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We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in
undirected graphs, where the length of the path could be unbounded in the parameter. The first application of
our method is as follows. We give a randomized algorithm, that given a colored =-vertex undirected graph,
vertices B and C , and an integer : , finds an (B, C)-path containing at least : different colors in time 2:=O(1) .
This is the first FPT algorithm for this problem, and it generalizes the algorithm of Björklund, Husfeldt, and
Taslaman on finding a path through : specified vertices. It also implies the first 2:=O(1) time algorithm for
finding an (B, C)-path of length at least : . Our method yields FPT algorithms for even more general problems.
For example, we consider the problem where the input consists of an =-vertex undirected graph � , a matroid
" whose elements correspond to the vertices of � and which is represented over a finite field of order @, a
positive integer weight function on the vertices of� , two sets of vertices (,) ⊆ + (�), and integers ?, :,F , and
the task is to find ? vertex-disjoint paths from ( to ) so that the union of the vertices of these paths contains
an independent set of" of cardinality : and weightF , while minimizing the sum of the lengths of the paths.
We give a 2?+O(:

2 log(@+: ) )=O(1)F time randomized algorithm for this problem.
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1 Introduction
The study of long cycles and paths in graphs is a popular research direction in parameterized
algorithms. Starting from the color-coding of Alon et al. [1], powerful algorithmic techniques have
been developed [2, 3, 15, 16, 21, 29, 46, 49], see also [14, Chapter 10], for finding long cycles and
paths in graphs. However, most of the known methods are applicable only in the scenario when
the size of the solution is bounded by the parameter. Let us explain what we mean by that by the
following example.
Consider two very related problems, :-Cycle and Longest Cycle. In both problems, we are

given a graph � and an integer parameter : .1 In :-Cycle we ask whether � has a cycle of length
exactly : . In Longest Cycle, we ask whether � contains a cycle of length at least : . While in the
first problem any solution should have exactly : vertices, in the second problem the solution could
be even a Hamiltonian cycle on = vertices. The essential difference in applying color-coding (and
other methods) to these problems is that for :-Cycle, a random coloring of the vertices of � in :

colors will color the vertices of a solution cycle with different colors with probability 4−: . Such
information about colorful solutions allows dynamic programming to solve :-Cycle (as well as
the related :-Path problem, the problem of finding a path of length exactly :). However, since a
solution cycle for Longest Cycle is not upper-bounded by a function of : , the coloring argument
falls apart. As Fomin et al. write in [21] “This is why color-coding and other techniques applicable
to :-Path do not seem to work here.” Sometimes, like in the case of Longest Cycle, a simple “edge
contraction” trick, see [14, Exercise 5.8], allows reducing the problem to :-Cycle. We are not aware
of general methods for solving problems related to cycles and paths when the size of the solution is
not upper-bounded by the parameter.
The main result of this article is a theorem that allows deriving algorithms for various parame-

terized problems about paths, cycles, and beyond, in the scenario when the size of the solution is
not upper-bounded by the parameter. We discuss numerous applications of the theorem in the next
section.
Our theorem is about finding a :-colored ((,) )-linkage in a colored graph. Let � be a graph, (

and ) be sets of vertices of � , and ? be a positive integer. An ((,) )-linkage of order ? is a set P of
? = |P | vertex-disjoint paths, each starting in ( and ending in ) . The set of vertices in the paths of
P is denoted by + (P). The total length (or often just the length) of an ((,) )-linkage is the total
number of vertices in its paths, i.e., |+ (P)|. For a coloring 2 : + (�) → [=] of � , an ((,) )-linkage
P is called :-colored if + (P) contains at least : different colors, i.e., |2 (+ (P)) | ≥ : . Let us note
that in the above definition the sets ( and ) are not necessarily disjoint (in Section 4 we show how
to reduce to the case that |( | = |) | = ? and ( and ) are disjoint) and that the coloring 2 is not
necessarily a proper coloring in the graph-coloring sense. We also note that for vertices B, C ∈ + (�),
an ({B}, {C})-linkage of order 1 corresponds to an (B, C)-path. Our main result is the following:

Theorem 1.1. There is a randomized algorithm, that given as an input an =-vertex graph � , a
coloring 2 : + (�) → [=] of � , two sets of vertices (,) ⊆ + (�), and integers ?, : , in time 2:+?=O(1)

either returns a :-colored ((,) )-linkage of order ? and of the minimum total length, or determines
that � has no :-colored ((,) )-linkage of order ? .

Few remarks are in order. First, Theorem 1.1 cannot be extended to directed graphs. It is easy
to show, see Proposition 3.2, that finding a 2-colored (B, C)-path in a 2-colored directed graph is
already NP-hard. Second, by another simple reduction, see Proposition 3.3, it can also be observed
that if the time complexity of Theorem 1.1 could be improved to (2 − Y):+?=O(1) for Y > 0, even in
the case when ? = 1, � is colored with : colors, and ( = ) = + (�), then Set Cover would admit a

1In this article, graphs are assumed to be undirected if it is not explicitly mentioned to be otherwise.
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(2 − Y)= (<=)O(1) time algorithm, contradicting the Set Cover Conjecture (SeCoCo) of Cygan
et al. [13]. We also remark that actually we prove an even more general result than Theorem 1.1,
our result in full generality will be stated as Theorem 1.4. It can be also observed that by a simple
reduction that subdivides edges, the coloring could be on the edges of � instead of vertices (or on
both vertices and edges).
The algorithm in Theorem 1.1 invokes the DeMillo–Lipton–Schwartz–Zippel lemma for poly-

nomial identity testing and thus is “heavily” randomized. We do not know whether Theorem 1.1
could be derandomized. The special case of Theorem 1.1 when the coloring is a bijection, the
problem of finding an ((,) )-linkage of order ? and of length at least : , can be reduced to the
(rooted) topological minor containment. To see why, observe that if we enumerate all possible
collections P of ? paths of total length : , then we can check for each collection P if it is contained
as a rooted topological minor in � . The topological minor containment admits a deterministic FPT
algorithm parameterized by the size of the pattern graph [24]. However, the running time of the
algorithm of Grohe et al. [24] is bounded by a tower of exponents in : and ? . Our next theorem
gives a deterministic algorithm for computing an ((,) )-linkage of order ? and of length at least :
whose running time is single-exponential in the the parameter : for any fixed value of ? . The other
advantage of the algorithm in Theorem 1.2 is that it works on directed graphs too. In the following
statement, a directed ((,) )-linkage is defined analogously to an ((,) )-linkage but is composed of
directed paths from ( to ) .

Theorem 1.2. There is a deterministic algorithm that, given an =-vertex digraph � , two sets of
vertices (,) ⊆ + (�), an integer ? , and an integer: , in time ?O(:? )=O(1) either returns a directed ((,) )-
linkage of order ? and of total length at least : , or determines that � has no directed ((,) )-linkage of
order ? and total length at least : .

1.1 Applications of Theorem 1.1
Theorem 1.1 implies fixed-parameter tractable (FPT) algorithms for several problems. It encom-
passes a number of fixed-parameter-tractability results and improves the running times for several
fundamental well-studied problems.

Longest path/cycle. When the coloring 2 : + (�) → [=] is a bijection, and thus all vertices of
� are colored in different colors, then an ((,) )-linkage is :-colored if and only if its length is at
least : . In this case, Theorem 1.1 outputs an ((,) )-linkage of order ? with at least : vertices in
time 2:+?=O(1) . In particular, for ? = 1 it implies that Longest (B, C)-Path (i.e., for B, C ∈ + (�) and
: ≥ 0, to decide whether there is an (B, C)-path of length at least :) is solvable in time 2:=O(1) .
Since one can solve Longest Cycle (to decide whether � contains a cycle of length at least :)
by solving for every edge BC ∈ � (�) the Longest (B, C)-Path problem, Theorem 1.1 also yields an
algorithm solving Longest Cycle in time 2:=O(1) . To the best of our knowledge, the previous
best known algorithm for Longest (B, C)-Path runs in time 4:=O(1) [22, 46] and the previous best
known algorithm for Longest Cycle runs in time 1.662:=O(1) = 2.76:=O(1) [3, 49]. The former
algorithm follows by combining the result of Fomin et al. [22] stating if an (B, C)-path of length
exactly : can be found in C (�,:)=O(1) time, then Longest (B, C)-Path can be solved in C (�, 2:)=O(1)
time with the algorithm of Williams [46]. The latter algorithm follows by combining the result
of Zehavi [49] stating that Longest Cycle is solvable in time C (�, 2:)=O(1) , where C (�,:) is the
best known running time for solving :-Path, with the fastest algorithm for :-Path of Björklund
et al. [3].

For ? = 2, the problem of finding an ((,) )-linkage of length at least : is equivalent to the problem
of finding a cycle of length at least : passing through a given pair of vertices B, C . A randomized
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36:4 F. V. Fomin et al.

algorithm of running time (24):=O(1) for this problem, known as Longest (B, C)-Cycle, was given
by Fomin et al. in [19, Theorem 4] (see also [20]).

As we already have mentioned the problem of finding an ((,) )-linkage of order ? and of length
at least : can be reduced to the (rooted) topological minor containment. For ? ≥ 3, Theorems 1.2
and 1.1 provide the first (randomized and deterministic) single-exponential in : + ? and single-
exponential in : for constant ? , respectively, algorithms for computing an ((,) )-linkage of order
? and of length at least : . For directed graphs, Theorem 1.2 gives the first FPT algorithm for the
problem parameterized by : + ? .

) -cycle. In the ) -Cycle problem, we are given a graph � and a set ) ⊆ + (�) of terminals.
The task is to decide whether there is a cycle passing through all terminals [4, 28, 45]. By the
celebrated result of Björklund et al. [4], ) -Cycle is solvable in time 2 |) |=O(1) , and their algorithm
in fact returns the shortest such cycle. To solve ) -Cycle as an application of Theorem 1.1, we
do the following. We pick a terminal vertex C ∈ ) , create a twin vertex B of C (i.e., a vertex B

with # (B) = # (C)), and color B and C with color 1. We then color all non-terminal vertices of �
with color 1 too. The remaining terminal vertices ) \ {C} we color in |) | − 1 colors from 2 to |) |,
which ensures that no color repeats. Then � has a ) -cycle if and only if there is a |) |-colored
({B}, {C})-linkage of order 1. Therefore, using the algorithm of Theorem 1.1, we can also find the
shortest ) -cycle in time 2 |) |=O(1) . One could use Theorem 1.1 to generalize the algorithmic result
of Björklund et al. in different settings. For example, instead of a cycle passing through all terminal
vertices, we can ask for a cycle containing at least : terminals from a set ) of unbounded size, in
time 2:=O(1) .

Another generalization of ) -Cycle comes from covering terminal vertices by at most ? disjoint
cycles. For example, in the basic vehicle routing problem (VRP) one wants to route ? vehicles,
one route per vehicle, starting and finishing at the depot so that all the customers are supplied
with their demands and the total travel cost is minimized [10]. In the simplified situation when the
clients are viewed as terminal vertices ) of a graph and routes in VRP are required to be disjoint,
this problem turns into the problem of finding a “?-flower” of minimum total length containing all
vertices of ) . By ?-flower we mean a family of ? cycles that intersect only in one (depot) vertex B .
To see this problem as a problem of finding a colored ((,) )-linkage, we replace the depot B by a set
( of 2? vertices whose neighbors are identical to the neighbors of B . Then similar to ) -Cycle, this
variant of VRP reduces to computing a minimum length ( |) | + 1)-colored ((, ()-linkage of order ? ;
thus it is solvable in time 2 |) |+?=O(1) by Theorem 1.1.

Colored paths and cycles. The problems of finding a path, cycle, or another specific subgraph
in a colored graph with the maximum or the minimum number of different colors appear in
different subfields of algorithms, graph theory, optimization, and operations research [6, 8, 11, 12,
25, 31, 32, 42, 47]. In particular, the seminal color-coding technique of Alon et al. [1], builds on an
algorithm finding a colorful path in a :-colored graph, that is, a path of : vertices and : colors, in
time O(2:=).
In the Maximum Colored (B, C)-Path problem, we are given a graph � with a coloring 2 :

+ (�) → [=] and integer : . The task is to identify whether� contains a :-colored (B, C)-path, i.e., an
(B, C)-path with at least : different colors. In the literature, this problem is also known as Maximum
Labeled Path [12] and Maximum Tropical Path [11]. Theorem 1.1 yields the first FPT algorithm
for Maximum Colored (B, C)-Path, as well as for Maximum Colored Cycle (decide whether �
contains a :-colored cycle). It is also the first FPT algorithm for the even more restricted variant of
deciding if a given :-colored graph contains any :-colored path. A recent article of Cohen et al.
[11] claims a O(2:=2) time deterministic algorithm for computing a shortest :-colored path in a
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given :-colored graph. Unfortunately, a closer inspection of the algorithm of Cohen et al. reveals
that it computes a :-colored walk instead of a :-colored path.2
It is interesting to note that the minimization version of the colored (B, C)-path, i.e., to decide

whether there is an (B, C)-path containing at most : different colors, is W[1]-hard even on very
restricted classes of graphs [18].

