! (a)] ∪ �1 is strongly isomorphic

to a
2 [mK2 (/ ′) ∪+! (a)] ∪ �2 with respect to (V1,V2), it holds that �1 and �2 are isomorphic. This,

together with the fact that �1 is isomorphic to �★, implies that �2, �1, and �★ are pairwise isomorphic
graphs. Therefore, the structures�★[+ (b★2)], �2 [+ (b2)], and�★[+ (b★1)] are (pairwise) isomorphic.
By following the exactly symmetric arguments as in the proof of the subclaim above, it is easy to
show that (�★, -̃★

2 , b
★
2) and (�2, -̃2, b2) are (V |stellX , ℎ)-equivalent. This implies that(

�★, -̃★
2 , b

★
2

)
|= ī ⇔

(
�2, -̃2, b2

)
|= ī . (7)

Another Way to Add a Boundary in the Initial Structure. Combining Equations (5), (6), and (7),
we conclude that the ℎ-boundaried annotated graphs

(
�★, -̃★

2 , b
★
2

)
and

(
�★, -̃★

1 , b
★
1

)
are (V |stellX , ℎ)-

equivalent. Recall that, by Equation (4),

(�★
out, -out, b

★
1) ⊕ (�★, -̃★

1 , b
★
1) = (�,-),

and stell((�,-), -) |= V. Since the ℎ-boundaried annotated graphs
(
�★, -̃★

1 , b
★
1

)
and

(
�★, -̃★

2 , b
★
2

)
are (V |stellX , ℎ)-equivalent,

(�★
out, -out, b

★
1) ⊕

(
�★, -̃★

2 , b
★
2

)
|= V |stellX . (8)

Observe that the ℎ-boundaried annotated graphs (�★
out, -out, b★1) and

(
�★, -̃★

2 , b
★
2

)
are compatible.

Therefore, we can consider the annotated graph (�★
out, -out, b★1) ⊕

(
�★, -̃★

2 , b
★
2

)
, which is the same as

(�,-out ∪ - ′). See Figure 15 for an example of how
(
�★, -̃★

1 , b
★
1

)
is “transformed” to

(
�★, -̃★

2 , b
★
2

)
.

Finally, we have that (�,-) |= V |stellX ⇔ (�,-out ∪ - ′) |= V |stellX . To conclude the proof of
Claim 1, it remains to prove that if E is a central vertex of,1, then

(�,-out ∪ - ′) |= V |stellX ⇔ (� \ E, -out ∪ - ′) |= V |stellX .

Observe that since E is a central vertex of,1 and (-out ∪ - ′) ∩ � (3)1 = ∅, we have that #� (E) ∩
(-out ∪ - ′) ⊆ + (a). Also, recall that, by the hypothesis of the lemma, #� (+ (a)) intersects at least
54 (tw(\)) ≥ 2 many internal bags of any (,,ℜ)-canonical partition of � \ �. Therefore, every

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:38 F. V. Fomin et al.

Fig. 15. On the left, the annotated graph (�★
out, -out, b

★
1) ⊕ (�★, -̃★

1 , b
★
1), while on the right, the annotated

graph (�★
out, -out, b

★
1) ⊕

(
�★, -̃★

2 , b
★
2
)
.

D ∈ -out ∪ - ′ that is adjacent to E in �, is also adjacent to a vertex in + (compassℜ (,)) that is
different from E . This implies that (stellX (�,-out ∪ - ′), -out ∪ - ′) |= V ⇔ (stellX (� \ E, -out ∪
- ′), -out ∪ - ′) |= V. Claim 1 follows. �

Let �̆′ = + (�★) \ (/ ′ ∪ + (�★)) and observe that, since � (3 ·A)1 ⊆ + (�★) and � (3 ·A)1 ∩ / ′ = ∅,
we have that � (3 ·A)1 ⊆ �̆′. Also, since every vertex in + (a) is adjacent, in �, to at least @ internal
bags of Q̃, we have that every 0 ∈ + (a) is either in +! (a) or belongs to both �̆ and �̆′ .Therefore,
a ∩ �̆ = a ∩ �̆′ = a ∩ (+ (�) \ -) = a ∩ (+ (�) \ (-out ∪ - ′)) .We set a′ := a ∩ �̆ .We aim to prove
the following:

Claim 2. apc ((�, ', a) [+ (�) \ -]) |= Z̆R ⇔ apc ((� \ E, ' \ ., a) [+ (�) \ (-out ∪ - ′)]) |= Z̆R.

Proof of Claim 2: We first show that apc ((�, ', a) [+ (�) \ -]) |= Z̆R ⇔ apc ((�, ' \ ., a) [+ (�) \
(-out ∪ - ′)]) |= Z̆R, i.e., without removing E from + (�).

We set (B, 'B) := apc ((�, ', a) [+ (�) \ -]), where 'B := ' ∩ (+ (�) \ -). Keep in mind that B
is a {E}〈c〉-structure. Since the Gaifman graphs of B and of (B, 'B) are the same, in the rest of
the proof we will use �B to denote both of them. Also, to get some intuition, notice that �B is
obtained from� \- after removing some edges (namely, the edges of� \- that connect the vertices
in + (a′) with (+ (�) \ -) \ + (a′)). We also set (B′, '′

B
) := apc ((�, ', a) [+ (�) \ (-out ∪ - ′)]),

where '′
B

:= ' ∩ (+ (�) \ (-out ∪ - ′)). Thus, one can rewrite the statement of the claim as
(B, 'B) |= Z̆R =⇒ (B′, '′

B
\ .) |= Z̆R .

Since Z̆R is a Boolean combination of the basic local sentences Z̆1, . . . , Z̆? , there is a set � ⊆ [?]
such that for every model ℭ of Z̆R, it holds that ℭ |= Z̆ 9 , for every 9 ∈ � , while ℭ |= ¬Z̆ 9 , for every
9 ∉ � . We will show that for every 9 ∈ � it holds that (B, 'B) |= Z̆ 9 ⇔ (B′, '′

B
\ .) |= Z̆ 9 and that

for every 9 ∉ � it holds that (B, 'B) |= ¬Z̆ 9 ⇔ (B′, '′
B
\ .) |= ¬Z̆ 9 .We proceed by distinguishing

these two cases.

Case 1. 9 ∈ � .
We aim to prove that (B, 'B) |= Z̆ 9 ⇔ (B′, '′

B
\.) |= Z̆ 9 . First, suppose that (B, 'B) |= Z̆ 9 . Since

Z̆ 9 is a basic local sentence with parameters A 9 and ℓ9 , we have that

(B, 'B) |= Z̆ 9 ⇔ ∃- 9 ⊆ 'Bthat is(ℓ9 , A 9)-scattered inBandB |=
∧
G∈- 9

k 9 (G).

We prove the following, which intuitively states that, given the set - 9 , we can find another set
- ′
9 that “behaves” in the same way as - 9 but also “avoids” some inner part of a

2 .

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:39

Subclaim. There exists a C ∈ [3 − A
2 + 2Â + 1, 3 − Â] and a set - ′

9 that is (ℓ9 , A 9)-scattered in B such
that - 9 ⊆ 'B, B |= ∧

G∈- 9
k 9 (G) ⇔ B |= ∧

G∈- ′
9
k 9 (G), and - ′

9 ∩ �
(C)
2 = ∅.

Proof of Subclaim. Our goal is to find a flatness pair, say (,̃3, ℜ̃3), that is \ -equivalent to (,̃2, ℜ̃2),
and a proper “buffer” C so as to replace the part of - 9 that is in � (C)2 to an “equivalent” one that
is inside � (C)3 . For this replacement to be “safe,” we first have to demand that the the influence of
(,̃3, ℜ̃3), i.e., the set � (F)

3 , is disjoint from both the modulator -out ∪ - ′ and the set - 9 . Recall that
W̃′′ is a collection of ℓ̂ + 2 flatness pairs of � \ + (a) that are \ -equivalent to (,̃1, ℜ̃1) and the
vertex sets of their influences are disjoint from -out ∪ - ′ . Therefore, since - 9 has size at most ℓ̂,
there exists a flatness pair in W̃′′ \ {(,̃2, ℜ̃2)}, say (,̃3, ℜ̃3), such that � (F)

3 ∩ (-out ∪- ′ ∪- 9) = ∅.
We now focus on the set � (3)2 \ � (3−A+1)2 . Recall that for the set -out ∪ - ′ it holds that - ′ ⊆ / ′ ⊆

�
(3−A)
2 and -out ∩ � (F)

2 = ∅. Therefore, � (3)2 \ � (3−A+1)2 does not intersect the set -out ∪ - ′ . Since
A = 2 · (ℓ̂ + 3) · Â and |- 9 | ≤ ℓ̂, there exists a C ∈ [3 − A

2 + 2Â + 1, 3 − Â] such that - 9 does not intersect
�
(C)
2 \ � (C−Â+1)2 . Intuitively, we partition the A layers of ,̃2 that are in � (3)2 \ � (3−A+1)2 into two parts,
the first A/2 layers and the second A/2 layers, and then we find some layer among the “Â -central”
(ℓ̂ + 1)Â layers of the second part. This layer together with its preceding Â − 1 layers define a “buffer”
of size Â that - 9 “avoids” - that is � (C)2 \ � (C−Â+1)2 . Notice that � (C)2 \ � (C−Â+1)2 is a subset of � (3)2 \ � (3−A+1)2

and therefore � (C)2 \ � (C−Â+1)2 intersects neither - 9 nor -out ∪ - ′ .

We set -★
9 := - 9 ∩ � (C−Â+1)2 and .9 ⊆ [ℓ9] to be the set of indices of the vertices in -★

9 . Notice that
-★
9 ⊆ '2, given that -★

9 = - 9 ∩ � (C−Â+1)2 ⊆ 'B ∩ � (C−Â+1)2 and 'B ∩ � (C−Â+1)2 ⊆ '2. Therefore, since
-★
9 = - 9 ∩ � (C−Â+1)2 , k 9 (G) is an A 9 -local formula (where “A 9 -local” refers to distances in �B), and

Â ≥ A 9 , we have thatB |= ∧
G∈-★

9
k 9 (G) ⇔ B[� (C)2] |= ∧

G∈-★
9
k 9 (G). To sum up, we observe that the

set-★
9 is a subset of � (C−Â+1)2 ∩'2 that is (|.9 |, A 9)-scattered inB[� (C)2] (since- 9 is (|.9 |, A 9)-scattered

in B) and

B |=
∧
G∈-★

9

k 9 (G) ⇔ B[� (C)2] |=
∧
G∈-★

9

k 9 (G). (9)

Also, notice that apc (�, a′) [�
(C)
2] = B[� (C)2] . Using the fact that (,̃2, ℜ̃2) is \ -equivalent to (,̃3, ℜ̃3),

we now aim to find a set -̃ 9 that “equivalent” (in �
(C)
3) to -★

9 . Since (,̃2, ℜ̃2) is \ -equivalent
to (,̃3, ℜ̃3), we have that in-sig(K2, '2, C

′, !, ∅, ∅) = in-sig(K3, '3, C
′, !, ∅, ∅), for every C ′ ∈ [F] .