Beyond graphs: frameworks. Frameworks provide a natural generalization of colored graphs.
Following Lovász [35], we say that a pair (�,"), where � is a graph and " = (+ (�),I) is a
matroid on the vertex set of � , is a framework. Then we seek for a path, cycle, or ((,) )-linkage
in � maximizing the rank function of " . Note that frameworks (�,") where " is a partition
matroid generalize colored graphs. Indeed, the universe + (�) of" is partitioned into color classes
!1, . . . , != and a set � is independent if |� ∩ !8 | ≤ 1 for every color 8 ∈ [=]. However, by plugging
different types of matroids into the definition of the framework, we obtain problems that cannot be
captured by colored graphs.
Frameworks, under the name pregeometric graphs, were used by Lovász in his influential work

on representative families of linear matroids [34]. The problem of computing maximum matching
in frameworks is strongly related to the matchoid, the matroid parity, and polymatroid matching
problems. See theMatching Theory book of Lovász and Plummer [36] for an overview. In their book,
Lovász and Plummer use the term matroid graph for frameworks. In his most recent monograph
[35], Lovász introduces the term frameworks, and this is the term we adopt in our work. More
generally, the problems of computing specific subgraphs of large ranks in a framework belong to the
broad class of problems about submodular function optimization under combinatorial constraints
[7, 9, 40].
Let (�,") be a framework and let A : 2+ (� ) → Z≥0 be the rank function of the matroid" . The

rank of a subgraph � of� is A (+ (� )) and we denote it by A (� ). We say that an ((,) )-linkage P in a
framework (�,") is :-ranked if the rank of P, that is the rank in" of the elements corresponding
to the vertices of the paths of P, is at least : . With additional work involving (lossy) randomized
truncation of the matroid, it is possible to extend Theorem 1.1 from colored graphs to frameworks
over a general class of representable matroids.

Theorem 1.3. There is a randomized algorithm that, given a framework (�,"), where � is an =-
vertex graph and" is represented as a matrix over a finite field of order @, sets of vertices (,) ⊆ + (�),
and an integer : , in time 2?+O(:

2 log(@+: ) )=O(1) either finds a :-ranked ((,) )-linkage of order ? and
of minimum total length, or determines that (�,") has no :-ranked ((,) )-linkage of order ? .

With minor adjustments, Theorem 1.3 can be adapted for frameworks with matroids that are in
general not representable over a finite field of small order. For example, uniform matroids, and more
generally transversal matroids, are representable over a finite field, but the field of representation
must be large enough. Despite this, we can apply Theorem 1.3 to transversal matroids. Similarly, it
is possible to apply Theorem 1.3 in the situation when" is represented by an integer matrix over
rationals with entries bounded by =O(: ) .

Weighted extensions. Theorem 1.1 can be extended into a weighted version in two different
settings. The first setting is to have weights on edges that affect the length of the ((,) )-linkage. It is
easy to see that by subdividing edges, coloring the subdivision vertices with a new “dummy color,”
and increasing : by one, all our algorithms work in the setting when the edges have polynomially
bounded positive integer weights.
2The error in [11] occurs on p. 478. It is claimed that if % is a shortest (D, E)-path that uses the set� of colors and % ′ is a
(F, C )-sub-path of % using colors�′ ⊆ � , then % ′ must be a shortest (F, C )-path among all (F, C )-paths using colors�′.
This claim is correct for walks but not for paths.
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36:6 F. V. Fomin et al.

The second weighted extension is more interesting. It is to have weights on vertices and asking
for an ((,) )-linkage containing a combination of weights and colors in a specific sense. In this
setting, we have in addition to the coloring 2 : + (�) → [=] a weight function we : + (�) → Z≥1.
For integers :,F , we say that an ((,) )-linkage P is (:,F)-colored if its vertices + (P) contain a
set - ⊆ + (P) so that |- | = : , all vertices of - have different colors, and the total weight of - is
exactly we(- ) = ∑

E∈- we(E) = F . This weighted version does not follow by direct reductions but
instead by a modification of Theorem 1.1 (in our main proof, we will directly prove Theorem 1.4
instead of Theorem 1.1).

Theorem 1.4. There is a randomized algorithm that, given as an input an =-vertex graph � , a
coloring 2 : + (�) → [=] of� , a weight function we : + (�) → Z≥1, two sets of vertices (,) , and three
integers ?, :,F , in time 2:+?=O(1)F either returns a (:,F)-colored ((,) )-linkage of order ? and of
minimum total length, or determines that no (:,F)-colored ((,) )-linkages of order ? exist.

Note that Theorem 1.4 implies Theorem 1.1 by setting all vertex weights to 1 and F = : .
Theorem 1.4 allows to derive some applications of our technique that do not directly follow from
Theorem 1.1, which we proceed to describe.

Longest ) -cycle. Recall that in the ) -Cycle problem the task is to find a cycle passing through a
given set) of terminal vertices. Both the algorithm of Björklund et al. [4], and the application of the
algorithm of Theorem 1.1 find in fact the shortest ) -cycle. A natural generalization of the ) -Cycle
problem is the Longest ) -Cycle problem, where in addition to the set ) we are given an integer :
and the task is to find a cycle of length at least : passing through the terminals ) . Theorem 1.4 can
be used to solve Longest ) -Cycle in time 2max( |) |,: )=O(1) as follows. First, if |) | ≥ : , any ) -cycle
has length at least : and we just use the algorithm for ) -Cycle. Otherwise, like in the reduction
for ) -Cycle, we first pick a terminal C ∈ ) and create a twin B of it. Then, we color B and C with
color 1, and all the other vertices with different colors from 2 to =. We also assign weight 3 to the
terminal vertices ) , weight 1 to the vertex B , and weight 2 to all other vertices. We invoke Theorem
1.4 to find an ({B}, {C})-linkage of order 1 that contains a set - of vertices with distinct colors, size
|- | = : , and weight we(- ) = 2: + |) |. Any such set - must be a superset of ) and not contain B ,
and therefore the found path must correspond to a cycle of length at least : passing through the
terminals ) .

Vehicle routing with profits. WithTheorem 1.4, we can give an algorithm for the VRP in a bit more
general setting. In particular, we consider the situation where the depot has : parcels, ? vehicles,
and for each vertex E we know that we obtain a profit we(E) for delivering a parcel to that vertex.
We can use Theorem 1.4 with the same reduction as used for VRP earlier, but instead letting the
coloring of the vertices to be a bijection, to obtain a 2:+?=O(1)F time algorithm for determining
the shortest routing by cycles intersecting only at the depot that yields a total profit ofF .

Longest :-colored ((,) )-linkage. Theorem 1.4 can be also used to derive a longest path version of
Theorem 1.1, in particular an algorithm that given a graph � , a coloring 2 : + (�) → [=], two sets
of vertices (,) ⊆ + (�), three integers :, ?, ℓ , in time 2?+ℓ+:=O(1) outputs a :-colored ((,) )-linkage
of order ? and length at least ℓ . The reduction is as follows. First, if ? ≥ ℓ , then any ((,) )-linkage of
order ? has length at least ℓ , so we can use Theorem 1.1. Otherwise, we are looking for a :-colored
((,) )-linkage that contains at least ℓ − ? edges. We subdivide every edge, and for each created
subdivision vertex we assign a new color and weight 2: . For the original vertices we keep their
colors and assign weight 1. Now, any :-colored ((,) )-linkage of order ? and length at least ℓ
corresponds to an ((,) )-linkage of order ? that contains a set - of vertices with distinct colors,
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size |- | = : + ℓ − ? , and weight exactly we(- ) = (ℓ − ?) · 2: +: (note that here we use the property
that we are looking for an exact weight instead of maximum weight).

Weighted frameworks. We consider a generalization of frameworks into weighted frameworks.
In particular, we say that a triple (�,", we), where � is a graph, " = (+ (�),I) is a matroid,
and we : + (�) → Z≥1 is a weight function, is a weighted framework. Now we can say that an
((,) )-linkage P in a weighted framework (�,", we) is (:,F)-ranked if + (P) contains a set - of
vertices with - ∈ I, size |- | = : , and weight we(- ) = F . By using the same reduction as from
Theorem 1.1 to Theorem 1.3, we obtain the following theorem.

Theorem 1.5. There is a randomized algorithm that given a weighted framework (�,", we), where
� is an =-vertex graph and" is represented as a matrix over a finite field of order @, sets of vertices
(,) ⊆ + (�), and integers ?, :,F , in time 2?+O(:

2 log(@+: ) )=O(1)F either finds a (:,F)-ranked ((,) )-
linkage of order ? and of minimum total length, or determines that (�,", we) has no (:,F)-ranked
((,) )-linkages of order ? .
Note that Theorem 1.5 implies Theorem 1.3 by setting all vertex weights to 1 and settingF = : .
Finally, we remark that even though the correctness argument of our algorithm is technical,

the algorithm itself is simple and practical, consisting of only simple dynamic programming over
walks in the graph. In particular, the observed practicality of the algorithm of Björklund et al. [4]
for ) -Cycle on graphs with thousands of vertices holds also for our algorithm.

Organization of the article. The rest of the article is organized as follows. In Section 2 we overview
our techniques and outline our algorithms. In Section 3 we recall definitions and preliminary results.
In Section 4 we prove the main result, i.e., Theorem 1.4 (recall that Theorem 1.4 implies Theorem
1.1). In Section 5, we give the extensions of our results from colored graphs to frameworks, i.e.,
Theorem 1.5. In Section 6, we prove Theorem 1.2. Finally, we conclude in Section 7.

2 Techniques and Outline
The techniques behind Theorem 1.1 build on the idea of exploiting cancellation of monomials, a
fundamental tool in the area [2–5, 29, 30, 33, 42, 46]. In particular, we build on the cycle-reversal-
based cancellation for) -Cycle introduced by Björklund et al. [4], and on the bijective labeling-based
cancellation introduced by Björklund [2] (see also [3]). The algorithm of Theorem 1.2 builds on
color-coding [1], generalizing ideas that appeared in [19] for finding an (B, C)-cycle of length at
least : .
In Section 2.1, we highlight new ideas of the techniques behind Theorem 1.1 in comparison to

the earlier works. In Section 2.2, we give a more detailed outline of the proof of Theorem 1.1, and
in Section 2.3, we give an outline of the proof of Theorem 1.2.

2.1 New Techniques for Theorem 1.1
Let us first focus on the single path case of Theorem 1.1, i.e., ? = |( | = |) | = 1, corresponding to the
question of finding a :-colored (B, C)-path. Our algorithm is analogous to the algorithm of Björklund
et al. [4] for ) -Cycle, but instead of having the “interesting set” of vertices ) fixed in advance, our
algorithm can choose any interesting set - ⊆ + (�) of vertices of size |- | = : included in the path
“on the fly” in the dynamic programming over the walks. In particular, our dynamic programming
over walks can choose whether it gives a label to a vertex or not. This is the crucial difference to
the earlier works where there would be a set of vertices . ⊆ + (�) fixed in advance so that a vertex
of . would always be given a label if encountered in the walk and the vertices + (�) \ . would
never be given labels [2–4, 42]. This would impose a limitation that because these algorithms work
in time exponential in the number of labels used (i.e., 2: , where : is the number of labels), the
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intersection of the found path with the set . would have to be bounded in the parameter. This
explains why the previous techniques could not yield an FPT-algorithm for Maximum Colored
Path, as no such suitable set . can be fixed in advance.
Our on the fly labeling of vertices allows our algorithm to find paths that visit the same color

multiple times, while still making sure that at least : different colors are visited. In particular, the
interesting set - ⊆ + (�) of vertices in the path that we want to label is any set of size : that
contains : different colors. While our dynamic programming is still a straightforward dynamic
programming over walks, the main difficulty over previous works is the argument that if no
solution exists, then the polynomial that we compute is the zero polynomial, i.e., all unwanted walks
cancel out.
First, the argument of cancellation in the case when two vertices of the same color are given a

label is a now-standard application of the bijective labeling based cancellation of Björklund [2].
Therefore, our main focus is on a cancellation argument for walks that do not form a path and :
vertices of different colors have been labeled. Here, our starting point is the cycle reversal based
cancellation argument for) -Cycle [4], but in our case significantly more arguments are needed. In
particular, the main difference to earlier works caused by the introduction of the on the fly labeling
is that a vertex can occur in a walk as both labeled and unlabeled. Very much oversimplified,
this case is handled by a new label-swap cancellation argument, where a label is moved from a
labeled occurrence of a vertex into an unlabeled occurrence of the vertex. While in isolation this
argument is simple, it causes significant complications when combining with the cycle reversal
based cancellation, in particular because of the “no labeled digons” property we have to impose to
the labeled walk. However, we manage to combine these two arguments into a one very technical
cancellation argument.

Then, let us move from one (B, C)-path to an ((,) )-linkage. This generalization of using cancella-
tion of monomials to find multiple paths is foreshadowed by an algorithm for minimum cost flow
by Lingas and Persson [33]. However, their arguments are considerably simpler due to not having
labels on the walks.

To find ((,) )-linkages, we use a similar dynamic programming to the one path case, extending
the set of walks from ( to) one walk at a time. Here, wemust introduce a new cancellation argument
for the case when two different walks intersect. This argument is again simple in isolation: take
the intersection point of the two intersecting walks and swap the suffixes of them starting from
this point. First, to make sure that this operation does anything we need to make sure that the
suffixes are not equal. We do this by enforcing that the ending vertices of the walks are different
already in the dynamic programming, which adds the extra 2? factor to the time complexity. The
second complication is that again, this suffix swap operation does not play well together with the
other cancellation arguments, and we need to again significantly increase the complexity of the
combination of the three cancellation arguments. In the end, we have to consider 18 different cases
in our cancellation argument, see Definition 4.9.

The extension from Theorem 1.1 to the weighted setting of Theorem 1.4 is a simple modification
of the dynamic programming so that also the weight of the labeled vertices- is stored. Interestingly,
this argument could be extended in principle to look for paths containing a set of vertices - with
any property of - that could be efficiently evaluated in dynamic programming.

2.2 Outline of Theorem 1.1
We first give the outline of the algorithm for the single path case of finding a :-colored (B, C)-path,
and then discuss the generalization to ((,) )-linkage.
Superficially, our approach follows the one of Björklund et al. [4] developed for the ) -cycle

problem. Similar to Björklund et al., for every length ℓ ≥ 1, we define a certain family of walks Cℓ
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and a polynomial 5 (Cℓ ) so that over a finite field of characteristic 2, the polynomial 5 (Cℓ ) is not the
zero polynomial if the graph contains a :-colored (B, C)-path of length ℓ , and the polynomial 5 (Cℓ )
is the zero polynomial if the graph does not contain any :-colored (B, C)-path of length at most ℓ .
Then by making use of the DeMillo–Lipton–Schwartz–Zippel lemma [44, 50], finding a :-colored
(B, C)-path of minimum length boils down to evaluating the polynomial 5 (Cℓ ) for a uniformly
random assignment of values to the variables for increasing ℓ .
With :-colored path, the role similar to the role of terminal vertices in ) -cycle is played by a

subset - of : vertices of the path with : different colors. However, a priori we do not know this
set - , and there could be =: candidates so we cannot enumerate them. Because of that, we define
the polynomial 5 on families of labeled (B, C)-walks in the graph � . A labeled (B, C)-walk of length
ℓ is a pair of sequences, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )), where E1, . . . , Eℓ is an (B, C)-walk of length
ℓ , and A1, . . . , Aℓ is a sequence of numbers from [0, :] indicating a labeling. The interpretation of
the labeling is that A8 = 0 indicates that the index 8 of the walk is not labeled, and A8 ≥ 1 indicates
that the index 8 is labeled with the label A8 , with the interpretation that the vertex E8 at this index is
selected to the set - . We require the labeling to be bijective, meaning that each label from [:] is
used exactly once in the walk, but the “non-label” 0 can repeat multiple times.
Next, we present the definition of the polynomial 5 . We will denote the coloring of the input

graph � by the function 2 : + (�) → [=]. The polynomial 5 is over GF(23+dlog2 =e ), which is a
field of characteristic 2 and order ≥ 8=. With every edge DE ∈ � (�) we associate a variable
5E (DE), with every vertex E ∈ + (�) we associate a variable 5V (E), and with every color-label pair
(G,~) ∈ [=] × [:] we associate a variable 5C (G,~). Here, the purpose of the subscripts V, E, and C
is distinguish the “vertex variables” 5V, “edge variables” 5E, and “color-label pair variables” 5C from
each other. For a labeled walk, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )) we associate the monomial

5 (, ) =
ℓ−1∏
8=1

5E (E8E8+1) ·
∏

8∈[ℓ ] : A8≠0
5V (E8 ) · 5C (2 (E8 ), A8 ).

Because, has length ℓ and the labeling is bijective, 5 (, ) has degree ℓ − 1 + 2: , being a product
of ℓ − 1 edge variables, : vertex variables, and : color-label pair variables. For the family of walks
Cℓ , which we will define immediately, we are interested in the polynomial

5 (Cℓ ) =
∑
, ∈Cℓ

5 (, ).

For vertices B, C and integers :, ℓ , the family Cℓ is the family of all labeled (B, C)-walks

, = ((E1 = B, E2, . . . , Eℓ = C), (A1, . . . , Aℓ )),

of length ℓ , where the labeling is bijective, and which do not contain “labeled digons.” By a labeled
digon we mean a subwalk E8−1E8E8+1 with E8−1 = E8+1 and E8 being a labeled vertex (i.e., A8 ≠ 0). It is
not immediately clear that having no labeled digons is useful, but this will turn out to be crucial
similarly to the property of having no ) -digons in the algorithm for ) -cycle [4].

It is not difficult to prove that when a graph has a :-colored (B, C)-path of length ℓ , then 5 (Cℓ ) is
not the zero polynomial. Indeed, a path has no repeated vertices and thus has no labeled digons, so
if we take a :-colored (B, C)-path E1, . . . , Eℓ and let the labels A1, . . . , Aℓ take the values from [:] on
: vertices with : different colors, then the labeled walk, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )) appears in
Cℓ , and thus a corresponding monomial 5 (, ) appears in 5 (Cℓ ). Because E1, . . . , Eℓ is a path and
the labeled vertices have different colors, we can recover the labeled walk, uniquely from the
monomial 5 (, ), and therefore the monomial 5 (, ) must occur exactly once in the polynomial
5 (Cℓ ) (i.e., with coefficient 1), and therefore 5 (Cℓ ) is not the zero polynomial.
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Fig. 1. An illustration of the walks 01230̂1, 0
←−−
1230̂1 = 03210̂1, and 0̂12301. The gray bags correspond to vertices

of the graph. The squares are copies of the corresponding bag-vertex and these together with the red path
illustrate the order the vertices appear in the walk. Red squares correspond to labeled vertices.

The proof of the opposite statement—absence of a :-colored (B, C)-path of length ≤ ℓ implies
that 5 (Cℓ ) is the zero polynomial—is more complicated. We have to show that in this case each
monomial 5 (, ) for labeled walks, ∈ Cℓ occurs an even number of times in the polynomial
5 (Cℓ ), in particular that there is an even number of labeled walks, ∈ Cℓ for every monomial
5 (, ). The proof is based on constructing an 5 -invariant fixed-point-free involution q on Cℓ , that is,
a function q : Cℓ → Cℓ such that for every, ∈ Cℓ it holds that (1) 5 (, ) = 5 (q (, )) (5 -invariant),
(2) q (, ) ≠, (fixed-point-free), and (3) q (q (, )) =, (involution).

Let us start with the easy part of the proof, that is, constructing such q for labeled walks where
two vertices of the same color are labeled (which could be two different occurrences of the same
vertex). In this case, let 1 ≤ 8 < 9 ≤ ℓ be the lexicographically smallest pair of indices so that
2 (E8 ) = 2 (E 9 ), A8 ≠ 0, and A 9 ≠ 0. The function q works by swapping A8 with A 9 . Because each label
from [:] occurs in A1, . . . , Aℓ exactly once, in particular A8 ≠ A 9 , this results in a different labeled walk
q (, ) with the same monomial 5 (q (, )) = 5 (, ), and moreover, = q (q (, )) holds. After this
argument, we can let C∗ℓ ⊆ Cℓ be the family of labeled walks in Cℓ where all labeled vertices have
different colors, and we know that 5 (C∗ℓ ) = 5 (Cℓ ). Therefore, it suffices to construct an 5 -invariant
fixed-point free involution q : C∗ℓ → C∗ℓ .

Now, the first approach would be to adapt the strategy of Björklund et al. for our purposes. This
will not directly work but in the end we will make a considerable generalization of their approach
to work for our purposes. The essence of their strategy is the following. Since walks from C∗ℓ do
not have labeled digons and because there is no :-colored (B, C)-path of length ≤ ℓ , it is possible
to show that every walk, ∈ C∗ℓ has a “loop,” that is a subwalk E*E starting and ending in the
same vertex E , and so that * is not a palindrome. Then q (, ) is the walk, ′ obtained from, by
reversing* . This approach does not work directly in our case. The reason is that a labeled vertex
could also occur several times in a walk as unlabeled. Because of that reversing a subwalk can
result in a walk with a labeled digon, and thus q could map, outside the family C∗ℓ . For example,
for a walk 01230̂1 (here 0̂ is a labeled vertex), reversing 0

←−−
1230̂1 results in walk 03210̂1 with labeled

digon 10̂1.
A natural “patch” for that type of walks that we introduce (which also will not directly work but

gets us closer to a working q) is to not reverse in this kind of situation but to apply a new type
of operation of swapping a label from one occurrence of a vertex to another occurrence of it. For
example, swapping a label for 01230̂1 would result in 0̂12301. This results in a different labeled
walk contributing the same monomial 5 (, ) to the polynomial. See Figure 1 for an illustration of
the above examples.

However, the new operation of swapping a label brings us new challenges. First of all, swapping
a label could again result in a labeled digon. For example, swapping a label for walk 0̂1202 results in
walk 0120̂2 with labeled digon 20̂2 . An attempt to “patch” this by using a “mixed” strategy—when
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Fig. 2. An illustration of the walks 0̂1202 , 0̂
←−
1202 = 0̂2102 , and 0210̂2 . The gray bags correspond to vertices

of the graph. The squares are copies of the corresponding bag-vertex and these together with the red path
illustrate the order the vertices appear in the walk. Red squares correspond to labeled vertices.

possible, swap a label, otherwise reverse—does not work either. For example, for walk, = 0̂1202

we cannot label swap (that will result in a labeled digon 20̂2), hence we reverse. Thus we obtain
walk, ′ = q (, ) = 0̂

←−
1202 = 0̂2102 . For, ′, swapping a label for 0 is a valid operation, thus

q (, ′) = 0210̂2 , but then we would have that q (q (, )) ≠, . See Figure 2 for an illustration of the
above example.
The situation appears desperate: introducing more patches to the strategy seems to bring us

even more problems. However, a bit surprisingly, in the end we manage to define the function q by
using a delicate strategy on when a subwalk reversal could be applied and when a label swap could
be applied. The situation is made even more complicated as q has to be defined recursively in order
to deal with palindromic loops. All of Section 4.4 is devoted to defining this strategy (for the more
general setting of ((,) )-linkages) and to the proof of its correctness.
To evaluate the polynomial 5 (Cℓ ), we apply quite standard dynamic programming techniques.

In particular, the polynomial can be evaluated in 2:=O(1) time by dynamic programming over
walks, where we store the length of the walk, the last two vertices of the walk, the subset of labels
used so far (causing the 2: factor), and whether the last vertex is labeled. This is similar to the
dynamic programming for ) -cycle [4], with the difference only in that it is chosen in the dynamic
programming which vertices of the walk are labeled, and that instead of a subset of ) we store the
subset of the labels.
To extend the algorithm from a single (B, C)-path to an ((,) )-linkage of order ? , we define a

family Cℓ of labeled walkages and a polynomial 5 (Cℓ ) over them. We note that by a simple reduction
we can assume that |( | = |) | = ? , and that ( and ) are disjoint. A labeled walkage of order ? and
total length ℓ is a ?-tupleW = (, 1, . . . ,, ? ) of labeled walks, 8 , whose sum of the lengths is ℓ .
The family Cℓ contains labeled walkagesW with the following properties: They have order ? , total
length ℓ , the starting vertices are ordered according to a total order on + (�), ending vertices are
distinct (each vertex in ) is an ending vertex of exactly one walk inW), the labeling is bijective
(each label from [:] is used exactly once), and no walk inW contains a labeled digon.