Therefore, we have that in-sig(K2, '2, C, !, ∅, ∅) = in-sig(K3, '3, C, !, ∅, ∅) for the particular value C
given above. This implies that there exists a set -̃ 9 ⊆ �

(C−Â+1)
3 ∩'3 such that -̃ 9 is (|.9 |, A 9)-scattered

in B[� (C)3] and apc (�, a′) [�
(C)
2] |= ∧

G∈-★
9
k 9 (G) ⇔ apc (�, a′) [�

(C)
3] |= ∧

G∈-̃ 9
k 9 (G). Observe that

apc (�, a′) [�
(C)
3] = B[� (C)3]. Thus,

B[� (C)2] |=
∧
G∈-★

9

k 9 (G) ⇔ B[� (C)3] |=
∧
G∈-̃ 9

k 9 (G). (10)

Given that - ∩ � (F)
3 = ∅, we have that � (F)

3 ⊆ + (�) \- . Also, since -̃ 9 ⊆ �
(C−Â+1)
3 , for every G ∈ -̃ 9

it holds that # (≤Â)
�B

(G) ⊆ �
(C)
3 .Thus, sincek 9 (x) is A 9 -local, it follows that

B[� (C)3] |=
∧
G∈-̃ 9

k 9 (G) ⇔ B |=
∧
G∈-̃ 9

k 9 (G). (11)

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:40 F. V. Fomin et al.

We now consider the set

- ′
9 :=

(
- 9 \ -★

9

)
∪ -̃ 9 .

Since � (F)
3 ∩ - 9 = ∅ and Â ≥ A 9 , for every G ∈ - 9 , and thus, for every G ∈ - 9 \ -★

9 , it holds that

#
(≤A 9)
�B

(G) ∩ �
(F−Â+1)
3 = ∅. Also, since C ≤ F − Â and -̃ 9 ⊆ �

(C−Â+1)
3 , for every G ∈ -̃ 9 it holds

that # (≤A 9)
�B

(G) ⊆ �
(F−Â+1)
3 . Thus, for every G ∈ - 9 \ -★

9 and G ′ ∈ -̃ 9 we have that # (≤A 9)
�B

(G) ∩
#

(≤A 9)
�B

(G ′) = ∅.The latter, together with the fact that the set - 9 \-★
9 is (ℓ9 − |.9 |, A 9)-scattered in B

and -̃ 9 is (|.9 |, A 9)-scattered in B[� (C)3], implies that - ′
9 is an (ℓ9 , A 9)-scattered set in B. Moreover,

by definition, we have that - ′
9 ⊆ 'B ∪ '3 = 'B (the latter equality holds since � (F)

3 ⊆ + (B)) and
- ′
9 does not intersect �

(C)
2 , while, by Equations (9), (10), and (11), we have that B |= ∧

G∈- 9
k 9 (G) ⇔

B |= ∧
G∈- ′

9
k 9 (G).The subclaim follows. �

Following the above subclaim, let C ∈ [3− A
2+2Â+1, 3−Â] and let- ′

9 be a set that is (ℓ9 , A 9)-scattered
in B such that - ′

9 ⊆ 'B, B |= ∧
G∈- 9

k 9 (G) ⇔ B |= ∧
G∈- ′

9
k 9 (G), and - ′

9 ∩ �
(C)
2 = ∅.

Since A = 2 · (ℓ̂ + 3) · Â and |- ′
9 | ≤ ℓ̂, there exists a C ′ ∈ [3 − A + 2Â + 1, 3 − A

2 − Â] such that
- ′
9 does not intersect �

(C ′)
1 \ � (C

′−Â+1)
1 . Intuitively, here, we partition the A layers of ,̃1 that are in

�
(3)
1 \ � (3−A+1)1 into two parts, the first A/2 layers and the second A/2 layers, and then we find some
layer among the “Â -central” (ℓ̂ + 1)Â layers of the first part. This layer together with its preceding
Â − 1 layers define a “buffer” of size Â that - ′

9 “avoids”—that is � (C
′)

1 \ � (C
′−Â+1)

1 .

Now, consider the set *1 := - ′
9 ∩ (� (C

′−Â+1)
1 \ -in). Observe that *1 ⊆ '1 and therefore *1 ⊆

(� (C
′−Â+1)

1 \ -in) ∩ '1 . Recall that . = �
(Â)
1 and notice that, since (- ′

9 *1) ∩ � (C
′)

1 = ∅ and C ′ > Â , it
holds that - ′

9 *1 ⊆ ' \ . .
Let . ′

9 ⊆ [ℓ9] be the set of the indices of the vertices of - ′
9 in*1 . Given that*1 = -

′
9 ∩ (� (C

′−Â+1)
1 \

-in) and - ′
9 is (ℓ9 , A 9)-scattered in B, and B |= ∧

G∈- ′
9
k 9 (G), we get that *1 is (|. ′

9 |, A 9)-scattered
in B[� (C

′)
1 \ -in] and B |= ∧

G∈*1
k 9 (G). At this point, observe that, since the formula k 9 (x) is

A 9 -local,*1 = -
′
9 ∩ (� (C

′−Â+1)
1 \ -in), where Â ≥ A 9 and C ′ ≤ 3 − A

2 − Â , for every G ∈ *1 we have that

#
(≤A 9)
�B

(G) ⊆ �
(C ′)
1 \ -in ⊆ �

(3)
1 \ -in. The latter implies that

B |=
∧
G∈*1

k 9 (G) ⇔ B[� (3)1 \ -in] |=
∧
G∈*1

k 9 (G). (12)

Also, note that apc (�, a′) [�
(3)
1 \ -in] = B[� (3)1 \ -in] .

We will now use the equality of in-signatures. As we mentioned before the statement of Claim
1, in-sig(K1, '1, 3, !, /, -in) = in-sig(K2, '2, 3, !, /

′, - ′). This implies the existence of a set *2 ⊆
(� (C

′−Â)
2 \ - ′) ∩ '2 ⊆ ' \ . such that*2 is (|. ′

9 |, A 9)-scattered in B[� (C
′)

2 \ - ′] and

B[� (3)1 \ -in] |=
∧
G∈*1

k 9 (G) ⇔ apc (�, a′) [�
(3)
2 \ - ′] |=

∧
G∈*2

k 9 (G). (13)

By Equations (12) and (13), we derive that

B |=
∧
G∈*1

k 9 (G) ⇔ apc (�, a′) [�
(3)
2 \ - ′] |=

∧
G∈*2

k 9 (G). (14)

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:41

Recall that for the set-out∪- ′ it holds that- ′ ⊆ �
(3−A)
2 and-out∩� (F)

2 = ∅. Since-out∩� (F)
2 = ∅,

it holds that � (C
′)

2 \ - ′ ⊆ �
(3)
2 \ - ′ and � (3)2 \ - ′ ⊆ + (B′).

Since *2 is (|. ′
9 |, A 9)-scattered in B[� (C

′)
2 \ - ′], where *2 ⊆ �

(C ′−Â+1)
2 \ - ′ and C ′ < F − Â , *2 is

also (|. ′
9 |, A 9)-scattered in B′ . Moreover, the formulak 9 (x) is A 9 -local, so

apc (�, a′) [�
(3)
2 \ - ′] |=

∧
G∈*2

k 9 (G) ⇔ B′ |=
∧
G∈*2

k 9 (G). (15)

Therefore, by Equations (14) and (15), it follows that B |= ∧
G∈*1

k 9 (G) ⇔ B′ |= ∧
G∈*2

k 9 (G).
Consider the set

- •
9 := (- ′

9 *1) ∪*2 .

Notice that since - ′
9 \ *1 ⊆ + (B) and - ′

9 \ *1 does not intersect neither � (3−A+1)2 (where - ′

lies), nor � (3−A+1)1 ⊆ �
(C ′)
1 (where -in lies), it follows that - ′

9 \ *1 ⊆ + (B) ∩ + (B′). This implies
that - ′

9 *1 is an (ℓ9 − |. ′
9 |, A 9)-scattered set in B and an (ℓ9 − |. ′

9 |, A 9)-scattered set in B′ . Since
*2 ⊆ �

(C ′−Â+1)
2 \ / ′, - ′

9 ∩ �
(C)
2 = ∅, and C ′ ≤ C − 2Â , we have that for every G ∈ - ′

9 *1 and G ′ ∈ *2

it holds that # (≤A 9)
�B′ (G) ∩ #

(≤A 9)
�B′ (G ′) = ∅. The latter, together with the fact that - ′

9 \ *1 is an
(ℓ9 − |. ′

9 |, A 9)-scattered set in B′ and *2 is a (|. ′
9 |, A 9)-scattered set in B′, implies that - •

9 is an
(ℓ9 , A 9)-scattered set in B′ . Also, notice that - •

9 ⊆ '′
B
\ . . Furthermore, since the formulak 9 (x) is

A 9 -local, it follows that B′ |= ∧
G∈- 9

k 9 (G) ⇔ B′ |= ∧
G∈- •

9
k 9 (G).

Thus, assuming that there is a set- 9 ⊆ 'B that is (ℓ9 , A 9)-scattered inB andB |= ∧
G∈- 9

k 9 (G),we
proved that there is a set- •

9 ⊆ '′
B
\. ⊆ ' \. that is (ℓ9 , A 9)-scattered inB′ andB′ |= ∧

G∈- •
9
k 9 (G).

To conclude Case 1, notice that we can prove the inverse implication, i.e., by assuming the
existence of a set - •

9 ⊆ '′
B
\ . ⊆ ' \ . that is (ℓ9 , A 9)-scattered in B′ and B′ |= ∧

G∈- •
9
k 9 (G)

and, by using the same arguments as above (replacing (,̃1, ℜ̃1) with (,̃2, ℜ̃2), -in with - ′ and '
with ' \ .), we can prove the existence of a set - 9 ⊆ ' that is (ℓ9 , A 9)-scattered in B such that
B |= ∧

G∈- 9
k 9 (G).