The monomial 5 (W) is then defined as

5 (W) =
?∏
8=1

5 (, 8 ),

and the polynomial 5 (Cℓ ) as

5 (Cℓ ) =
∑
W∈Cℓ

5 (W).
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The definitions are analogous to the single path case, in particular, we recover the previously
explained single path case by setting ? = 1. The proof that if there exists a :-colored ((,) )-linkage
of order ? and total length ℓ then 5 (Cℓ ) is not the zero polynomial is directly analogous to the one
path case. Also the proof that we can consider the smaller family C∗ℓ ⊆ Cℓ where all labeled vertices
have different colors is analogous.
However, to prove that if there is no :-colored ((,) )-linkages of order ? and total length ≤ ℓ

then 5 (C∗ℓ ) is the zero polynomial we need new cancellation arguments beyond the previous cycle
reversal and label swap arguments. In particular, none of the previously considered arguments can
be applied if we have a labeled walkageW = (, 1,, 2) of order two, where both, 1 and, 2 are
labeled paths that intersect. In this case, the new argument is that we could swap the suffixes of, 1

and, 2 starting from the intersection point. For example, for a walkageW = (0123̂4, G~2DE), we
define q (W) = (012DE, G~23̂4). The property that the walks inW have different ending vertices is
crucial here to ensure that q (W) ≠W.
However, with this suffix swap cancellation argument we run also into new challenges. In

particular, the first problem is that the suffix swap could create labeled digons, for example, when
W = (012̂34, G~21D) both of the walks are paths, but swapping the suffix after 2 would create a
labeled digon. In this situation, we can instead use the label swap operation on 2 , from the first
walk to the second, but of course this will add again even more complications. In the end, we
manage to extend the strategy of q from paths to linkages, but it makes the definition of q even
more complicated (see Definition 4.9, the path case uses the case groups A and C, while the linkage
case needs the addition of case groups B and D).

The dynamic programming for ((,) )-linkage is similar to the (B, C)-path, extending the walks in
the walkage one walk at the time. It requires two new fields to store, the index of the walk that
we are currently extending, and the subset of the ending vertices ) that have been already used.
Storing the used ending vertices causes the additional factor 2? in the time complexity (as we can
assume that |) | = ?).

2.3 Outline of Theorem 1.2
Recall that the main difference toTheorem 1.1 is thatTheorem 1.2 provides a deterministic algorithm
that, moreover, works on directed graphs. The price is, however, that this algorithm is only suitable
for the special case of finding an ((,) )-linkage of total length at least : rather than a :-colored one,
and the time complexity as a function of : and ? is higher. Theorem 1.2 thus requires a completely
different toolbox: the algorithm is based on ideas of random separation, which is a technique that
allows for efficient derandomization. Our result can be seen as a generalization of earlier works
on finding paths and cycles of length at least : , the closest one being the result of Fomin et al.
[19] on finding an (B, C)-cycle of length at least : . Note that their result is stated for undirected
graphs, and that the problem of finding an ((,) )-linkage of order 2 and total length at least : is
equivalent to the problem of finding an (B, C)-cycle of length at least : on undirected graphs. (The
equivalence is up to increasing : by 2, since we need to introduce twins of B and C in order to
preserve vertex-disjointness of paths in the target ((,) )-linkage.) Also, closely related is the result
of Zehavi [49] for finding directed cycles of length at least : , which can be reduced to finding a
directed (B, C)-path of length at least : by guessing an edge CB on the cycle, which, in turn, is exactly
the problem of finding a directed linkage of order 1 and length at least : .

Similarly to the earlier results, the case where the target ((,) )-linkage is of length close to : can
be covered by a standard application of color-coding [1]; in this way it is even possible to identify
an ((,) )-linkage with length of order ?: in the desired running time of Theorem 1.2. The difficulty
is that the length of the ((,) )-linkage can be arbitrarily larger than : or ?: . While because of
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Fig. 3. Illustration to the proof of Lemma 6.4. Large empty squares mark tokens in the current state; those
with red filling are moved by the next rule.

that it would be intractable to highlight the target ((,) )-linkage as a whole, it is still possible to
apply random separation to give distinct colors to :-length segments at the end of each path in the
((,) )-linkage. The main hurdle is then to argue that at least in one color we can pick a finishing
segment as an arbitrary shortest path of length : , without intersecting any other path in an optimal
solution. Afterward, finding the desired ((,) )-linkage is easy, as the length requirement is already
satisfied; one only needs to find a suitable connection to complete the ((,) )-linkage, which exists
as witnessed by the optimal solution.
Lemma 6.1 encapsulates the novel combinatorial result allowing the approach above, strongly

generalizing a similar basic idea that appeared in [19] for two undirected paths. To give an intuition
behind the lemma (see also Figure 3), observe first that the problem of finding an ((,) )-linkage
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of order ? and of total length at least : is equivalent to the problem of finding an (B, C)-linkage of
order ? and of total length at least : + 2, where an (B, C)-linkage of order ? consists of ? internally
disjoint (B, C)-paths, for some B, C ∈ + (�). Now let (B, C)-paths %1,…, %? come from the shortest
solution, i.e., an (B, C)-linkage of order ? and the smallest total length which is at least : . Let the
sets�1,…,�? be the result of random separation applied to :-length suffixes of %1 − {C},…, %? − {C},
i.e., for each 8 ∈ [?], the :-length suffix of %8 − {C} is contained in�8 . The algorithm of Theorem 1.2
seeks to find a solution where for some 8 ∈ [?], vertex E8 is the :th vertex of %8 from C , and &8 is a
:-length shortest path from E8 to C inside �8 , by guessing E8 ∈ �8 and taking an arbitrary path &8 of
the form above. The solution is then any collection of an (B, E8 )-path and ? − 1 many (B, C)-paths
that do not intersect each other and &8 , together with &8 . If &8 does not intersect the (B, E 9 )-prefix
of % 9 , for each 9 ∈ [?], then the paths %1,…, %? certify that the desired collection of paths exists.
Now comes Lemma 6.1: it claims, roughly, that if this is not the case for all 8 ∈ [?], then there is a
shorter (B, C)-linkage given by prefixes of %1,…, %? and suffixes of &1,…, &? (introducing another
color to the random separation makes sure that the total length of the prefixes is still at least :),
which is a contradiction.

The proof of Lemma 6.1 can be imagined as the following token sliding game. First, we put a
token on each %8 , at the first place of intersection with some & 9 . Then we move the tokens by
applying two rules, Push and Clear. If two tokens end up on the same& 9 for some 9 ∈ [?], we move
the farthest of them from C further along its path %8 , until it hits another & 9 ′ ; this is called Push. As
for the Clear, if at any step ℎ the current token Cℎ8 of the path %8 reaches the vertex E8 , we forfeit
this path: the token is moved to C , which corresponds to the 8th path of the shorter solution being
exactly %8 , and all other tokens on &8 are moved next along their paths similarly to the rule Push.
Moreover, every future application of any rule will not place a token on &8 , skipping it to the next
& 9 that is still active. Clearly, this game is finite, as tokens are only being slid further along their
paths. The main claim of Lemma 6.1 is that when the game is over, there is at least one remaining
active token, these tokens are one per a path in {& 9 } 9∈[? ] (since Push is not applicable), and that
all corresponding paths %8 can be simultaneously extended each along its own & 9 instead of taking
their original routes, without intersections with the previously fixed paths (since in Push we always
keep the closest token to C ). This is a shorter solution since a token of %8 , if active, is inside some& 9

at distance less than : from C , and the prefix of %8 up to this token is shorter than the prefix of %8
up to E8 .

Another challenge the proof of Theorem 1.2 faces, is that while the random separation approach
is well-known, it is normally applied to separating two, rarely three (e.g., [19]), sets. We, on the
other hand, need to apply random separation to ? sets simultaneously, while making sure that it can
be derandomized. To this end, in Lemma 6.4, we devise in a deterministic way a family of functions
that models random separation of ? sets of size at most : each. The size of this family is bounded by
?O(:? ) log=, which matches the inverse probability (up to the log= factor) of coloring the universe
in ? colors uniformly at random so that each set receives its own color. The construction is based
on perfect hash families [39].

3 Preliminaries
In this section, we introduce basic notation and state some auxiliary results.

3.1 Basic Definitions and Preliminary Results
We use Z≥1 to denote the set of positive integers and Z≥0 the set of non-negative integers. Also,
given integers ?, @ such that ? < @, we use [?, @] to denote the set {?, ? + 1, . . . , @} and, if ? ≥ 1, we
use [?] to denote the set {1, . . . , ?}.
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Parameterized Complexity. We refer to the book of Cygan et al. [14] for introduction to the
area. Here, we only briefly mention the notions that are most important to state our results. A
parameterized problem is a language ! ⊆ Σ∗ × N, where Σ∗ is a set of strings over a finite alphabet
Σ. An input of a parameterized problem is a pair (G, :), where G is a string over Σ and : ∈ N is
a parameter. A parameterized problem is FPT if it can be solved in time 5 (:) · |G |O(1) for some
computable function 5 . The complexity class FPT contains all FPT parameterized problems.

Graphs. We use standard graph-theoretic terminology and refer to the textbook of Diestel [17]
for missing notions. We consider only finite graphs, and the considered graphs are assumed to
be undirected if it is not explicitly said to be otherwise. For a graph � , + (�) and � (�) are used
to denote its vertex and edge sets, respectively. Throughout the article we use = = |+ (�) | = |� |
and< = |� (�) | if this does not create confusion. For a graph � and a subset - ⊆ + (�) of vertices,
we write � [- ] to denote the subgraph of � induced by - . For a vertex E , we denote by #� (E)
the (open) neighborhood of E , i.e., the set of vertices that are adjacent to E in � . For - ⊆ + (�),
#� (- ) =

( ⋃
E∈- #� (E)

)
\ - . The degree of a vertex E is 3� (E) = |#� (E) |. If � is a digraph, # +

�
(E)

denotes the out-neighborhood of E , i.e., the set of vertices that are adjacent to E in � via an arc
from E , and # −

�
(E) is the in-neighborhood, defined symmetrically for arcs going to E . We may omit

subscripts if the considered graph is clear from a context.
A walk, of length ℓ in � is a sequence of vertices E1, E2, . . . , Eℓ , where E8E8+1 ∈ � (�) for all

1 ≤ 8 < ℓ . The vertices E1 and Eℓ are the endpoints of, and the vertices E2, . . . , Eℓ−1 are the internal
vertices of, . A path is a walk where no vertex is repeated. For a path % with endpoints B and C ,
we say that % is an (B, C)-path. A cycle is a path with the additional property that EℓE1 ∈ � (�) and
ℓ ≥ 3.

DeMillo–Lipton–Schwartz–Zippel Lemma. Our strategy involves the use the DeMillo–Lipton–
Schwartz–Zippel lemma for randomized polynomial identity testing.
Lemma 3.1 ([44, 50]). Let ? be a polynomial on variables G1, . . . , GA , of total degree 3 over a field

F that is not the zero polynomial, and let ( be a subset of F. If each G8 is independently assigned a
uniformly random value from ( , then the value of ? (G1, . . . , GA ) is zero with probability at most 3/|( |.

3.2 Hardness Results
We conclude this section by showing the NP-hardness of finding a :-colored (B, C)-path on directed
graphs, for any : ≥ 2, and the optimality of the time complexity of Theorem 1.1 assuming the
SeCoCo of Cygan et al. [13].

We start with the hardness for directed graphs.
Proposition 3.2. For any integers :, ℓ ≥ 2, it is NP-complete to decide, given a directed graph� , a

coloring 2 : + (�) → [ℓ], and two vertices B and C , whether � has a :-colored (B, C)-path.
Proof. We show the claim for : = ℓ = 2 as it is straightforward to generalize the proof for other

values of : and ℓ . We reduce from the Disjoint Paths problem on directed graphs. The task of
this problem is, given a (directed) graph � and : pairs of terminal vertices (B8 , C8 ) for 8 ∈ {1, . . . , :},
decide whether� has vertex-disjoint (B8 , C8 )-paths for 8 ∈ {1, . . . , :}. This problem is well-known to
be NP-complete on directed graphs even if : = 2 [23]. Consider an instance (�, (B1, C1), (B2, C2)) of
Disjoint Paths, where� is a directed graph. We assume that the terminal vertices are pairwise
distinct. We construct the directed graph � ′ from � by adding a vertex F and arcs (C1,F) and
(F, B2). Note that � has vertex-disjoint (B1, C1) and (B2, C2)-paths if and only if � ′ has an (B1, C2)-
path containing F . We define the coloring 2 by setting 2 (F) = 1 and defining 2 (E) = 2 for all
E ∈ + (� ′) \ {F}. Clearly, � ′ has a 2-colored (B1, C2)-path if and only if � ′ has an (B1, C2)-path
containingF . This immediately implies NP-hardness. �
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Fig. 4. Construction of the graph � .

Then, we show that Theorem 1.1 is optimal assuming the Set Cover Conjecture. In the Set Cover
problem, we are given a universe* of = elements, a collection S of< subsets of* , and an integer
C and we ask whether there is a collection S′ ⊆ S of size C such that for every D ∈ * , there is a set
( ∈ S′ such that D ∈ ( .

Proposition 3.3. If there is a (2 − Y):=O(1) time algorithm for finding a :-colored path in a
:-colored graph for some Y > 0, then there is a (2 − Y)= (<=)O(1) time algorithm for Set Cover, in a
universe* of size = with a collection S of< subsets of* .