Case 2. 9 ∉ � .
We aim to prove that apc ((�, ', a′) [�]) |= ¬Z̆ 9 ⇔ apc ((�, ' \ ., a′) [�′]) |= ¬Z̆ 9 . In other words,

we show that for every set - 9 ⊆ ' ∩� that is (ℓ9 , A 9)-scattered in B, B |= ¬k 9 (G), for some G ∈ - 9
if and only if for every set - ′

9 ⊆ (' \ .) ∩ �′ that is (ℓ9 , A 9)-scattered in B′, B′ |= ¬k 9 (G), for
some G ∈ - ′

9 . In Case 1, we showed that there is a set - 9 ⊆ 'B that is (ℓ9 , A 9)-scattered in B and
B |= ∧

G∈- 9
k 9 (G) if and only if there is a set - •

9 ⊆ '′
B
\ . ⊆ ' \ . that is (ℓ9 , A 9)-scattered in

B′ and B′ |= ∧
G∈- •

9
k 9 (G). This directly implies that (B, 'B) |= ¬Z̆ 9 ⇔ (B′, '′

B
\ .) |= ¬Z̆ 9 . This

concludes Case 2 and completes the proof of Claim 2. �
Also, recall that the algorithm Find_Equiv_FlatPairs in Section 7.4 outputs a central vertex

E of,1 and the set . = + (compass
ℜ̆′ (,̆ ′)), where (,̆ ′, ℜ̆′) is a ,̆ ′-tilt of (,,ℜ) and ,̆ is the

central 9 ′-subwall of,1. Finally, recall that 9 ′ = 2Â + 2. The definition of a tilt of a flatness pair
implies that E ∈ . . By Claim 1, (stell(�,-), -) |= V ⇔ (stell(� \ E, -out ∪ - ′), -out ∪ - ′) |= V .

Recall that all the basic Gaifman variables in Z̆R are contained in ' and every k8 (x) is A8-local.
The fact that E is a central vertex of,1, ,̆ has height 9 ′ = 2Â + 2, and ' ∩ . = ∅ implies that none
of the local formulask8 (x) is evaluated using E . Therefore, apc ((�, ' \., a) [+ (�) \ (-out ∪- ′)]) |=
Z̆R ⇔ apc ((� \ E, ' \., a) [+ (�) \ (-out ∪- ′)]) |= Z̆R, and, by Claim 2, apc ((�, ', a) [+ (�) \-]) |=
Z̆R ⇔ apc ((� \ E, ' \ ., a′) [+ (�) \ (-out ∪ - ′)]) |= Z̆R. Thus, we get that (�, ', a) |= \R,c ⇔
(� \ E, ' \ ., a) |= \R,c.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:42 F. V. Fomin et al.

8 Limitations and Further Directions
To conclude the article, in Section 8.1 we justify the necessity of the ingredients of our logic
CMSOtw ⊲ FO. Next, in Section 8.2 we present several directions and open problems for further
research.

8.1 Natural Limitations
We now wish to comment on why the two basic ingredients of the definition of CMSOtw ⊲ FO are
necessary for the statement and the proof of a meta-algorithmic result such as Theorem 3.

The first ingredient of CMSOtw ⊲ FO is that the modulator sentences belong in CMSOtw which
is defined so that the treewidth of torso(�,-) is bounded. While it is known that bounding the
treewidth is necessary for CMSO-model-checking [31, 79], one may ask why it is not enough to
just bound the treewidth of� [-] . To see why this is unavoidable, consider a graph� and let� ′ be
the graph obtained from� by subdividing each edge once. Then, asking whether � is Hamiltonian,
which is a well-known NP-complete problem [54], is equivalent to asking whether � ′ has a vertex
set (′ such that� ′ [(′] is a cycle and such that� ′ \ (′ is an edgeless graph, that is, a 2-minor-free
graph. Notice that, while tw(� ′ [(′]) = 2, torso(� ′, (′) = � has unbounded treewidth.

The second ingredient of CMSOtw ⊲ FO is the FO demand. This is also necessary, as other-
wise we may choose some target property f not definable in FO, such as Hamiltonicity, which is
CMSO-definable and NP-complete on planar graphs [54]. Without the restriction that f needs to
be FO-definable, a void modulator would be able to model this NP-complete problem on planar
input graphs.

8.2 Further Research
The Minor-Exclusion Framework. The graph-structural horizon in Theorem 3 is delimited by

minor-exclusion. This restriction is hard-wired in our proof in the way it combines the Flat Wall
theorem with Gaifman’s theorem. Recently, several efficient algorithms appeared for modification
problems assuming topological minor-freeness (see [3, 50, 68, 97] and the meta-algorithmic result
in [97]). For such classes, to achieve efficient model-checking for CMSOtw ⊲ FO, or some fragment
of it, is an interesting open challenge.

Quadratic Time. The proof of Theorem 3 can be seen as a possible “meta-algorithmization” of the
irrelevant vertex technique introduced by Robertson and Seymour [98], going further than the two
known recent attempts in this direction [45, 59]. The main routine of the algorithm transforms the
input of the problem to a simpler graph by detecting territories in it that can be safely discarded,
therefore producing a simpler instance. This routine is applied repetitively until the graph has
“small” treewidth, so that the problem can be solved in linear time by using Courcelle’s theorem.
This approach gives an algorithm running in quadratic time. Any improvement of this running time
should rely on techniques escaping the above scheme of gradual simplification. The only results in
this direction are the cases of making a graph planar by deleting at most : vertices (resp. edges) in
[69] (resp. [71]) that run in time O: (=).

Other Modification Problems. One can observe that the definition of CMSOtw ⊲ FO readily mod-
els a wide variety of modification problems involving edge or vertex removals. Is it possible to
extend CMSOtw ⊲ FO so that it can also deal with other (local) operations such as edge contrac-
tions, edge additions, or others? This was done in [45] for the case of vertex removals and edge
removals/additions/contractions to achieve planarity and an FO-definable property. Other types of
(not necessarily local) modification operations where studied in [46, 59].

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:43

Acknowledgments
We wish to thank Stavros G. Kolliopoulos and Christophe Paul, as well as some anonymous
reviewers, for their valuable remarks on earlier versions of this article.

References
[1] Isolde Adler, Martin Grohe, and Stephan Kreutzer. 2008. Computing excluded minors. In Proceedings of the 19th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 641–650. Retrieved from http://portal.acm.org/citation.
cfm?id=1347082.1347153

[2] Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
2021. Elimination distance to topological-minor-free graphs is FPT. arXiv:2104.09950. Retrieved from https://arxiv.
org/abs/2104.09950

[3] Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh,
and Meirav Zehavi. 2022. Deleting, eliminating and decomposing to hereditary classes are all FPT-equivalent.
In Proceedings of the 32st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1976–2004. DOI: https:
//doi.org/10.1137/1.9781611977073.79

[4] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. 2021. An FPT algorithm
for elimination distance to bounded degree graphs. In Proceedings of the 38th International Symposium on Theoretical
Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics, Vol. 187, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 5:1–5:11. DOI: https://doi.org/10.4230/LIPIcs.STACS.2021.5

[5] Stefan Arnborg, Jens Lagergren, and Detlef Seese. 1991. Easy problems for tree-decomposable graphs. Journal of
Algorithms 12 (1991), 308–340. DOI: https://doi.org/10.1016/0196-6774(91)90006-K

[6] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. 2020. A complexity dichotomy for hitting connected minors on
bounded treewidth graphs: The chair and the banner draw the boundary. In Proceedings of the 31st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 951–970. DOI: https://doi.org/10.1137/1.9781611975994.57

[7] Patrick Bellenbaum and Reinhard Diestel. 2002. Two Short Proofs Concerning Tree-Decompositions. Combinatorics,
Probability & Computing 11, 6 (2002), 541–547. DOI: https://doi.org/10.1017/S0963548302005369

[8] Hans L. Bodlaender. 1993. A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of
the 25th Annual ACM Symposium onTheory of Computing (STOC), 226–234. DOI: https://doi.org/10.1145/167088.167161

[9] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michał Pilipczuk.
2016. A 2:= 5-Approximation algorithm for treewidth. SIAM Journal on Computing 45, 2 (2016), 317–378. DOI:
https://doi.org/10.1137/130947374

[10] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos.
2016. (Meta) Kernelization. Journal of the ACM 63, 5 (2016), 44:1–44:69. DOI: https://doi.org/10.1145/2973749

[11] Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk. 2021. Definable decompositions for graphs of bounded
linear cliquewidth. Logical Methods in Computer Science 17, 1 (2021), 5:1–5:40. DOI: https://doi.org/10.23638/LMCS-
17(1:5)2021

[12] Mikołaj Bojańczyk and Michał Pilipczuk. 2016. Definability equals recognizability for graphs of bounded treewidth.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 407–416. DOI:
https://doi.org/10.1145/2933575.2934508

[13] Mikołaj Bojańczyk. 2021. Separator logic and star-free expressions for graphs. arXiv:2107.13953. Retrieved from
https://arxiv.org/abs/2107.13953

[14] Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre Simon, and Szymon
Toruńczyk. 2022. Model checking on interpretations of classes of bounded local cliquewidth. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer (LICS). ACM, New York, NY, 54:1–54:13. DOI: https:
//doi.org/10.1145/3531130.3533367

[15] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk.
2022. Twin-width IV: Ordered graphs and matrices. In Proceedings of the 54th Annual ACM Symposium on Theory of
Computing (STOC). ACM, New York, NY. DOI: https://doi.org/10.1145/3519935.3520037

[16] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. 2022. Twin-width I: Tractable FO model
checking. Journal of the ACM 69, 1 (2022), 3:1–3:46. DOI: https://doi.org/10.1145/3486655

[17] Édouard Bonnet, Jaroslav Nešetřil, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan Thomassé. 2021.
Twin-width and permutations. arXiv:2102.06880. Retrieved from https://arxiv.org/abs/2102.06880

[18] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic generation of linear-time algorithms from
predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 5–6 (1992),
555–581. DOI: https://doi.org/10.1007/BF01758777

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

http://portal.acm.org/citation.cfm?id=1347082.1347153
http://portal.acm.org/citation.cfm?id=1347082.1347153
https://arxiv.org/abs/2104.09950
https://arxiv.org/abs/2104.09950
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.4230/LIPIcs.STACS.2021.5
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1145/167088.167161
https://doi.org/10.1137/130947374
https://doi.org/10.1145/2973749
https://doi.org/10.23638/LMCS-17(1:5)2021
https://doi.org/10.23638/LMCS-17(1:5)2021
https://doi.org/10.1145/2933575.2934508
https://arxiv.org/abs/2107.13953
https://doi.org/10.1145/3531130.3533367
https://doi.org/10.1145/3531130.3533367
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3486655
https://arxiv.org/abs/2102.06880
https://doi.org/10.1007/BF01758777

2:44 F. V. Fomin et al.