Proof. Given an instance (* ,S, C) of Set Cover, where |* | = = and S = {(1, . . . , (<}, we
construct a graph � as follows. We first construct the graph � by considering two vertices 0 and
1 and adding< internally vertex-disjoint (0,1)-paths %(1 , . . . , %(< , where for every 8 ∈ [<], the
vertices in %(8 are bijectively mapped to the elements of (8 . We call 0 the source of � and 1 the sink
of � . We finally construct a graph � that is obtained by considering C copies �1, . . . , �C of � , for
each 8 ∈ [C − 1], identifying the sink 18 of �8 with the source 08+1 of �8+1, and adding two new
vertices E and E ′ of degree one, adjacent to 01 and 1C respectively. See Figure 4 for an illustration of
the construction of graph � . Note that C ≤ < and |+ (�) | = (<=)O(1) .
Assuming an ordering D1, . . . , D= of* , for each 8 ∈ [=], we assign color 8 to all vertices of � that

correspond to D8 , color = + 1 and = + 2 to E and E ′, and color = + 3 to all vertices in + (�) \ {E, E ′}
that do not correspond to members of * . Observe that (* ,S, C) is a yes-instance of Set Cover if
and only if there is an = + 3-colored path in� . Therefore, a (2− Y):=O(1) time algorithm for finding
a :-colored path in a :-colored =-vertex graph implies the existence of a (2 − Y)= (<=)O(1) time
algorithm for finding a set cover of size C in a universe* of size = with a collection S of< subsets
of* . �

4 Randomized Algorithm for Colored (S,T )-Linkages
In this section, we prove the main result, i.e., Theorem 1.4. Recall that Theorem 1.1 is a special case
of Theorem 1.4.
Let � be an =-vertex graph, ? an integer, and (,) ⊆ + (�). An ((,) )-linkage of order ? is a

set P of ? = |P | vertex-disjoint paths between ( and ) . We denote by + (P) the vertices in the
paths of P. The length of an ((,) )-linkage is the total number |+ (P)| of vertices in the paths.
Let 2 : + (�) → [=] an arbitrary coloring of � , and we : + (�) → Z≥1 a weight function. For
positive integers : and F , we say that an ((,) )-linkage P is (:,F)-colored if there exists a set
- ⊆ + (P) with |- | = : , all vertices of - have different colors, and we(- ) = ∑

E∈- we(E) = F . We
give a 2?+:=O(1)F time algorithm for the problem of finding a minimum length (:,F)-colored
((,) )-linkage of order ? (Theorem 1.4).
We will assume that |( | = |) | = ? , and ( and ) are disjoint, as the general case can be reduced

to this case by the following reduction: We add ? vertices B1, . . . , B? with # (B8 ) = ( and ? vertices
C1, . . . , C? with # (C8 ) = ) , all with the same new color and weight equal to : ·maxE∈+ (� ) we(E) + 1.
Then, we can set ( = {B1, . . . , B? } and ) = {C1, . . . , C? }, and solve the problem with : increased by
one andF increased by : ·maxE∈+ (� ) we(E) + 1. Because we can assume that the original weights
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Fig. 5. An example of a labeled walk, with a digon 8 .

are at most F + 1, this increases the target weight F by a factor O(:), and therefore does not
increase the time complexity of the algorithm.

4.1 Labeled Walks and Walkages
In this section, we define labeled walks and labeled walkages.

Labeled walks. Let ℓ be an integer. A walk of length ℓ in � is a sequence of vertices E1, . . . , Eℓ
of � , where E8E8+1 ∈ � (�) for all 1 ≤ 8 < ℓ . A labeled walk of length ℓ is a pair of sequences
, = ((E1, E2, . . . , Eℓ ), (A1, A2, . . . , Aℓ )), where E1, . . . , Eℓ is a walk of length ℓ , and A1, . . . , Aℓ is a sequence
of integers from [0, :], indicating a labeling.The interpretation of the labeling is that A8 = 0 indicates
that the index 8 is unlabeled and A8 ≠ 0 indicates that the index 8 is labeled with the label A8 ∈ [:]. A
labeled walk is injective if each label from [:] appears in it at most once. Most of the labeled walks
that we treat in the algorithm have length at least one, but the definition allows also an empty
labeled walk of length zero. The set of vertices collected by, , denoted by '(, ), is the set of all
vertices E8 , 8 ∈ [ℓ] such that A8 ≠ 0, i.e., the set of vertices that occur at labeled indices. The set of
edges of, is � (, ) = {E8E8+1 : 1 ≤ 8 < ℓ}. An index 8 in a labeled walk of length ℓ is a digon if
1 < 8 < ℓ and E8−1 = E8+1 (see Figure 5 for an illustration). An index 8 in a labeled walk is a labeled
digon if it is a digon and A8 ≠ 0.

Labeled walkages. A labeled walkage of order ? is a tupleW = (, 1, . . . ,, ? ), where each for
each 8 ∈ [?],, 8 = ((E81, . . . , E8ℓ8 ), (A

8
1, . . . , A

8
ℓ8
)) is a labeled walk of length ℓ8 ≥ 1. The length ofW

is
∑?

8=1 ℓ8 . The set of edges ofW is � (W) = ⋃?

8=1 � (, 8 ). The set of vertices collected byW is
'(W) = ⋃?

8=1 '(, 8 ). The weight we(W) ofW is the sum of the weights of the labeled vertices,
i.e., we(W) = ∑?

8=1

∑
9∈[ℓ8 ] : A 89≠0 we(E89 ). Note that the weight of a vertex can be counted more than

once if the vertex corresponds to more than once labeled index. A labeled walkage is injective if
each label from [:] appears in it at most once, and bijective if each label from [:] appears in it
exactly once. Note that every labeled walk in an injective labeled walkage is injective.

The set of ending vertices of a labeled walkageW of order ? is T (W) = {E8ℓ8 : 8 ∈ [?]}. The tuple
of starting vertices ofW is start(W) = (E11, . . . , E

?

1 ). Let < be a total order on + (�). A labeled
walkage is ordered if start(W) is ordered according to <, i.e., E81 < E8+11 holds for all 1 ≤ 8 < ? .
The asymmetry that the starting vertices are an ordered tuple while the ending vertices are an
unordered set is essential for our algorithm. A labeled linkage is a labeled walkage where every
vertex occurs at most once, i.e., the walks are vertex-disjoint paths.

We also define semiproper and proper labeled walkages. The intuition here is that, in Section 4.2,
we define a polynomial over semiproper walkages (see also Definition 4.1). Then, walkages that
are semiproper but not proper will be handled by using standard techniques and therefore we can
focus on proper walkages. Dealing with proper walkages will be the most technical part of the
proof. A labeled walkage is semiproper if it is injective, no walk in it contains labeled digons, and
the ending vertices of the walkage are distinct, i.e., E8ℓ8 ≠ E

9

ℓ9
for 8 ≠ 9 . A labeled walkageW is

proper if it is semiproper and all of its labeled indices correspond to vertices of different colors, i.e.,
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|2 ('(W))| = |{(8, 9) : A 89 ≠ 0}|. Note that being proper implies that no vertex is labeled twice and
note that ifW is bijective and proper then |2 ('(W))| = : .

4.2 Algorithm
We assume that there is a total order < on+ (�), and for a set ( ⊆ + (�) we denote by ordv(() the
tuple containing the elements of ( ordered according to <. Note that � contains a (:,F)-colored
((,) )-linkage of order ? and length ℓ if and only if there is a bijective proper ordered labeled linkage
W with order ? , length ℓ , weight we(W) = F , tuple of starting vertices start(W) = ordv((),
and set of ending vertices T (W) = ) . We define a family of labeled walkages that includes all
such labeled linkages but relaxes the condition of being a linkage to walkage and the condition of
being proper to semiproper.

For each integer ℓ , we define a family of labeled walkages Cℓ of length ℓ .

Definition 4.1 (FamilyCℓ ). Let ℓ a positive integer.The familyCℓ consists of the bijective semiproper
ordered labeled walkagesW with order ? , length ℓ , weight we(W) = F , tuple of starting vertices
start(W) = ordv((), and set of ending vertices T (W) = ) .

Definition of the polynomial. Let @ = 23+dlog2 =e and keep in mind that GF(@) is a finite field of
characteristic 2 and order @ ≥ 8=. Next, we define a polynomial over GF(@) that will be evaluated
for a uniformly random assignment of values to the variables over GF(@) by our algorithm. For each
edge DE ∈ � (�) we associate a variable 5E (DE), for each vertex E ∈ + (�) we associate a variable
5V (E), and for each color-label-pair (G,~) ∈ [=] × [:] we associate a variable 5C (G,~). In particular,
the set of variables of the polynomial is

⋃
DE∈� (� ) 5E (DE) ∪

⋃
E∈+ (� ) 5V (E) ∪

⋃
(G,~) ∈ [=]×[: ] 5C (G,~).

For a labeled walk, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )), we associate the monomial

5 (, ) =
ℓ−1∏
8=1

5E (E8E8+1) ·
∏

8∈[ℓ ] : A8≠0
5V (E8 ) · 5C (2 (E8 ), A8 ).

For a labeled walkageW = (, 1, . . . ,, ? ), we associate the monomial

5 (W) =
?∏
8=1

5 (, 8 ).

For a family F of labeled walkages we associate the polynomial

5 (F ) =
∑
W∈F

5 (W).

Because the walkages in Cℓ are bijective, every monomial in the polynomial 5 (Cℓ ) has degree
ℓ − ? + 2: , being a product of ℓ − ? variables corresponding to the edges of the walkage, : variables
corresponding to the labeled vertices, and : variables corresponding to the color-label-pairs.

Algorithm for finding a (:,F)-colored ((,) )-linkage. Our algorithm for finding a (:,F)-colored
((,) )-linkage of order ? works as follows. Starting with ℓ = ? , we evaluate the polynomial 5 (Cℓ )
for a uniformly random assignment of values to the variables over GF(@), for increasing values of
ℓ . If the evaluation of 5 (Cℓ ) is not zero, we return that � contains a (:,F)-colored ((,) )-linkage
of order ? , and moreover that a shortest (:,F)-colored ((,) )-linkage of order ? has length ℓ .
Otherwise, we continue increasing ℓ until ℓ = = + 1 in which case we return that� does not contain
a (:,F)-colored ((,) )-linkage of order ? .
For the proof of correctness of the algorithm, in Section 4.3 we show that with probability at

least 1/2 this algorithm returns the length of a shortest (:,F)-colored ((,) )-linkage of order ? ,
and never returns a length shorter than a shortest (:,F)-colored ((,) )-linkage of order ? .
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Proof of time complexity of the algorithm. Next we prove the time complexity of the algorithm.The
evaluation of the polynomial is done using dynamic programming. This is a standard application of
dynamic programming over walks while keeping track of the set of labels used so far, the weight of
the labeled vertices, and the set of ending vertices used. We prove that it can be performed in time
2?+:=O(1)F .

Lemma 4.2. Let (,) be disjoint subsets of + (�) of size |( | = |) | = ? , 2 : + (�) → [=] a coloring
of � , we : + (�) → Z≥1 a weight function, ℓ ≤ = an integer, :,F integers, and @ = 23+dlog2 =e . Given
values in GF(@) for all of the variables 5E (DE) for DE ∈ � (�), 5V (E) for E ∈ + (�), and 5C (G,~) for
(G,~) ∈ [=] × [:], the value of the polynomial 5 (Cℓ ) can be computed in time 2?+:=O(1)F .

Proof. Let us denote by 5̂E (DE), 5̂V (E), and 5̂C (G,~) these given values, and by extension for
a walkageW denote by 5̂ (W) the value associated to the monomial 5 (W) and for a family of
walkages F denote by 5̂ (F ) the value associated to the polynomial 5 (F ). The task is to compute
5̂ (Cℓ ).
Informally, we will compute 5̂ (Cℓ ) by dynamic programming over partial walkages, growing the

walkages one labeled walk at a time in the order specified by ordv(().
Denote ordv(() = (B1, B2, . . . , B? ) and for any C ∈ [?] denote by preC (() the length-C prefix of

ordv((). For every integer C ∈ [?], integer ; ∈ [ℓ], set ! ⊆ [:] of labels, set ) ′ ⊆ ) of ending
vertices, weightF ′ ∈ [0,F], vertices G,~ ∈ + (�), and integer > ∈ {0, 1}, we define

� (C, ;, !,) ′,F ′, G,~, >) = 5̂ (F (C, ;, !,) ′,F ′, G,~, >)),

where we define F (C, ;, !,) ′,F ′, G,~, >) to be the family of labeled walkagesW = (, 1, . . . ,, C ),
where for each 8 ∈ [C], we have that, 8 = ((E81, . . . , E8ℓ8 ), (A

8
1, . . . , A

8
ℓ8
)), and that satisfy the following

properties:

(1) Each labeled walk, 8 inW has length at least 2 and does not contain labeled digons,
(2) W has order C and ordered tuple of starting vertices start(W) = preC ((),
(3) W has length ; ,
(4) W is injective and the set of used labels is !,
(5) the set of ending vertices of all but the last walk inW is T ((, 1, . . . ,, C−1)) = ) ′,
(6) W has weight we(W) = F ′,
(7) the last vertex of the last walk inW is ECℓC = G ,
(8) the second last vertex of the last walk inW is ECℓC−1 = ~, and
(9) if > = 0, then AC,ℓC = 0, otherwise AC,ℓC ≠ 0.

In other words, C specifies the number of walks, ; specifies the total length, ! specifies the used
labels, ) ′ specifies the used ending vertices,F ′ specifies the weight, G specifies the last vertex of
the last walk, ~ specifies the second last vertex of the last walk, and > specifies whether the last
vertex of the last walk is labeled. Note that it can be without loss of generality assumed that each
walk has length at least 2 because ( and ) are disjoint.

Then, we define also a shorthand that for C ∈ [?], ; ∈ [ℓ], ! ⊆ [:], ) ′ ⊆ ) , andF ′ ∈ [0,F],

� (C, ;, !,) ′,F ′) =
∑
G∈) ′

∑
~∈# (G )

∑
>∈{0,1}

� (C, ;, !,) ′ \ {G},F ′, G,~, >),

which intuitively denotes the polynomial corresponding to a “completed” walkage of C walks with
length ; , used labels !, used ending vertices ) ′, and weightF ′.

Now it holds that

5̂ (Cℓ ) = � (?, ℓ, [:],) ,F),
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and therefore computing 5̂ (Cℓ ) can be done by computing all of the values � (C, ;, !,) ′,F ′, G,~, >)
by dynamic programming.

Next, we specify this computation by dynamic programming. All values that we do not specify
here will be set to zero. First, to initialize, we define a special value � (0, 0, ∅, ∅, 0) = 1 corresponding
to a family of walkages containing one empty walkage.
Next, we describe computing the states where > = 0, i.e., the last vertex is not labeled, for all

C ∈ [?], ; ∈ [ℓ], ! ⊆ [:], ) ′ ⊆ ) ,F ′ ∈ [0,F], G ∈ + (�), and ~ ∈ # (G) (if G and ~ are not adjacent,
we set the value to zero), assuming that all the states with smaller ; have already been computed.
There are four cases, corresponding to the four lines of Equation (1), which we state shortly. In
the first case the walk,C has length at least three, its second last vertex ~ is not labeled, and we
are extending the walkage by adding one not labeled vertex G to,C . Second case is the same, but
the second last vertex ~ is labeled and thus we have to ensure to not create a labeled digon. Third
case is the case that we are extending the walkage by adding one more labeled walk, consisting of
two vertices ~, G , where ~ = BC , neither of them labeled. Fourth case is like the third, but the first
vertex ~ = BC of the new walk is labeled. Recall the notation that [~ = BC ] = 1 if ~ = BC holds, and 0
otherwise.

� (C, ;, !,) ′,F ′, G,~, 0) = 5E (G~)

· ©«
∑

I∈+ (� )
� (C, ; − 1, !,) ′,F ′, ~, I, 0)

+
∑

I∈+ (� )\{G }
� (C, ; − 1, !,) ′,F ′, ~, I, 1)

+ [~ = BC ] · � (C − 1, ; − 2, !,) ′,F ′)

+[~ = BC ] ·
∑
A ∈!

5V (~) · 5C (2 (~), A ) · � (C − 1, ; − 2, ! \ {A },) ′,F ′ − we(~))
)
.

(1)

Then, we describe computing the states where > = 1, i.e., the last vertex is labeled, for all C ∈ [?],
; ∈ [ℓ], ! ⊆ [:], ) ′ ⊆ ) ,F ′ ∈ [0,F], G ∈ + (�), and ~ ∈ # (G), assuming that all of the states with
smaller ; have already been computed. There are again four cases, analogously to Equation (1).

� (C, ;, !,) ′,F ′, G,~, 1) =
∑
A ∈!

5V (G) · 5C (2 (G), A ) · 5E (G~)

· ©«
∑

I∈+ (� )
� (C, ; − 1, ! \ {A },) ′,F ′ − we(G), ~, I, 0)

+
∑

I∈+ (� )\{G }
� (C, ; − 1, ! \ {A },) ′,F ′ − we(G), ~, I, 1)

+ [~ = BC ] · � (C − 1, ; − 2, ! \ {A },) ′,F ′ − we(G))

+[~ = BC ] ·
∑

A ′∈!\{A }
5V (~) · 5C (2 (~), A ′) · � (C − 1, ; − 2, ! \ {A, A ′},) ′,F ′ − we(G) − we(~))ª®¬ .

(2)

This completes the description of the dynamic programming, showing that each of the states
� (C, ;, !,) ′,F ′, G,~, >) can be computed in =O(1) time given the values of the states with smaller ; .
As there are ? · ℓ · 2: · 2? · (F + 1) · = · = · 2 = O(?2?+:=3F) states, the algorithm works in time
2?+:=O(1)F . �
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As the algorithm can be implemented by O(=) applications of Lemma 4.2, the algorithm has time
complexity 2?+:=O(1)F . Recovering the solution can be done by a factor of O(=2) more applications.

4.3 Correctness
To prove the correctness of the algorithm, we show that

(a) the polynomial 5 (Cℓ ) is not the zero polynomial if� contains a (:,F)-colored ((,) )-linkage
of order ? and length ℓ and

(b) the polynomial 5 (Cℓ ) is the zero polynomial if the graph does not contain a (:,F)-colored
((,) )-linkage of order ? and length ≤ ℓ .

As 5 (Cℓ ) has degree ℓ − ? + 2: ≤ 3= ≤ @/2, (a) implies, by applying Lemma 3.1 with ? = 5 (Cℓ )
and {G1, . . . , GA } =

⋃
DE∈� (� ) 5E (DE) ∪

⋃
E∈+ (� ) 5V (E) ∪

⋃
(G,~) ∈ [=]×[: ] 5C (G,~), that if � contains a

(:,F)-colored ((,) )-linkage of order ? and length ℓ , then evaluating 5 (Cℓ ) for a uniformly random
assignment of values to the variables over GF(@) has probability at least 1/2 to not be zero. From
(b) it follows that if � does not contain a (:,F)-colored ((,) )-linkage of order ? and length ≤ ℓ ,
then the evaluation of 5 (Cℓ ) for any assignment of values to the variables is guaranteed to be zero.
This establishes that the algorithm is correct with probability at least 1/2, with one-sided error.

The part (a) is relatively easy to prove (Lemma 4.3). To prove (b), we first show that the monomials
in 5 (Cℓ ) corresponding to non-proper labeled walkages cancel out (Lemma 4.4). This argument is
based on the now-standard technique of bijective labeling based cancellation introduced in [2]. The
remaining part of the proof of (b) is much more complicated and is the main technical challenge. It
is based on the technical Lemma 4.6, whose proof is postponed to Section 4.4.

We start with (a).

Lemma 4.3. If � has a (:,F)-colored ((,) )-linkage of order ? and length ℓ , then 5 (Cℓ ) is not the
zero polynomial.

Proof. Consider a (:,F)-colored ((,) )-linkage P of order ? and length ℓ . Let - ⊆ + (P) be the
set of vertices with |- | = : , different colors, and weight we(- ) = F . We can turn P into a proper
labeled linkageW of order ? , length ℓ , weightF , where start(W) = ordv(() and T (W) = ) ,
by ordering the paths based on their starting vertices and assigning the labels [:] arbitrarily to the
vertices - whenW intersects - .

Therefore,W ∈ Cℓ , so it remains to prove thatW is the only labeled walkage in Cℓ that
corresponds to the monomial 5 (W), which then implies that the monomial 5 (W) occurs in the
polynomial 5 (Cℓ ) with coefficient 1, implying that 5 (Cℓ ) is not the zero polynomial.
Notice that from 5 (W), from the edge variables 5E we can recover the edges � (W) ofW,

from the vertex variables 5V we can recover the labeled vertices - , and because vertices in - have
different colors, from the color-label pair variables 5C we can recover how the labels correspond to
the labeled vertices. Therefore as the ordering of the paths is fixed by ordv(() and every vertex
appears inW at most once, we have thatW is the unique element of Cℓ that corresponds to the
monomial 5 (W). �

Then, we deal with non-proper walkages in Cℓ . Let C∗ℓ ⊆ Cℓ denote the family of proper labeled
walkages in Cℓ , i.e., the labeled walkages in Cℓ where all labeled indices have vertices of different
colors.

Lemma 4.4. It holds that 5 (C∗ℓ ) = 5 (Cℓ ).

Proof. We will show that there is a function q : Cℓ \ C∗ℓ → Cℓ \ C∗ℓ that is an 5 -invariant fixed-
point-free involution, i.e., for allW ∈ Cℓ \ C∗ℓ it holds that (1) 5 (q (W)) = 5 (W), (2) q (W) ≠W,
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and (3) q (q (W)) =W. This implies that the set Cℓ \ C∗ℓ can be partitioned into pairs {W, q (W)}
with 5 (W) = 5 (q (W)), and therefore every monomial corresponding to a labeled walkage in
Cℓ \ C∗ℓ occurs in 5 (Cℓ ) an even number of times, and therefore they cancel out because 5 is over a
field of characteristic 2.
The function q is defined as follows. LetW = (, 1, . . . ,, ? ) be a labeled walkage in Cℓ \ C∗ℓ ,

where , 8 = ((E81, . . . , E8ℓ8 ), (A
8
1, . . . , A

8
ℓ8
)). BecauseW is semiproper but not proper, there exists

two different labeled indices that have a vertex of the same color, i.e., pairs (8, 0) and ( 9, 1) with
8, 9 ∈ [?], 0 ∈ [ℓ8 ], 1 ∈ [ℓ9 ], (8, 0) ≠ ( 9, 1), 2 (E80) = 2 (E 9

1
), A 80 ≠ 0, and A 9

1
≠ 0. Let (8, 0), ( 9, 1) be the

lexicographically smallest such pair. We set q (W) to be the labeled walkage obtained fromW
after swapping A 80 with A

9

1
.

First, we observe that q (W) ∈ Cℓ . Indeed, it cannot make a bijective walkage into non-bijective,
and as it does not change the sequence of vertices ofW or which indices are labeled, it cannot
make a semiproper walk into non-semiproper, or change the order, the length, the weight, the tuple
of starting vertices, or the set of ending vertices. Also q (W) is not proper, i.e., q (W) ∈ Cℓ \ C∗ℓ ,
because the vertices E80 and E

9

1
are still labeled and have the same color.

To see why 5 (q (W)) = 5 (W), note that, since q does not change the vertices, it also does not
change the edge variables 5E of the monomial, it does not change which vertices are labeled so it
does not change the vertex variables 5V of the monomial, and because the vertices E80 and E

9

1
have

the same color the color-label-pair variables 5C of the monomial are also not changed.
Also, we have that q (W) ≠W, since the fact thatW is bijective implies that A 80 ≠ A

9

1
. Also,

q (q (W)) =W because the swapping does not change which indices are labeled, and therefore
does not change the lexicographically smallest pair of labeled indices with the same colors. �

As a result of Lemma 4.4, we can work with 5 (C∗ℓ ) instead of 5 (Cℓ ).
The most complicated part of the correctness proof will be to show part (b), that is, if there is no
(:,F)-colored ((,) )-linkage of order ? and length at most ℓ , then 5 (C∗ℓ ) (and, thus by Lemma 4.4,
5 (Cℓ )) is the zero polynomial. Most of this proof will be presented in Section 4.4, but we introduce
here the statement of the lemma that we will prove in Section 4.4. For this, we define barren labeled
walkages.

Definition 4.5 (Barren labeled walkage). A labeled walkageW of length ℓ is barren if there exists
no labeled linkageW′ with starting vertices start(W′) = start(W), set of ending vertices
T (W′) = T (W), set of collected vertices '(W′) = '(W), length ≤ ℓ and edges � (W′) ⊆ � (W).

In other words, a labeled walkageW of length ℓ is barren if its edges form a subgraph of �
where no labeled linkageW′ of length at most ℓ can have the same sets of starting vertices, ending
vertices, and collected vertices asW. Intuitively, this means that the labeled walkageW cannot
be “untangled” to give a corresponding labeled linkage. In particular, observe that because the
“untangling” preserves the set of collected vertices, i.e., '(W′) = '(W), if no (:,F)-colored
((,) )-linkages of order ? and length at most ℓ exists, then all labeled walkages in C∗ℓ are barren.
Next, we state the main technical lemma for establishing the correctness of our algorithm.

Section 4.4 is devoted to its proof.

Lemma 4.6. Let � be a graph and let B the set of all proper barren labeled walkages in � . There
exists a function q : B → B so that for allW ∈ B, the function q satisfies that

(1) q (q (W)) =W (q is involution),
(2) q (W) ≠W (q is fixed-point-free),
(3) 5 (q (W)) = 5 (W) (q preserves the monomial),
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(4) T (q (W)) = T (W) (q preserves the set of ending vertices), and
(5) start(q (W)) = start(W) (q preserves the ordered tuple of starting vertices).