[19] Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. 2022. Bridge-depth characterizes which minor-closed structural
parameterizations of vertex cover admit a polynomial kernel. SIAM Journal on Discrete Mathematics 36, 4 (2022),
2737–2773. DOI: https://doi.org/10.1137/21M1400766

[20] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. 2018. Multicut is FPT. SIAM Journal on Computing47, 1
(2018), 166–207. DOI: https://doi.org/10.1137/140961808

[21] Jannis Bulian and Anuj Dawar. 2016. Graph isomorphism parameterized by elimination distance to bounded degree.
Algorithmica 75, 2 (2016), 363–382. DOI: https://doi.org/10.1007/s00453-015-0045-3

[22] Jannis Bulian and Anuj Dawar. 2017. Fixed-parameter tractable distances to sparse graph classes. Algorithmica 79, 1
(2017), 139–158. DOI: https://doi.org/10.1007/s00453-016-0235-7

[23] Leizhen Cai. 1996. Fixed-parameter tractability of graph modification problems for hereditary properties. Information
Processing Letters 58, 4 (1996), 171–176. DOI: https://doi.org/10.1016/0020-0190(96)00050-6

[24] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. 2008. Improved algorithms for feedback
vertex set problems. The Journal of Computer and System Sciences 74, 7 (2008), 1188–1198. DOI: https://doi.org/10.
1016/j.jcss.2008.05.002

[25] Jianer Chen, Iyad A. Kanj, and Ge Xia. 2006. Improved parameterized upper bounds for vertex cover. In Proceedings
of the 31st International Symposium on Mathematical Foundations of Computer Science (MFCS). Lecture Notes in
Computer Science, Vol. 4162, 238–249. DOI: https://doi.org/10.1007/11821069_21

[26] Julia Chuzhoy. 2015. Improved bounds for the flat wall theorem. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 256–275. DOI: https://doi.org/10.1137/1.9781611973730.20

[27] Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information
and Computation 85, 1 (1990), 12–75. DOI: https://doi.org/10.1016/0890-5401(90)90043-H

[28] Bruno Courcelle. 1992. The monadic second-order logic of graphs III: Tree-decompositions, minor and complex-
ity issues. RAIRO - Theoretical Informatics and Applications 26 (1992), 257–286. DOI: https://doi.org/10.1051/ita/
1992260302571

[29] Bruno Courcelle. 1997. The expression of graph properties and graph transformations in monadic second-order logic.
In Handbook of Graph Grammars and Computing by Graph Transformations, Vol. 1: Foundations. World Scientific,
313–400.

[30] Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic – A Language-Theoretic
Approach. Encyclopedia of mathematics and its applications, Vol. 138. Cambridge University Press.

[31] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of
bounded clique-width.Theory of Computing Systems 33, 2 (2000), 125–150. DOI: https://doi.org/10.1007/s002249910009

[32] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,
and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI: https://doi.org/10.1007/978-3-319-21275-3

[33] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2019. Minimum bisection is
fixed-parameter tractable. SIAM Journal on Computing 48, 2 (2019), 417–450. DOI: https://doi.org/10.1137/140988553

[34] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. 2017. Hitting forbidden subgraphs in graphs of
bounded treewidth. Information and Computation 256 (2017), 62–82. DOI: https://doi.org/10.1016/j.ic.2017.04.009

[35] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. 2007. Locally excluding a minor. In Proceedings of the 21st IEEE
Symposium on Logic in Computer Science (LICS), 270–279. DOI: https://doi.org/10.1109/LICS.2007.31

[36] Reinhard Diestel. 2017. Graph Theory (5th ed.), Vol. 173, Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-
53622-3

[37] Jan Dreier and Peter Rossmanith. 2021. Approximate evaluation of first-order counting queries. In Proceedings
of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA). Dániel Marx (Ed.), SIAM, 1720–1739. DOI:
https://doi.org/10.1137/1.9781611976465.104

[38] Zdeněk Dvořák, Daniel Král, and Robin Thomas. 2013. Testing first-order properties for subclasses of sparse graphs.
The Journal of the ACM 60, 5 (2013), Article 36, 24 pages. DOI: https://doi.org/10.1145/2499483

[39] Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. 2021. Measuring what matters: A hybrid approach
to dynamic programming with treewidth. The Journal of Computer and System Sciences 121 (2021), 57–75. DOI:
https://doi.org/10.1016/j.jcss.2021.04.005

[40] Kord Eickmeyer, Michael Elberfeld, and Frederik Harwath. 2017. Succinctness of order-invariant logics on depth-
bounded structures. ACM Transactions on Computational Logic 18, 4 (2017), 33:1–33:25. DOI: https://doi.org/10.1145/
3152770

[41] Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. 2008. Planar graph bipartization in linear time. Discrete
Applied Mathematics 156, 7 (2008), 1175–1180. DOI: https://doi.org/10.1016/j.dam.2007.08.013

[42] Jörg Flum and Martin Grohe. 2001. Fixed-parameter tractability, definability, and model-checking. The SIAM Journal
on Computing 31, 1 (2001), 113–145. DOI: https://doi.org/10.1137/S0097539799360768

[43] Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2021. Compound logics
for modification problems. arXiv:2111.02755. Retrieved from https://arxiv.org/abs/2111.02755

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.1137/21M1400766
https://doi.org/10.1137/140961808
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1007/11821069_21
https://doi.org/10.1137/1.9781611973730.20
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/140988553
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1109/LICS.2007.31
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1137/1.9781611976465.104
https://doi.org/10.1145/2499483
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1145/3152770
https://doi.org/10.1145/3152770
https://doi.org/10.1016/j.dam.2007.08.013
https://doi.org/10.1137/S0097539799360768
https://arxiv.org/abs/2111.02755

Compound Logics for Modification Problems 2:45

[44] Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2023. Compound
logics for modification problems. In Proceedings of the 50th International Colloquium on Automata, Languages, and
Programming (ICALP). Leibniz International Proceedings in Informatics, Vol. 261, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 61:1–61:21. DOI: https://doi.org/10.4230/LIPICS.ICALP.2023.61

[45] Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2020. An algorithmic meta-theorem
for graph modification to planarity and FOL. In Proceedings of the 28th Annual European Symposium on Algorithms
(ESA). Leibniz International Proceedings in Informatics, Vol. 173, 51:1–51:17. DOI: https://doi.org/10.4230/LIPIcs.
ESA.2020.51

[46] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2019. Modification to planarity is fixed parameter
tractable. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science (STACS),
28:1–28:17. DOI: https://doi.org/10.4230/LIPIcs.STACS.2019.28

[47] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2022. Parameterized complexity of elimination
distance to first-order logic properties. ACM Transactions on Computational Logic 23, 3 (2022), 17:1–17:35. DOI:
https://doi.org/10.1145/3517129

[48] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. 2016. Hitting forbidden
minors: Approximation and kernelization. SIAM Journal on Discrete Mathematics 30, 1 (2016), 383–410. DOI: https:
//doi.org/10.1137/140997889

[49] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Planar � -deletion: Approximation,
kernelization and optimal FPT algorithms. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 470–479. DOI: https://doi.org/10.1109/FOCS.2012.62

[50] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2020. Hitting topological
minors is FPT. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC), 1317–1326. DOI:
https://doi.org/10.1145/3357713.3384318

[51] Markus Frick and Martin Grohe. 2001. Deciding first-order properties of locally tree-decomposable structures. Journal
of the ACM 48, 6 (2001), 1184–1206. DOI: https://doi.org/10.1145/504794.504798

[52] Haim Gaifman. 1982. On Local and Non-Local Properties. In Proceedings of the Herbrand Symposium (Studies in Logic
and the Foundations of Mathematics, Vol. 107). Elsevier, 105–135. DOI: https://doi.org/10.1016/S0049-237X(08)71879-2

[53] Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Sebastian Siebertz,
and Szymon Toruńczyk. 2020. First-order interpretations of bounded expansion classes. ACM Transactions on
Computational Logic 21, 4 (2020), 29:1–29:41. DOI: https://doi.org/10.1145/3382093

[54] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman. Retrieved from https://dl.acm.org/doi/10.5555/574848

[55] Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos, and Marcin Wrochna.
2021. Linear kernels for edge deletion problems to immersion-closed graph classes. SIAM Journal on Discrete
Mathematics 35, 1 (2021), 105–151. DOI: https://doi.org/10.1137/18M1228839

[56] Archontia C. Giannopoulou and Dimitrios M. Thilikos. 2013. Optimizing the graph minors weak structure theorem.
SIAM Journal on Discrete Mathematics 27, 3 (2013), 1209–1227. DOI: https://doi.org/10.1137/110857027

[57] Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma. 2013. Detecting induced minors in AT-free graphs.Theoretical
Computer Science 482 (2013), 20–32. DOI: https://doi.org/10.1016/j.tcs.2013.02.029

[58] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2022. Model-checking for first-order logic with
disjoint paths predicates in proper minor-closed graph classes. arXiv:2211.01723. Retrieved from https://arxiv.org/
abs/2211.01723

[59] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2023. Model-checking for first-order logic with
disjoint paths predicates in proper minor-closed graph classes. In Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms (SODA ’23). SIAM, 3684–3699. DOI: https://doi.org/10.1137/1.9781611977554.ch141

[60] Julien Grange. 2021. Successor-invariant first-order logic on classes of bounded degree. Logical Methods in Computer
Science 17, 3 (2021), 20:1–20:25. DOI: https://doi.org/10.46298/lmcs-17(3:20)2021

[61] Martin Grohe. 2008. Logic, graphs, and algorithms. In Logic and Automata: History and Perspectives, in Honor
of Wolfgang Thomas. Texts in Logic and Games, Vol. 2, Amsterdam University Press, 357–422. Retrieved from
https://eccc.weizmann.ac.il/report/2007/091/

[62] Martin Grohe and Stephan Kreutzer. 2009. Methods for algorithmic meta theorems. In Model Theoretic Methods in
Finite Combinatorics - AMS-ASL Joint Special Session, Vol. 558, AMS, 181–206. Retrieved from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.395.8282 & rep=rep1 & type=pdf

[63] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2017. Deciding first-order properties of nowhere dense
graphs. Journal of the ACM 64, 3 (2017), 17:1–17:32. DOI: https://doi.org/10.1145/3051095

[64] Martin Grohe and Nicole Schweikardt. 2018. First-order query evaluation with cardinality conditions. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). ACM, New York, NY,
253–266. DOI: https://doi.org/10.1145/3196959.3196970

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.4230/LIPICS.ICALP.2023.61
https://doi.org/10.4230/LIPIcs.ESA.2020.51
https://doi.org/10.4230/LIPIcs.ESA.2020.51
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.1145/3517129
https://doi.org/10.1137/140997889
https://doi.org/10.1137/140997889
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1145/504794.504798
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1145/3382093
https://dl.acm.org/doi/10.5555/574848
https://doi.org/10.1137/18M1228839
https://doi.org/10.1137/110857027
https://doi.org/10.1016/j.tcs.2013.02.029
https://arxiv.org/abs/2211.01723
https://arxiv.org/abs/2211.01723
https://doi.org/10.1137/1.9781611977554.ch141
https://doi.org/10.46298/lmcs-17(3:20)2021
https://eccc.weizmann.ac.il/report/2007/091/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3196959.3196970

2:46 F. V. Fomin et al.

[65] Martin Grohe and Thomas Schwentick. 2000. Locality of order-invariant first-order formulas. ACM Transactions on
Computational Logic 1, 1 (2000), 112–130. DOI: https://doi.org/10.1145/343369.343386

[66] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. 2004. A structural view on parameterizing problems: Distance from
triviality. In Proceedings of the 1st International Workshop on Parameterized and Exact Computation (IWPEC), Lecture
Notes in Computer Science, Vol. 3162, 162–173. DOI: https://doi.org/10.1007/978-3-540-28639-4_15

[67] Anupam Gupta, Euiwoong Lee, and Jason Li. 2018. Faster exact and approximate algorithms for :-cut. In Proceedings
of the 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 113–123. DOI: https://doi.org/10.
1109/FOCS.2018.00020

[68] Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. 2021. Vertex deletion parameterized by elimination
distance and even less. In Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC), 1757–1769.
DOI: https://doi.org/10.1145/3406325.3451068

[69] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. 2014. A near-optimal planarization algorithm. In Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1802–1811. DOI: https://doi.org/10.1137/1.
9781611973402.130

[70] Ken-ichi Kawarabayashi. 2009. Planarity allowing few error vertices in linear time. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 639–648. DOI: https://doi.org/10.1109/FOCS.2009.45

[71] Ken-ichi Kawarabayashi and Bruce A. Reed. 2007. Computing crossing number in linear time. In Proceedings of the
39th annual ACM symposium on Theory of computing (STOC), 382–390. DOI: https://doi.org/10.1145/1250790.1250848

[72] Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. 2018. A new proof of the flat wall theorem. Journal of
Combinatorial Theory, Series B 129 (2018), 204–238. DOI: https://doi.org/10.1016/j.jctb.2017.09.006

[73] Ken-ichi Kawarabayashi and Mikkel Thorup. 2011. The minimum :-way cut of bounded size is fixed-parameter
tractable. In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), 160–169. DOI:
https://doi.org/10.1109/FOCS.2011.53

[74] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau, and Somnath Sikdar. 2016.
Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Transactions on Algorithms
12, 2 (2016), 21:1–21:41. DOI: https://doi.org/10.1145/2797140

[75] Philip N. Klein and Dániel Marx. 2012. Solving planar :-terminal cut in $ (=2:) time. In Proceedings of the 39th
International Colloquium of Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,
Vol. 7391, 569–580. DOI: https://doi.org/10.1007/978-3-642-31594-7_48

[76] Tomasz Kociumaka and Marcin Pilipczuk. 2014. Faster deterministic feedback vertex set. Inform. Process. Lett. 114, 10
(2014), 556–560. DOI: https://doi.org/10.1016/j.ipl.2014.05.001

[77] Tomasz Kociumaka and Marcin Pilipczuk. 2019. Deleting vertices to graphs of bounded genus. Algorithmica 81, 9
(2019), 3655–3691. DOI: https://doi.org/10.1007/s00453-019-00592-7

[78] Tuukka Korhonen. 2021. A single-exponential time 2-approximation algorithm for treewidth. In Proceedings of the
62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), 184–192. DOI: https://doi.org/10.1109/
FOCS52979.2021.00026

[79] Stephan Kreutzer. 2011. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory. London Mathematical
Society Lecture Note Series, Vol. 379, Cambridge University Press, 177–270. Retrieved from http://www.cs.ox.ac.uk/
people/stephan.kreutzer/Publications/amt-survey.pdf

[80] Dietrich Kuske and Nicole Schweikardt. 2017. First-order logic with counting. In Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1–12. Retrieved from https:
//doi.org/10.1109/LICS.2017.8005133

[81] Dietrich Kuske and Nicole Schweikardt. 2018. Gaifman normal forms for counting extensions of first-order logic.
In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), , Leibniz
International Proceedings in Informatics, Vol. 107, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 133:1–133:14.
DOI: https://doi.org/10.4230/LIPIcs.ICALP.2018.133

[82] John M. Lewis and Mihalis Yannakakis. 1980. The node-deletion problem for hereditary properties is NP-complete.
The Journal of Computer and System Sciences 20, 2 (1980), 219–230. DOI: https://doi.org/10.1016/0022-0000(80)90060-4

[83] Leonid Libkin. 2004. Elements of Finite Model Theory . Springer. DOI: https://doi.org/10.1007/978-3-662-07003-1
[84] Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. 2020. Elimination distance to bounded degree on

planar graphs. In Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science
(MFCS), Leibniz International Proceedings in Informatics, Vol. 170, 65:1–65:12. DOI: https://doi.org/10.4230/LIPIcs.
MFCS.2020.65

[85] Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. 2020. A parameterized approximation scheme for
min :-cut. In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), 798–809.
DOI: https://doi.org/10.1109/FOCS46700.2020.00079

[86] Dániel Marx and Igor Razgon. 2014. Fixed-parameter tractability of multicut parameterized by the size of the cutset.
The SIAM Journal on Computing 43, 2 (2014), 355–388. DOI: https://doi.org/10.1137/110855247

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.1145/343369.343386
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.1145/2797140
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.4230/LIPIcs.MFCS.2020.65
https://doi.org/10.4230/LIPIcs.MFCS.2020.65
https://doi.org/10.1109/FOCS46700.2020.00079
https://doi.org/10.1137/110855247

Compound Logics for Modification Problems 2:47

[87] Dániel Marx and Ildikó Schlotter. 2012. Obtaining a planar graph by vertex deletion. Algorithmica 62, 3–4 (2012),
807–822. DOI: https://doi.org/10.1007/s00453-010-9484-z

[88] Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2024. Faster parameterized algorithms
for modification problems to minor-closed classes. TheoretiCS 3 (2024), 1–75. DOI: https://doi.org/10.46298/theoret-
ics.24.19

[89] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2012. Sparsity - Graphs, Structures, and Algorithms. Algorithms and
combinatorics, Vol. 28, Springer. DOI: https://doi.org/10.1007/978-3-642-27875-4

[90] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2008. Grad and classes with bounded expansion. I. Decompositions.
European Journal of Combinatorics 29, 3 (2008), 760–776. DOI: https://doi.org/10.1016/j.ejc.2006.07.013

[91] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2008. Grad and classes with bounded expansion. II. Algorithmic
aspects. European Journal of Combinatorics 29, 3 (2008), 777–791. DOI: https://doi.org/10.1016/j.ejc.2006.07.014

[92] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2008. Grad and classes with bounded expansion. III. Restricted
graph homomorphism dualities. European Journal of Combinatorics 29, 4 (2008), 1012–1024. DOI: https://doi.org/10.
1016/j.ejc.2007.11.019

[93] Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. 2021.
Rankwidth meets stability. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
2014–2033. DOI: https://doi.org/10.1137/1.9781611976465.120

[94] Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz. 2020. Linear rankwidth
meets stability. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), 1180–1199. DOI:
https://doi.org/10.1137/1.9781611975994.72

[95] Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz. 2022. Structural properties of the first-order
transduction quasiorder. In Proceedings of the 30th EACSL Annual Conference on Computer Science Logic (CSL), Leibniz
International Proceedings in Informatics, Vol. 216, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 31:1–31:16.
DOI: https://doi.org/10.4230/LIPIcs.CSL.2022.31

[96] Patrice Ossona de Mendez, Michał Pilipczuk, and Sebastian Siebertz. 2022. Transducing paths in graph classes with
unbounded shrubdepth. European Journal of Combinatorics (2022), 103660. DOI: https://doi.org/10.1016/j.ejc.2022.
103660

[97] Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny. 2022. Algorithms
and Data Structures for First-Order Logic with Connectivity Under Vertex Failures. In Proceedings of the 49th
International Colloquium on Automata, Languages, and Programming (ICALP), Leibniz International Proceedings in
Informatics, Vol. 229, 102:1–102:18. DOI: https://doi.org/10.4230/LIPIcs.ICALP.2022.102

[98] Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial
Theory, Series B 63, 1 (1995), 65–110. DOI: https://doi.org/10.1006/jctb.1995.1006

[99] Neil Robertson and Paul D. Seymour. 2004. Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory,
Series B 92, 2 (2004), 325–357. DOI: https://doi.org/10.1016/j.jctb.2004.08.001

[100] Ignasi Sau and Uéverton dos Santos Souza. 2021. Hitting forbidden induced subgraphs on bounded treewidth graphs.
Information and Computation 281 (2021), 104812. DOI: https://doi.org/10.1016/j.ic.2021.104812

[101] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2020. An FPT-algorithm for recognizing :-apices of minor-
closed graph classes. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming
(ICALP), Leibniz International Proceedings in Informatics, Vol. 168, 95:1–95:20. DOI: https://doi.org/10.4230/LIPIcs.
ICALP.2020.95

[102] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2022. :-apices of minor-closed graph classes. II. Parame-
terized algorithms. ACM Transactions on Algorithms 18, 3 (2022), Article 21, 30 pages. DOI: https://doi.org/10.1145/
3519028

[103] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2023. :-apices of minor-closed graph classes. I. Bounding
the obstructions. Journal of Combinatorial Theory, Series B 161 (2023), 180–227. DOI: https://doi.org/10.1016/j.jctb.
2023.02.012

[104] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. 2024. A more accurate view of the flat wall theorem.
Journal of Graph Theory 107, 2 (2024), 263–297. DOI: https://doi.org/10.1002/jgt.23121

[105] Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M. Thilikos, and Alexandre Vigny. 2024.
Model checking disjoint-paths logic on topological-minor-free graph classes. In Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, New York, NY, Article 68, 12 pages. DOI: https:
//doi.org/10.1145/3661814.3662089

[106] Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. 2023. First-order logic with connectivity operators.
ACM Transactions on Computational Logic 24, 4 (2023), 30:1–30:23. DOI: https://doi.org/10.1145/3595922

[107] Detlef Seese. 1996. Linear time computable problems and first-order descriptions.Mathematical Structures in Computer
Science 6, 6 (1996), 505–526. DOI: https://doi.org/10.1017/S0960129500070079

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.46298/theoretics.24.19
https://doi.org/10.46298/theoretics.24.19
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2006.07.014
https://doi.org/10.1016/j.ejc.2007.11.019
https://doi.org/10.1016/j.ejc.2007.11.019
https://doi.org/10.1137/1.9781611976465.120
https://doi.org/10.1137/1.9781611975994.72
https://doi.org/10.4230/LIPIcs.CSL.2022.31
https://doi.org/10.1016/j.ejc.2022.103660
https://doi.org/10.1016/j.ejc.2022.103660
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.ic.2021.104812
https://doi.org/10.4230/LIPIcs.ICALP.2020.95
https://doi.org/10.4230/LIPIcs.ICALP.2020.95
https://doi.org/10.1145/3519028
https://doi.org/10.1145/3519028
https://doi.org/10.1016/j.jctb.2023.02.012
https://doi.org/10.1016/j.jctb.2023.02.012
https://doi.org/10.1002/jgt.23121
https://doi.org/10.1145/3661814.3662089
https://doi.org/10.1145/3661814.3662089
https://doi.org/10.1145/3595922
https://doi.org/10.1017/S0960129500070079

2:48 F. V. Fomin et al.