The main reason for defining the function q for all proper barren labeled walkages instead of just
barren walkages in C∗ℓ is that q will be defined recursively, and in the recursion we will anyway
need to handle all proper barren labeled walkages.

Now, the proof of (b) is an easy consequence of Lemma 4.6.

Lemma 4.7. If � has no (:,F)-colored ((,) )-linkage of order ? and length ≤ ℓ , then 5 (C∗ℓ ) is the
zero polynomial.

Proof. First, because� has no (:,F)-colored ((,) )-linkage of order ? and length ≤ ℓ , all labeled
walkages in C∗ℓ are barren, i.e., C∗ℓ ⊆ B.

We show that ifW ∈ C∗ℓ , thenq (W) ∈ C∗ℓ . By definition,q (W) is proper. By (3),q preserves the
set of labeled vertices and moreover because the labeled vertices have different colors it preserves
also the label-vertex mapping, and therefore q (W) is bijective and has weightF . By (4) and (5),
q preserves the set of ending vertices and the ordered tuple of starting vertices. By (3), q also
preserves the length ℓ , as the order ofW is preserved by (5). Therefore the restriction q �C∗ℓ is a
function q �C∗ℓ : C

∗
ℓ → C∗ℓ .

Then, by (1)–(3), q �C∗ℓ is an 5 -invariant fixed-point-free involution on C∗ℓ , implying that the
set C∗ℓ can be partitioned into pairs {W, q (W)} with 5 (W) = 5 (q (W)), and therefore for every
monomial 5 (W), there is an even number of labeled walkagesW ∈ C∗ℓ corresponding to it, and
therefore because 5 (C∗ℓ ) is over a field of characteristic 2, it is the zero polynomial. �

4.4 Proof of Lemma 4.6
In this section, we prove Lemma 4.6 by explicitly defining the function q and then showing that it
has all of the required properties.

In order to define q we first introduce some notation for manipulating labeled walks and labeled
walkages. Let, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )) be a labeled walk. For indices 0,1 with 1 ≤ 0 ≤ 1 ≤
ℓ , we denote by, [0,1] the labeled subwalk between 0 and 1, inclusive, i.e., the labeled walk
, [0,1] = ((E0, . . . , E1), (A0, . . . , A1)). If 0 > 1, then, [0,1] denotes an empty labeled walk.

The involution q will use three types of operations: reversing a subwalk, swapping a label from
one occurrence of a vertex to another occurrence of it (possibly in a different walk), and swapping
suffixes of two walks.

The subwalk reversal operation is defined as follows. Let, be a labeled walk of length ℓ and 0,1
indices with 1 ≤ 0 ≤ 1 ≤ ℓ . The walk obtained from, by reversing the subwalk between 0 and 1,
inclusive, including the labels, is denoted by,

←−−−−
[0,1]. For example, if, = ((E1, E2, E3, E4), (0, 1, 0, 2)),

then,
←−−−
[2, 3] = ((E1, E3, E2, E4), (0, 0, 1, 2)). A labeled walk, is a palindrome if, =,

←−−−
[1, ℓ] holds,

i.e., the labeled walk is the same in reverse. Note that,
←−−−−
[0,1] = , holds if and only if, [0,1]

is a palindrome. Note also that because of the absence of self-loops, a subwalk, [0,1] can be a
palindrome only if its length is odd or if it is the empty walk. We will use the following lemma
about palindromic subwalks of labeled walks, and in particular the reason to forbid labeled digons
is to make this lemma true. Recall that any labeled walk in a proper labeled walkage is injective
and does not contain labeled digons. Recall also that '(, [0 + 1, 1 − 1]) = ∅ if and only if, has no
labels in the subwalk, [0 + 1, 1 − 1].

Lemma 4.8. Let, = ((E1, . . . , Eℓ ), (A1, . . . , Aℓ )) be an injective labeled walk of length ℓ that does
not contain labeled digons, and let 0,1 ∈ [ℓ]. If E0 = E1 and, [0 + 1, 1 − 1] is a palindrome, then
'(, [0 + 1, 1 − 1]) = ∅.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 36. Publication date: October 2024.



36:24 F. V. Fomin et al.

Fig. 6. An illustration of the label swap operation. On the left: a labeled walkageW = (, 1, . . . ,, ? ), and
pairs (8, 0), ( 9, 1) with 8, 9 ∈ [?], 0 ∈ [ℓ8 ], 1 ∈ [ℓ9 ], E80 = E

9

1
, and exactly one of A 80 and A

9

1
equal to zero. Note

that we allow 8 = 9 . On the right: the labeled walkageW ⌢
8, 9

0,1
.

Fig. 7. An illustration of the suffix swap operation. On the left: a labeled walkageW = (, 1, . . . ,, ? ), and
pairs (8, 0), ( 9, 1) with 8, 9 ∈ [?], 0 ∈ [ℓ8 +1], 1 ∈ [ℓ9 +1], and 8 ≠ 9 . On the right: the labeled walkageW ↔8, 9

0,1
.

Proof. First, because, [0+1, 1−1] is injective and palindrome, the only vertex of, [0+1, 1−1]
that can be labeled (i.e., have A8 ≠ 0) is the middle vertex. However, a label cannot occur at the
middle vertex of a palindrome with more than one vertex because it would be a labeled digon. If
, [0 + 1, 1 − 1] has exactly one vertex, then again this vertex cannot be labeled because E0 = E1
and, does not contain labeled digons. �

The label swap operation is defined as follows. LetW = (, 1, . . . ,, ? ) be a labeled walkage of
order ? , where for each 8 ∈ [?] the walkage, 8 is denoted by ((E81, . . . , E8ℓ8 ), (A

8
1, . . . , A

8
ℓ8
)). Let (8, 0),

( 9, 1) be pairs with 8, 9 ∈ [?], 0 ∈ [ℓ8 ], 1 ∈ [ℓ9 ], E80 = E
9

1
, and exactly one of A 80 and A

9

1
equal to zero

(i.e., one of them unlabeled and one labeled). The labeled walkage obtained fromW by swapping A 80
with A 9

1
is denoted byW ⌢

8, 9

0,1
. Note that because A 80 ≠ A

9

1
, it holds thatW ⌢

8, 9

0,1
≠W. See Figure 6

for an illustration of the label swap operation.
The suffix swap operation is defined as follows. Let (8, 0) and ( 9, 1) be pairs with 8, 9 ∈ [?],

0 ∈ [ℓ8 + 1], 1 ∈ [ℓ9 + 1], and 8 ≠ 9 . The labeled walkage obtained fromW by swapping the suffix
of, 8 starting at index 0 with the suffix of, 9 starting at index 1, including the labels, is denoted
byW ↔8, 9

0,1
. Note that here we allow that 0 = ℓ8 + 1 or 1 = ℓ9 + 1, with the interpretation that this
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corresponds to the empty suffix. Clearly, if both 0 = ℓ8 + 1 and 1 = ℓ9 + 1, then this operation does
not do anything, but otherwise ifW is a proper labeled walkage, applying this operation will in
fact always result in a different walkage because of the different ending vertices condition. See
Figure 7 for an illustration of the suffix swap operation.

If, 1 and, 2 are labeled walks so that the last vertex of, 1 is adjacent to the first vertex of, 2,
then, 1 ◦, 2 denotes the concatenation of, 1 and, 2. IfW = (, 1, . . . ,, ? ) is a labeled walkage
and, is a labeled walk, then, �W denotes the labeled walkage (, ◦, 1, . . . ,, ? ) and, tW
denotes the labeled walkage (,,, 1, . . . ,, ? ).
Next, we define the function q of Lemma 4.6. We will provide some intuition about q right

after the definition, and Figures 8–16 demonstrate different cases of it. The definition of q will be
recursive, using induction on the length of the walkage.

Definition 4.9 (The function q). LetW = (, 1, . . . ,, ? ) be a proper barren labeled walkage of
order ? . For each 8 ∈ [?], denote, 8 = ((E81, . . . , E8ℓ8 ), (A

8
1, . . . , A

8
ℓ8
)). The value q (W) is defined, in

some cases recursively, by selecting the first matching case from the following list:

(A) if the vertex E11 occurs only once inW:
(1) if ℓ1 ≥ 2, then q (W) =, 1 [1, 1] �q (, 1 [2, ℓ1],, 2, . . . ,, ? ).
(2) otherwise (i.e., ℓ1 = 1), q (W) =, 1 t q (, 2, . . . ,, ? ).

(B) if the vertex E11 occurs in at least three different walks, 8 : There must be at least two different
walks, 8 that contain E11 but do not contain it as labeled. Let 8, 9 be the two smallest indices
so that both, 8 and, 9 contain E11 but do not contain it as labeled. Let 0 be the index of
the first occurrence of E11 in,

8 and 1 be the index of the first occurrence of E11 in,
9 . Now,

q (W) =W ↔8, 9

0,1
.

(C) if the vertex E11 occurs only in the walk, 1: By the case (A), the vertex E11 occurs multiple
times in, 1. Let 1 be the index of the last occurrence of E11 in,

1 and 0 be the index of the
second last occurrence of E11 in,

1. Note that 0 = 1 if E11 occurs only twice in, 1, and note
also that 1 ≤ 0 ≤ 1 − 2.
(1) if A 11 = A 1

1
= 0:

(a) if, 1 [2, 1 − 1] is not a palindrome, then q (W) = (, 1←−−−−−−−[2, 1 − 1],, 2, . . . ,, ? ).
(b) otherwise, if 1 < ℓ1, then q (W) =, 1 [1, 1] �q (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ).
(c) otherwise (i.e., 1 = ℓ1), q (W) =, 1 t q (, 2, . . . ,, ? ).

(2) if the index 1 is not a digon in, 1, then q (W) =W ⌢
1,1
1,1 . Note: If neither case (1) nor (2)

applies, then A 11 ≠ 0.

(3) if, 1 [2, 0 − 1] is not a palindrome, then q (W) = (, 1←−−−−−−−[2, 0 − 1],, 2, . . . ,, ? ). Note: If
0 = 1, then, 1 [2, 0 − 1] is the empty walk which is a palindrome.

(4) if E10+1 = E1
1−1:

(a) if, 1 [0 + 1, 1 − 1] is not a palindrome, then q (W) = (, 1←−−−−−−−−−−−[0 + 1, 1 − 1],, 2, . . . ,, ? ).
(b) otherwise, q (W) =, 1 [1, 1] �q (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ). Note: Here, 1 [1 + 1, ℓ1]

cannot be an empty walk because by case (C.2) 1 is a digon in, 1.
X. otherwise, q (W) =, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). Note: The case C.X will form

a “common case” with the case D.X.
(D) if the vertex E11 occurs in exactly two different walks: Let 8 be the index of the another walk

, 8 in which E11 occurs and let 1 be the index of the first occurrence of E11 in,
8 .

(1) if A 11 = A 8
1
= 0, then q (W) =W ↔1,8

1,1 .
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Fig. 8. Examples of cases A.1 and A.2 of the definition of q . The vertex E11 can be either labeled or unlabeled.

Fig. 9. Example of case B of the definition of q . All vertices inside the gray bag are different occurrences
of the same vertex E11 of the graph. The white vertices E

8
0 and E

9

1
are unlabeled, the black vertices could be

labeled or unlabeled, and the green vertex E11 is labeled in this specific example.

Fig. 10. Example of case C.1.a of the definition of q . All vertices inside the gray bag are different occurrences
of the same vertex E11 of the graph. The vertices E

1
1 and E1

1
are unlabeled and the black vertices E12 , E

1
0 , and

E1
1−1 can be either labeled or unlabeled.

(2) if the index 1 is not a digon in, 8 , then q (W) =W ⌢
1,8
1,1 . Note: If neither case (1) nor (2)

applies, then A 11 ≠ 0.
(3) if E11 occurs at least twice in, 8 , then let 2 be the index of its second occurrence and

q (W) = W ↔1,8
2,2+1. Note: It can happen that one of the suffixes in this case is empty.

However, both of them cannot be empty at the same time because, 1 and, 8 have different
ending vertices becauseW is proper.

Note: In the remaining cases, E11 occurs exactly once in, 8 , and this occurrence is a digon
at index 1.

Now, let 0 be the index of the last occurrence of E11 in,
1 (if E11 occurs only once in, 1,

then 0 = 1).
(4) if, 1 [2, 0 − 1] is not a palindrome, then q (W) = (, 1←−−−−−−−[2, 0 − 1],, 2, . . . ,, ? ). Note: If

0 = 1, then, 1 [2, 0 − 1] is the empty walk which is a palindrome.
(5) if 0 = ℓ1, then q (W) =, 1 t q (, 2, . . . ,, ? ).
(6) if E10+1 = E8

1+1, then q (W) =W ↔1,8
0+1,1+1. Note: By case (5) it holds that 0 < ℓ1 and by case

(2) it holds that 1 < ℓ8 .
X. otherwise, q (W) =, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). Note: The case D.X will form

a “common case” with the case C.X.