[108] Paul D. Seymour and Robin Thomas. 1993. Graph searching and a min-max theorem for tree-width. Journal of
Combinatorial Theory, Series B 58, 1 (1993), 22–33. DOI: https://doi.org/10.1006/jctb.1993.1027

[109] Sebastian Siebertz. 2016. Nowhere Dense Classes of Graphs Characterisations and Algorithmic Meta-Theorems. Ph.D.
Dissertation. Universitätsverlag der TU, Berlin. DOI: https://doi.org/10.14279/depositonce-5011

[110] Jan van den Heuvel, Stephan Kreutzer, Michał Pilipczuk, Daniel A. Quiroz, Roman Rabinovich, and Sebastian
Siebertz. 2017. Model-checking for successor-invariant first-order formulas on graph classes of bounded expansion.
In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society,
1–11. DOI: https://doi.org/10.1109/LICS.2017.8005115

[111] Mihalis Yannakakis. 1981. Edge-deletion problems. The SIAM Journal on Computing 10, 2 (1981), 297–309. DOI:
https://doi.org/10.1137/0210021

Appendices
A Transductions
We refer the reader to [30] for a broader discussion on logical structures and monadic second-order
logic, from the viewpoint of graphs (see also [83]).

A.1 Transductions
In this subsection we define (a particular type of) transductions between structures. The definitions
presented here are taken from [12] (see also [30]).

Let g and f be two vocabularies without constant symbols.6 We define a transduction with input
vocabulary g and output vocabulary f to be a set of pairs (A,B), where A is a g-structure and B

is a f-structure. Given a transduction I with input vocabulary g and output vocabulary f and a
g-structure A, we denote by I(A) the set of all f-structures B such that (A,B) ∈ I . Notice that
a transduction is a binary relation between structures that is not necessarily a function. All the
transductions that we will use in our algorithms, are deterministic, in the sense that they are partial
functions (up to isomorphism).

MSO-Transductions. We now defineMSO-transductions, which are a special case of transductions
that can be defined using MSO. We begin by defining three types of transductions:

—Copying. Let g be a vocabulary and : ∈ N≥0. We define :-copying to be the transduction with
input vocabulary g and output vocabulary f = g ∪ {copy, layer1, . . . , layer : }, where copy is a
binary relation symbol, layer8 , 8 ∈ [:] is a unary relation symbol, and every g-structure A,
outputs a f-structure B, where
–+ (B) is the disjoint union of : copies of + (A),
–for every R ∈ g or arity A ≥ 1, RB is the set of all A -tuples over + (B) such that all the
elements of the tuple are in the same copy of + (A) and the original elements of the copies
are in RA,

–copyB is the set of all pairs of elements in + (B) that are copies of the same element of
+ (A), and

–for 8 ∈ [:], layerB8 is the set of all elements that belong to the 8-th copy of + (A).
—Coloring. Let g be a vocabulary and C ∉ g be a unary relation symbol. We define coloring to
be the transduction with input vocabulary g and output vocabulary f = g ∪ {C} that, for
every g-structure A and every (⊆ + (A), outputs the f-structure B(, where + (B) = + (A),
for every R ∈ g, RB = RA, and CB = (.

— Interpreting. Let g and f be two vocabularies. We define interpretation to be the transduc-
tion with input vocabulary g and output vocabulary f as follows: We consider a family

6In this article, we define transductions between structures without constants. We can extend this definition to transductions
between structures with constants with the additional “promise” that these transductions do not change the constants.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.14279/depositonce-5011
https://doi.org/10.1109/LICS.2017.8005115
https://doi.org/10.1137/0210021

Compound Logics for Modification Problems 2:49

of MSO[g] formulas

{idom, iuniv} ∪ {iR}R∈f ,

where the formula idom is a sentence (i.e., it has no free variables), the formula iuniv has
one free variable, and each formula iR has as many free variables as the arity of R.The free
variables in the above formulas are first-order variables. Given a g-structure A such that
A |= idom, the output of the interpretation is the f-structure B, where
–+ (B) = {0 ∈ + (A) | A |= iuniv (0)} and
–for every R ∈ f of arity A ≥ 1, RB = {(01, . . . , 0A) ∈ + (B)A | A |= iR (01, . . . , 0A)}.
If A 6 |= idom, then the output of the interpretation is not defined. Intuitively, the formula idom
specifies the domain of the interpretation, by “filtering out” all structures that do not satisfy
it. Also, the formula iuniv defines the universe of the structure B, while the formulas iR allow
us to “interpret” the relation symbols in f.

A relation I between g-structures and f-structures is called an MSO-transduction with input
vocabulary g and output vocabulary f if there exists a : ∈ N≥1 such that I = R: ◦ . . . ◦ R1, where,
for every 8 ∈ [:], R8 is a copying/coloring/interpreting between g8-structures and f8-structures,
g1 = g, and f: = f.

The reason why we call the above relations MSO-transductions is based on the fact that the
formulas we use in the definition of interpretation are formulas in MSO[g] . We can define FO-
transductions analogously, by demanding that these formulas are FO-formulas. Notice that since
every FO-formula is also an MSO-formula, an FO-transduction is also an MSO-transduction.

Backwards Translation Theorem. The following result allows us to translate a question in one
structure to an “equivalent” question in another structure through MSO-transductions. It is known
as the Backwards Translation Theorem [30, Theorem 1.40] (see also [12, Lemma B.1]). We state it for
sentences, i.e., formulas without free variables.

Proposition 17. Let L be either MSO or FO and let g and f be vocabularies without constant
symbols. Let I be an L-transduction with input vocabulary g and output vocabulary f. If i is a
sentence in L[f], then there is a sentencek ∈ L[g] such that for every f-structure B, if B ∈ I(A)
for some g-structure A, it holds that

A |= k ⇔ B |= i.

We now state the following result. Intuitively, it says that in the case of structures whose Gaifman
graphs have bounded Hadwiger number, one can transduce the original structure from its
Gaifman graph. This was proved in a more general setting in [17, Lemma 3.1] for the case where the
Gaifman graphs have bounded star chromatic number, a property satisfied in classes of bounded
expansion such as classes of bounded Hadwiger number.

Proposition 18. Let g be a vocabulary without constant symbols, let E ∉ g be a binary relation
symbol, let 2 ∈ N, and let C ⊆ STR[g]. There is an FO-transduction I from E-structures to g-structures
such that if all graphs in {�A | A ∈ C} have Hadwiger number at most 2 , then, if � = �A for some
A ∈ C, it holds that I(�) = A.

At this point, we should comment that, due to Proposition 18, we can transduce every structure
that is a model of a formula in CMSOtw ⊲ FO from its Gaifman graph, given that the latter has
bounded has Hadwiger number. This, in turn, together with Proposition 17, the fact that CMSOtw ⊲

FO ⊆ CMSO, and the observation that any FO-transduction is also anMSO-transduction, indicates
that the problem of model-checking for CMSOtw ⊲FO in general structures (whose Gaifman graphs

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:50 F. V. Fomin et al.

have bounded Hadwiger number) is essentially not more general than in graphs (of bounded
Hadwiger number).

A.2 Expressing Stellation and Apex-Projection as Transductions
Lemma 19. Let g be a vocabulary, X ∉ g be a unary relation symbol, and E ∉ g be a binary relation

symbol. stellX is an MSO-transduction from (g ∪ {X})-structures to (g ∪ {X})-structures.

Proof. We will prove that stellX is an MSO-transduction from (g ∪ {X})-structures to (g ∪ {X})-
structures. Let A be a (g ∪ {X})-structure. To obtain B = stellX (A), we first use coloring and add
a new unary predicate U in A and guess an interpretation * of U in + (A), which corresponds
to a choice of representatives, one for every � ∈ cc(�A, XA) . We call A′ this new (g ∪ {X,U})-
structure. Then, we use interpretation to transform A′ to B, by setting idom to be always true,
iuniv (x) = (x ∈ X ∨ x ∈ U), iX (x) = (x ∈ U), and iE (G,~) asks whether there is an edge between G
and ~ or G (resp. ~) belongs to - and ~ (resp. G) belongs to * and G (resp. ~) is adjacent to a vertex
I that is in the same connected component of � \ - as ~ (resp. G). �

Backwards Translating an Apex-Projected Sentence. We now aim to prove that given a vocabulary
g, an ; ∈ N, a collection c of ; constant symbols, and a sentence f ∈ FO[g], we can find a
sentence f ′ ∈ FO[g ∪ c] such that for every g-structure A and every apex-tuple a of A of size
;, (A, a) |= f ′ ⇔ apc (A, a) |= f; . For this reason, we first prove that the function apc is an FO-
transduction and we then use Proposition 17 to obtain the desired sentence f ′ (see Corollary 8).
We stress that, in Section A.1, we avoided to define transductions as relations between structures
of vocabularies with constant symbols, for the sake of simplicity. In our current case, we slightly
abuse the definition of transductions and allow constant symbols, since the function apc leaves
the interpretation of c intact and therfore we can safely extend the definition of transduction and
the statement of Proposition 17 to capture this case. We refer the reader to [30, Section 7.1.2] for a
discussion on transductions between structures with constants.

Observation 20. Let g be a vocabulary, let ; ∈ N, let c be a collection of ; constant symbols, and
let g 〈c〉 be the constant-projection of g ∪ c.The function that maps every (g ∪ c)-structure (A, a) to
the g 〈c〉-structure apc (A, a) is an FO-transduction. Moreover, there is an FO-transduction from g 〈c〉 to
g ∪ c that maps apc (A, a) to (A, a), if �A has bounded Hadwiger number.

B Flat Walls Framework
Here we present the framework on flat walls that was introduced in [104]. In Section B.1 we give
some additional basic definitions and in Section B.2 we define walls, subwalls, and other notions
related to walls. Next, in Section B.3, we give the definitions of renditions and paintings, that are
used in Section B.4 to define flatness pairs. In Section B.4, apart from the definition of flatness pairs,
we present notions like influence, regularity, and tilts. Then, in Section B.5, we state Proposition 26
that is a critical ingredient of our algorithm of Theorem 3 in Section 6.2. Finally, in Section B.6, we
give the definition of a canonical partition of a wall that is useful in Section 5.2.

B.1 Basic Definitions
Given a graph�, we define the detail of�, denoted by detail(�), to be the maximum among |� (�) |
and |+ (�) |. Given a finite collection F of graphs, we set ℓF = max{detail(�) | � ∈ F }.

Dissolutions and Subdivisions. Given a vertex E ∈ + (�) of degree two with neighbors D andF, we
define the dissolution of E to be the operation of deleting E and, if D andF are not adjacent, adding
the edge {D,F}. Given two graphs �,�, we say that � is a dissolution of � if � can be obtained
from� after dissolving vertices of�. Given an edge 4 = {D, E} ∈ � (�), we define the subdivision of

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:51

4 to be the operation of deleting 4, adding a new vertexF and making it adjacent to D and E . Given
two graphs �,�, we say that � is a subdivision of � if � can be obtained from � after subdividing
edges of �.

Contractions and Minors. A graph � ′ is a contraction of a graph �, if � ′ can be obtained from
� by a sequence of edge contractions. Given two graphs �,�, if � is a minor of � then for every
vertex E ∈ + (�) there is a set of vertices in � that are the endpoints of the edges of � contracted
towards creating E .We call this set model of E in �.

B.2 Walls and Subwalls
Walls. Let :, A ∈ N.The (: × A)-grid is the graph whose vertex set is [:] × [A] and two vertices

(8, 9) and (8′, 9 ′) are adjacent if and only if |8 − 8′ | + | 9 − 9 ′ | = 1. An elementary A -wall, for some
odd integer A ≥ 3, is the graph obtained from a (2A × A)-grid with vertices (G,~) ∈ [2A] × [A],
after the removal of the “vertical” edges {(G,~), (G,~ + 1)} for odd G + ~, and then the removal
of all vertices of degree one. Notice that, as A ≥ 3, an elementary A -wall is a planar graph that
has a unique (up to topological isomorphism) embedding in the plane R2 such that all its finite
faces are incident to exactly six edges. The perimeter of an elementary A -wall is the cycle bounding
its infinite face, while the cycles bounding its finite faces are called bricks. Also, the vertices in
the perimeter of an elementary A -wall that have degree two are called pegs, while the vertices
(1, 1), (2, A), (2A − 1, 1), (2A, A) are called corners (notice that the corners are also pegs).

An A -wall is any graph, obtained from an elementary A -wall ,̄ after subdividing edges. A
graph, is a wall if it is an A -wall for some odd A ≥ 3 and we refer to A as the height of, . Given a
graph�, a wall of � is a subgraph of� that is a wall. We insist that, for every A -wall, the number A
is always odd. See Figure B1 for an example of a 7-wall.

We call the vertices of degree three of a wall, 3-branch vertices. A cycle of, is a brick (resp.
the perimeter) of, if its 3-branch vertices are the vertices of a brick (resp. the perimeter) of ,̄ .

We denote by C(,) the set of all cycles of, .We use � (,) in order to denote the perimeter of
the wall, . A brick of, is internal if it is disjoint from � (,).

Subwalls. Given an elementary A -wall ,̄ , some odd 8 ∈ {1, 3, . . . , 2A − 1}, and 8′ = (8 + 1)/2,
the 8′-th vertical path of ,̄ is the one whose vertices, in order of appearance, are (8, 1), (8, 2), (8 +
1, 2), (8 + 1, 3), (8, 3), (8, 4), (8 + 1, 4), (8 + 1, 5), (8, 5), . . . , (8, A − 2), (8, A − 1), (8 + 1, A − 1), (8 + 1, A). Also,
given some 9 ∈ [2, A − 1] the 9-th horizontal path of ,̄ is the one whose vertices, in order of
appearance, are (1, 9), (2, 9), . . . , (2A, 9).

A vertical (resp. horizontal) path of, is one that is a subdivision of a vertical (resp. horizontal)
path of ,̄ . Notice that the perimeter of an A -wall, is uniquely defined regardless of the choice of
the elementary A -wall ,̄ . A subwall of, is any subgraph, ′ of, that is an A ′-wall, with A ′ ≤ A,
and such the vertical (resp. horizontal) paths of, ′ are subpaths of the vertical (resp. horizontal)
paths of, .

Layers. The layers of an A -wall, are recursively defined as follows. The first layer of, is its
perimeter. For 8 = 2, . . . , (A − 1)/2, the 8-th layer of, is the (8 − 1)-th layer of the subwall, ′

obtained from, after removing from, its perimeter and removing recursively all occurring
vertices of degree one. We refer to the (A − 1)/2-th layer as the inner layer of, .The central vertices
of an A -wall, are its two 3-branch vertices that do not belong to any of its layers and are connected
by a path of, that does not intersect any layers of, . See Figure B1 for an illustration.

Central Walls. Given an A -wall, and an odd @ ∈ N≥3 where @ ≤ A, we define the central
@-subwall of,, denoted by, (@) , to be the @-wall obtained from, after removing its first (A −@)/2
layers and all occurring vertices of degree one.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:52 F. V. Fomin et al.

Fig. B1. A 7-wall and its three layers, depicted in alternating red and blue. The perimeter of the wall is the
outermost red cycle. The pink-colored vertices of degree three are the 3-branch vertices of the wall. The
orange-highlighted path is the second vertical path of the wall.

Tilts. The interior of a wall, is the graph obtained from, if we remove from it all edges of
� (,) and all vertices of � (,) that have degree two in, . Given two walls, and ,̃ of a graph
�, we say that ,̃ is a tilt of, if ,̃ and, have identical interiors.

B.3 Paintings and Renditions
In this subsection we present the notions of renditions and paintings, originating in the work of
Robertson and Seymour [98]. The definitions presented here were introduced by Kawarabayashi,
Thomas, and Wollan [72] (see also [104]).

Paintings. A closed (resp. open) disk is a set homeomorphic to the set {(G,~) ∈ R2 | G2 + ~2 ≤ 1}
(resp. {(G,~) ∈ R2 | G2 + ~2 < 1}). Let Δ be a closed disk. Given a subset - of Δ, we denote its
closure by -̄ and its boundary by bd(-). A Δ-painting is a pair Γ = (* , #) where

—# is a finite set of points of Δ,
—# ⊆ * ⊆ Δ, and
—* \ # has finitely many arcwise-connected components, called cells, where, for every cell 2,

–the closure 2̄ of 2 is a closed disk and
– |2̃ | ≤ 3, where 2̃ := bd(2) ∩ # .

We use the notation* (Γ) := * , # (Γ) := # and denote the set of cells of Γ by� (Γ). For convenience,
we may assume that each cell of Γ is an open disk of Δ. Notice that, given a Δ-painting Γ, the
pair (# (Γ), {2̃ | 2 ∈ � (Γ)}) is a hypergraph whose hyperedges have cardinality at most three and
Γ can be seen as a plane embedding of this hypergraph in Δ. See Figure B2 for an example of a
Δ-painting, where Δ is the disk depicted in white (bounded by the grey area), # corresponds to the
blue-colored points of Δ, and the cells of* are the pink-colored regions.

Renditions. Let� be a graph and let Ω be a cyclic permutation of a subset of+ (�) that we denote
by + (Ω). By an Ω-rendition of � we mean a triple (Γ, f, c), where

(a) Γ is a Δ-painting for some closed disk Δ,
(b) c : # (Γ) → + (�) is an injection, and
(c) f assigns to each cell 2 ∈ � (Γ) a subgraph f (2) of �, such that

(1) � =
⋃
2∈� (Γ) f (2),

(2) for distinct 2, 2′ ∈ � (Γ), f (2) and f (2′) are edge-disjoint,
(3) for every cell 2 ∈ � (Γ), c (2̃) ⊆ + (f (2)),
(4) for every cell 2 ∈ � (Γ), + (f (2)) ∩⋃

2′∈� (Γ)\{2 } + (f (2′)) ⊆ c (2̃), and

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:53

Fig. B2. A graph � together with an Ω-rendition of � .

(5) c (# (Γ) ∩ bd(Δ)) = + (Ω), such that the points in # (Γ) ∩ bd(Δ) appear in bd(Δ) in the
same ordering as their images, via c, in Ω.

See Figure B2 for an example of an Ω-rendition of a graph � .

B.4 Flatness Pairs
In this subsection we define the notion of a flat wall, originating in the work of Robertson and
Seymour [98] and later used in [72]. Here, we define flat walls as in [104].

Flat Walls. Let � be a graph and let, be an A -wall of �, for some odd integer A ≥ 3. We say
that a pair of vertex sets (%,�), where %,� ⊆ � (,), is a choice of pegs and corners for, if,
is the subdivision of an elementary A -wall ,̄ where % and � are the pegs and the corners of ,̄ ,

respectively (clearly, � ⊆ %). To get more intuition, notice that a wall, can occur in several
ways from the elementary wall ,̄ , depending on the way the vertices in the perimeter of ,̄ are
subdivided. Each of them gives a different selection (%,�) of pegs and corners of, .

We say that, is a flat A -wall of� if there is a separation (-,.) of� and a choice (%,�) of pegs
and corners for, such that:

—+ (,) ⊆ .,
—% ⊆ - ∩ . ⊆ + (� (,)), and
— if Ω is the cyclic ordering of the vertices - ∩ . as they appear in � (,), then there exists an
Ω-rendition (Γ, f, c) of � [.] .

We say that, is a flat wall of � if it is a flat A -wall for some odd integer A ≥ 3.

Flatness Pairs. Given the above, we say that the choice of the 7-tuple ℜ = (-,., %,�, Γ, f, c)
certifies that, is a flat wall of � . We call the pair (,,ℜ) a flatness pair of � and define the height
of the pair (,,ℜ) to be the height of, .We use the term cell of ℜ in order to refer to the cells of Γ.

We call the graph � [.] the ℜ-compass of, in �, denoted by compassℜ (,). It is easy to see
that there is a connected component of compassℜ (,) that contains the wall, as a subgraph. We
can assume that compassℜ (,) is connected, updating ℜ by removing from . the vertices of all
the connected components of compassℜ (,) except of the one that contains, and including them
in - (Γ, f, c can also be easily modified according to the removal of the aforementioned vertices

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:54 F. V. Fomin et al.

from .). We define the flaps of the wall, in ℜ as flapsℜ (,) := {f (2) | 2 ∈ � (Γ)}. Given a flap
� ∈ flapsℜ (,), we define its base as m� := + (�) ∩ c (# (Γ)) . A cell 2 of ℜ is untidy if c (2̃) contains
a vertex G of, such that two of the edges of, that are incident to G are edges of f (2). Notice
that if 2 is untidy then |2̃ | = 3. A cell 2 of ℜ is tidy if it is not untidy. The notion of tidy/untidy cell
as well as the notions that we present in the rest of this subsection have been introduced in [104].

Cell Classification. Given a cycle � of compassℜ (,), we say that � is ℜ-normal if it is not a
subgraph of a flap � ∈ flapsℜ (,). Given an ℜ-normal cycle � of compassℜ (,), we call a cell 2 of
ℜ �-perimetric if f (2) contains some edge of�. Since every�-perimetric cell 2 contains some edge
of � and |mf (2) | ≤ 3, we observe the following.

Observation 21. For every pair (�,�′) of ℜ-normal cycles of compassℜ (,) such that + (�) ∩
+ (�′) = ∅, there is no cell of ℜ that is both �-perimetric and �′-perimetric.

Notice that if 2 is �-perimetric, then c (2̃) contains two points ?, @ ∈ # (Γ) such that c (?) and
c (@) are vertices of � where one, say % in2 , of the two (c (?), c (@))-subpaths of � is a subgraph of
f (2) and the other, denoted by %out2 , (c (?), c (@))-subpath contains at most one internal vertex
of f (2), which should be the (unique) vertex I in mf (2) \ {c (?), c (@)}.We pick a (?, @)-arc �2 in
2̂ := 2 ∪ 2̃ such that c−1 (I) ∈ �2 if and only if % in2 contains the vertex I as an internal vertex.

We consider the circle � =
⋃{�2 | 2 is a �- perimetric cell of ℜ} and we denote by Δ� the

closed disk bounded by � that is contained in Δ. A cell 2 of ℜ is called �-internal if 2 ⊆ Δ�
and is called �-external if Δ� ∩ 2 = ∅. Notice that the cells of ℜ are partitioned into �-internal,
�-perimetric, and �-external cells.

Let 2 be a tidy�-perimetric cell of ℜ where |2̃ | = 3. Notice that 2 \�2 has two arcwise-connected
components and one of them is an open disk �2 that is a subset of Δ� . If the closure �2 of �2
contains only two points of 2̃ then we call the cell 2 �-marginal. See Figure B3 for a figure illustrating
the above notions. We refer the reader to [104] for more figures.

Influence. For every ℜ-normal cycle � of compassℜ (,) we define the set

influenceℜ (�) = {f (2) | c is a cell of ℜ that is not C-external}.
A wall, ′ of compassℜ (,) isℜ-normal if � (, ′) isℜ-normal. Notice that every wall of, (and

hence every subwall of,) is anℜ-normal wall of compassℜ (,).We denote bySℜ (,) the set of all
ℜ-normal walls of compassℜ (,). Given a wall, ′ ∈ Sℜ (,) and a cell 2 of ℜ, we say that 2 is, ′-
perimetric/internal/external/marginal if 2 is � (, ′)-perimetric/internal/external/marginal, respec-
tively. We also use , ′ , Δ, ′ , influenceℜ (, ′) as shortcuts for � (, ′) , Δ� (, ′) , influenceℜ (� (, ′)),
respectively.

Regular Flatness Pairs. We call a flatness pair (,,ℜ) of a graph � regular if none of its cells is
, -external,, -marginal, or untidy.

Tilts of Flatness Pairs. Let (,,ℜ) and (,̃ ′, ℜ̃′) be two flatness pairs of a graph � and let, ′ ∈
Sℜ (,). We assume that ℜ = (-,., %,�, Γ, f, c) and ℜ̃′ = (- ′, . ′, % ′,�′, Γ′, f ′, c ′). We say that
(,̃ ′, ℜ̃′) is a, ′-tilt of (,,ℜ) if

—ℜ̃′ does not have ,̃ ′-external cells,
—,̃ ′ is a tilt of, ′,
— the set of ,̃ ′-internal cells of ℜ̃′ is the same as the set of, ′-internal cells of ℜ and their
images via f ′ and f are also the same,

—compass
ℜ̃′ (,̃ ′) is a subgraph of

⋃

influenceℜ (, ′), and
— if 2 is a cell in � (Γ′) \� (Γ), then |2̃ | ≤ 2.

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:55

Fig. B3. This picture is taken from [104]. It depicts a flat wall, in a graph �, the painting of a rendition ℜ

certifying its flatness, a subwall, ′ of,, of height three, which is ℜ-normal, and the ℜ-flaps of,, that
correspond to either, ′-perimetric (depicted in grey) or, ′-internal cells (depicted in green). The circle , ′

is the fat orange cycle. The, ′-marginal cells are depicted in light grey and the untidy cells are those with
dashed boundary.

The next observation follows from the third item above and the fact that the cells corresponding
to flaps containing a central vertex of, ′ are all internal (recall that the height of a wall is always
at least three).

Observation 22. Let (,,ℜ) be a flatness pair of a graph � and, ′ ∈ Sℜ (,). For every, ′-tilt
(,̃ ′, ℜ̃′) of (,,ℜ), the central vertices of, ′ belong to the vertex set of compass

ℜ̃′ (,̃ ′).

Also, given a regular flatness pair (,,ℜ) of a graph � and a, ′ ∈ Sℜ (,), for every, ′-tilt
(,̃ ′, ℜ̃′) of (,,ℜ), by definition, none of its cells is ,̃ ′-external, ,̃ ′-marginal, or untidy – thus,
(,̃ ′, ℜ̃′) is regular. Therefore, regularity of a flatness pair is a property that its tilts “inherit.”

Observation 23. If (,,ℜ) is a regular flatness pair of a graph �, then for every, ′ ∈ Sℜ (,),
every, ′-tilt of (,,ℜ) is also regular.

We next present one of the two main results of [104] (see [104, Theorem 5]).

Proposition 24. There exists an algorithm that given a graph �, a flatness pair (,,ℜ) of �, and
a wall, ′ ∈ Sℜ (,), outputs a, ′-tilt of (,,ℜ) in time O(= +<).

We conclude this subsection with the Flat Wall theorem and, in particular, the version proved by
Chuzhoy [26], restated in our framework (see [104, Proposition 7]).

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

2:56 F. V. Fomin et al.

Fig. B4. A 5-wall and its canonical partition Q . The orange bag is the external bag &ext .

Proposition 25. There exist two functions 55 : N → N and 56 : N → N, where the images of 55 are
odd numbers, such that if A ∈ N≥3 is an odd integer, C ∈ N≥1, � is a graph that does not contain C as
a minor, and, is an 55 (C) · A -wall of �, then there is a set � ⊆ + (�) with |�| ≤ 56 (C) and a flatness
pair (,̃ ′, ℜ̃′) of � \� of height A . Moreover, 55 (C) = O(C2) and 56 (C) = C − 5.

B.5 Flat Walls with Compasses of Bounded Treewidth
The following result was proved in [104, Theorem 8]. It is a version of the Flat Wall theorem,
originally proved in [98]. The proof in [104, Theorem 8] is strongly based on the proof of an
improved version of the Flat Wall theorem given by of Kawarabayashi, Thomas, and Wollan [72]
(see also [26, 56]).

Proposition 26. There is a function 57 : N → N and an algorithm that receives as input a graph
�, an odd integer A ≥ 3, and a C ∈ N≥1, and outputs, in time 2OC (A 2) · =, one of the following:

—a report that C is a minor of �,
—a tree decomposition of � of width at most 57 (C) · A, or
—a set � ⊆ + (�), where |�| ≤ 56 (C), a regular flatness pair (,,ℜ) of � \ � of height A, and a
tree decomposition of the ℜ-compass of, of width at most 57 (C) · A . (Here 56 (C) is the function
of Proposition 25 and 57 (C) = 2O(C2 log C) .)

B.6 Canonical Partitions
Canonical Partitions. Let A ≥ 3 be an odd integer, let, be an A -wall, and let %1, . . . , %A (resp.

!1, . . . , !A) be its vertical (resp. horizontal) paths. For every even (resp. odd) 8 ∈ [2, A − 1] and every
9 ∈ [2, A − 1], we define� (8, 9) to be the subpath of %8 that starts from a vertex of %8 ∩! 9 and finishes
at a neighbor of a vertex in ! 9+1 (resp. ! 9−1), such that %8 ∩ ! 9 ⊆ � (8, 9) and � (8, 9) does not intersect
! 9+1 (resp. ! 9−1). Similarly, for every 8, 9 ∈ [2, A − 1], we define � (8, 9) to be the subpath of ! 9 that
starts from a vertex of %8 ∩! 9 and finishes at a neighbor of a vertex in %8−1, such that %8 ∩! 9 ⊆ � (8, 9)

and � (8, 9) does not intersect %8−1 .
For every 8, 9 ∈ [2, A − 1], we denote by & (8, 9) the graph � (8, 9) ∪ � (8, 9) and by &ext the graph

, \⋃8, 9∈[2,A−1] &8, 9 . Now consider the collection Q = {&ext} ∪ {&8, 9 | 8, 9 ∈ [2, A − 1]} and observe
that the graphs in Q are connected subgraphs of, and their vertex sets form a partition of + (,).
We call Q the canonical partition of, . Also, we call every &8, 9 , for 8, 9 ∈ [2, A − 1], an internal bag
of Q, while we refer to&ext as the external bag of Q . See Figure B4 for an illustration of the notions
defined above.

Let (,,ℜ) be a flatness pair of a graph�. Consider the canonical partition Q of, .We enhance
the graphs of Q so to include in them all the vertices of � by applying the following procedure.
We set Q̃ := Q and, as long as there is a vertex G ∈ + (compassℜ (,)) \+ (⋃Q̃) that is adjacent to
a vertex of a graph & ∈ Q̃, update Q̃ := Q̃ \ {&} ∪ {&̃}, where &̃ = compassℜ (,) [{G} ∪+ (&)] .

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

Compound Logics for Modification Problems 2:57

Since compassℜ (,) is a connected graph, in this way we define a partition of the vertices of
compassℜ (,) into subsets inducing connected graphs. We call the &̃ ∈ Q̃ that contains &ext as
a subgraph the external bag of Q̃, and we denote it by &̃ext, while we call internal bags of Q̃ all
graphs in Q̃ \ {&̃ext}. Moreover, we enhance Q̃ by adding all vertices of � \+ (compassℜ (,)) in
its external bag, i.e., by updating &̃ext := � [+ (&̃ext) ∪ + (� \ + (compassℜ (,)))] . We call such
a partition Q̃ a (,,ℜ)-canonical partition of �. Notice that a (,,ℜ)-canonical partition of � is
not unique, since the graphs in Q can be “expanded” arbitrarily when introducing vertex G . We
stress that every internal bag of a (,,ℜ)-canonical partition of� contains vertices of at most three
bricks of, .

Received 25 May 2023; revised 21 June 2024; accepted 21 August 2024

ACM Transactions on Computational Logic, Vol. 26, No. 1, Article 2. Publication date: December 2024.

	Abstract
	1 Introduction
	1.1 State of the Art and Our Contribution
	1.2 Our Results

	2 Basic Definitions
	2.1 Integers, Sets, and Tuples
	2.2 Graphs
	2.3 FO and MSO
	2.4 Our Compound Logic

	3 Overview of the Proof
	3.1 General Scheme of the Algorithm
	3.2 Defining the Characteristic of a Wall

	4 An Annotated Version of the Problem
	4.1 Dealing with Apices
	4.2 Introducing an Annotation

	5 Preliminary Tools
	5.1 A Variant of Courcelle's Theorem
	5.2 Dispersion of Sets in Flatness Pairs

	6 The Algorithm
	6.1 Reducing the Instance
	6.2 The Algorithm of Theorem S1.Thmtheorem33
	6.3 Sketch of Proof of Lemma S6.Thmtheorem216

	7 Proof of Lemma S6.Thmtheorem216
	7.1 Extended Compasses of Flatness Pairs
	7.2 Out-Signature
	7.3 In-Signature
	7.4 An Algorithm for Finding Equivalent Flatness Pairs
	7.5 Proof of Correctness of the Algorithm

	8 Limitations and Further Directions
	8.1 Natural Limitations
	8.2 Further Research

	References
	A Transductions
	A.1 Transductions
	A.2 Expressing Stellation and Apex-Projection as Transductions

	B Flat Walls Framework
	B.1 Basic Definitions
	B.2 Walls and Subwalls
	B.3 Paintings and Renditions
	B.4 Flatness Pairs
	B.5 Flat Walls with Compasses of Bounded Treewidth
	B.6 Canonical Partitions