Intuition for q . Before laboriously proving that q indeed is a function from proper barren labeled
walkages to proper barren labeled walkages satisfying the required properties, let us give some
rough outline of ideas behind it. First, the general idea is that if the walkageW goes to a certain
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Fig. 11. Example of case C.1.b of the definition of q . All vertices inside the gray bags are the same vertex
of the graph. By case C.1.a, the blue subwalk, 1 [2, 1 − 1] is palindrome, and therefore by Lemma 4.8, the
vertices in it are unlabeled.

Fig. 12. Example of case C.1.c of the definition of q . All vertices inside the gray bags correspond to the same
vertex of the graph. By case C.1.a, the blue subwalk, 1 [2, 1 − 1] is palindrome, and therefore by Lemma 4.8,
the vertices in it are unlabeled.

Fig. 13. Example of cases C.2 and C.3 of the definition of q . Vertices inside the same gray bags correspond to
the same vertex of the graph. On the left part of the figure (case C.2), in the initial configuration the vertex E11
is unlabeled and the vertex E1

1
is labeled (with color red) and the application of q in this case exchanges this

label from E1
1
to E11 . On the right part of the figure, E1

1
is a digon and therefore it is unlabeled and by cases C.1

and C.2, E11 has to be labeled (depicted in green).

Fig. 14. Examples of cases C.4.a and C.4.b of the definition of q . By case C.2, 1 is a digon on, 1 and by case
C.3,, 1 [2, 0 − 1] is a palindrome. For both case C.4.a and case C.4.b, we have that E1

0+1 = E1
1−1 (E

1
0+1, E

1
1−1,

and E1
1+1 are in the same grey bag). If, 1 [0 + 1, 1 − 1] is not a palindrome, then we are in case C.4.a (on the

left), while if, 1 [0 + 1, 1 − 1] is a palindrome, we are in case C.4.b. (on the right).
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Fig. 15. Examples of cases C.X and D.X of the definition of q .

Fig. 16. Example of cases D.1-D.6 of the definition of q . In each gray bag, all vertices inside the corresponding
bag are the same vertex of the graph. Labeled vertices are depicted in red and green. White vertices correspond
to unlabeled vertices and black vertices can be either labeled or unlabeled.

case, then the walkage q (W) goes again to the same case, which then maps it back toW. The
only exception is that the cases C.X and D.X could map to each other.
Then, let us consider the cases relevant for a single walk, i.e., the case A.1 and the cases

under C. Here, the intuition of case A.1 is to just move forward in the walk: we don’t care much
about what q does to the rest of the walk because it must preserve the vertex right after E11 , and
attaching E11 to the front will not create a digon because E11 occurs only at one index. Then, case
C.1.a is the standard loop reversal case, which is safe because neither index 1 nor 1 is labeled. The
case C.1.b (and C.1.c) corresponds to ignoring a palindromic subwalk, which can be safely done
by Lemma 4.8. Then, case C.2 is the standard label swap case, which is safe because the index 1
is a not digon (note that the index 1 is never a digon). The cases C.1–C.2 are in some sense the
“easy cases,” while the cases C.3–C.X require more analysis of the remaining situation and quite
unintuitive design. First, if neither C.1 nor C.2 applies, we know that the index 1 is labeled and
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the index 1 is digon. The purpose of case C.3 is to, in some sense reduce to a situation where we
pretend that the vertex E11 occurs only at indices 1, 0, and 1, as the walk between 1 and 0 is an
irrelevant palindromic loop. Then, case C.4 handles a corner condition which would prevent case
C.X from working, in particular, if E10+1 = E1

1−1 would hold in C.X, then it could potentially create a
digon at the index 0 + 1. The case C.X ignores the palindromic loop between the indices 1 and 0,
leaving the only occurrence of the vertex E11 in the rest of the walk to be at the digon 1, which in
some sense makes it “harmless” in that the recursive calls will never need to analyse the vertex E1

1

again as the first vertex.
The intuition for the case of multiple walks is as follows. First, the case A.2 is just an analogue of

A.1 when the first walk has length 1. Then, if the vertex E11 occurs multiple times, we consider three
different cases: E11 occurs in at least three walks, E11 occurs in one walk, and E11 occurs in two walks.
Here, the three walks case B is quite easy, as we can just consider two of the walks where E11 is not
labeled, circumventing all issues with labeled digons. When E11 occurs in only one walk we go to
the one walk case C. Then, when E11 occurs in two walks, 1 and, 8 , the intuition of cases under
D is that we concatenate, 1 with reversed, 8 , with some special marker in between, and then
apply the single walk cases under C for this concatenation. Here, in the case D.X this can change
whether E11 occurs in two walks or a single walk, and therefore it is necessary to have the common
case of C.X and D.X, moreover taking care in the proof that moving back from C.X to D.X will be
handled correctly.

Correctness proof for q . We will then proceed to first show that q is well-defined, then that q
maps proper barren labeled walkages to proper barren labeled walkages, and then that q satisfies
all of the properties stated in Lemma 4.6, with q (q (W)) =W being the most complicated of them
to prove. The proof is long because we have to analyze most of the 18 cases one by one. However,
most of the arguments in these proofs are relatively easy once the definition of q is set. The main
challenge in the proof was to come up with the right definition of q .

Well-definedness of q . In Definition 4.9, in several cases, namely A.1, A.2, C.1.b, C.1.c, C.4.b, C.X,
D.5, and D.X, the function q is defined recursively. A priori it is not even clear why the syntactic
value q (W) is even well-defined in these cases. It requires proof that in these cases the recursive
argument is in the domain of q , in particular that it is also a proper barren labeled walkage.
Next we show that the syntactic value q (W) for proper barren labeled walkagesW is well-

defined. We remark that Lemma 4.10 does not yet show that q (W) is a proper barren labeled
walkage; it will require more efforts to prove (see Lemmas 4.13, 4.12, and 4.11).

Lemma 4.10. In case A.1 of Definition 4.9 it holds that (, 1 [2, ℓ1],, 2, . . . ,, ? ) is a proper barren
labeled walkage, in cases A.2, C.1.c, and D.5 it holds that (, 2, . . . ,, ? ) is a proper barren labeled
walkage, in cases C.1.b, and C.4.b it holds that (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ) is a proper barren labeled
walkage, and in cases C.X and D.X it holds that (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) is a proper barren labeled
walkage.

Proof. In all cases, the labeled walkage used as the recursive argument is obtained fromW by
removing either the walk, 1 or a prefix of, 1. First we need to argue that the recursive argument
is a labeled walkage. For this, the only thing to argue is that (1) the recursive argument contains
at least one walk (i.e., ? ≥ 2 in cases A.2, C.1.c, and D.5) and that (2) all walks in the recursive
argument are non-empty (i.e., ℓ1 ≥ 2 in case A.1, 1 < ℓ1 in cases C.1.b and C.4.b, and 0 < ℓ1 in cases
C.X and D.X). The other properties of labeled walkages are clearly satisfied when removing either
, 1 or a prefix of, 1.

The above conditions are satisfied directly by definition in cases A.1 and C.1.b. In case C.4.b,
1 < ℓ1 holds by the fact that (due to case C.2) the index 1 is a digon in, 1. In case C.X, recall that 0
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is the index of the second last occurrence of E11 in,
1, so 0 < ℓ1. In case D.X, we have that 0 < ℓ1 by

case D.5. For the remaining cases A.2, C.1.c, and D.5, observe the following. If ? = 1 would hold,
thenW = (, 1). Then, since in all these three cases E1ℓ1 = E11 and,

1 [2, ℓ1] cannot contain labels (in
A.2 trivially, in C.1.c by A 11 = A 1

1
= 0 and Lemma 4.8, and in D.5 by cases D.1, D.2, and D.4 combined

with Lemma 4.8), it should hold that (, 1 [1, 1]) is a labeled linkage consisting only of one walk
with one vertex that would contradict the fact thatW is barren by Definition 4.5.

It is clear by definition of a proper labeled walkage that removing a walk or a prefix of a walk
maintains that the walkage is proper. To complete the proof, it remains to show case by case that
the labeled walkages used as recursive arguments are barren.
In all of the cases the proofs will follow the same template: For the sake of contradiction we

suppose that the labeled walkageW′ used as a recursive argument is not barren, then consider the
labeled linkageW′′ that witnesses thatW′ is not barren, and then useW′′ to construct a labeled
linkage that shows thatW is not barren, obtaining a contradiction. We spell out these steps in
detail for the case A.1, and in less detail for subsequent cases. �

Case A.1. For the sake of contradiction, suppose that W′ = (, 1 [2, ℓ1],, 2, . . . ,, ? ) is not
barren. Then by the definition of barren, there exists a labeled linkageW′′ with start(W′′) =
start(W′), T (W′′) = T (W′), '(W′′) = '(W′), length ≤ ℓ − 1, and edges � (W′′) ⊆ � (W′).
By the assumptions of case A.1, the labeled walkageW′ does not contain E11 , so the labeled linkage
W′′ cannot contain E11 because the edge property � (W′′) ⊆ � (W′) ensures that E11 cannot occur
in a walk of length more than one, and the start vertex property start(W′′) = start(W′)
ensures that E11 cannot occur in a walk of length one. By the start vertex property, it holds that the
first vertex of the first walk inW′′ is E12 . Therefore,, 1 [1, 1] �W′′ is a labeled linkage. Because
E11E

1
2 ∈ � (W) and � (W′′) ⊆ � (W′) ⊆ � (W), we have that � (, 1 [1, 1] �W′′) ⊆ � (W). Also,

observe that because of '(W′′) = '(W′), it holds that '(, 1 [1, 1] �W′′) = '(W). Similarly, we
observe that start(, 1 [1, 1] �W′′) = start(W), T (, 1 [1, 1] �W′′) = T (W), and the length
ofW′′ is at most ℓ . Therefore,, 1 [1, 1] �W′′ is a labeled linkage that according to Definition 4.5
contradicts the fact thatW is barren.

Case A.2. Again, suppose thatW′ = (, 2, . . . ,, ? ) is not barren and consider the witnessW′′.
Because E11 does not occur inW′′, it holds that, 1 tW′′ is a labeled linkage that contradicts that
W is barren.

Case C.1.b. Suppose that W′ = (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ) is not barren and consider the
witnessW′′. As, by definition of 1 in case C, E11 occurs inW only in the subwalk, 1 [1, 1], it
cannot occur inW′′. Therefore, 1 [1, 1] � W′′ is a labeled linkage. It is easy to observe that
start(, 1 [1, 1] �W′′) = start(W), T (, 1 [1, 1] �W′′) = T (W), and � (, 1 [1, 1] �W′′) ⊆
� (W). Also, Lemma 4.8 implies that '(, 1 [1, 1]) = ∅ and therefore '(, 1 [1, 1] �W′′) = '(W),
therefore contradicting thatW is barren.

Case C.1.c. This case is similar as the previous, in particular, Lemma 4.8 implies that '(, 1) = ∅.
Therefore, if we assume thatW′ = (, 2, . . . ,, ? ) is not barren and we take the labeled linkage
W′′ that witnesses thatW′ is not barren, we can construct a labeled linkage, 1 [1, 1] tW′′ that
contradicts the fact thatW is barren.

Case C.4.b. Assume thatW′ = (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ) is not barren and take the labeled
linkageW′′ that witnesses thatW′ is not barren. As E11 occurs inW only in the subwalk, 1 [1, 1],
it cannot occur inW′′. Therefore , 1 [1, 1] � W′′ is a labeled linkage. Note that in this case
, 1 [2, 0−1] is a palindrome, the index 0 of the walk, 1 is not labeled because the index 1 is labeled
andW is proper, and, 1 [0+1, 1−1] is a palindrome, and the index1 of, 1 is not labeled.Therefore,
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by Lemma 4.8, '(, 1 [1, 1]) = {E11}, and therefore '(, 1 [1, 1] �W′′) = '(W), and therefore we
contradict the fact thatW is barren.

Case C.X. In this case, the argument is less apparent because E11 indeed occurs in, 1 [0 + 1, ℓ1].
Again, we start by assuming thatW′ = (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) is not barren, and take the
labeled linkageW′′ that witnesses thatW′ is not barren. Now, note that E11 occurs inW′ only as a
single digon in, 1 [0 + 1, ℓ1]. Therefore, E11 cannot occur as a starting or ending vertex inW′′. Also,
there is only one edge in � (W′) incident to E11 , which then prevents E11 occuring at any position in
W′′, because any position containing E11 would have to a digon, butW′′ is labeled linkage and
thus does not contain digons. Therefore, we construct a labeled linkage, 1 [1, 1] �W′′ and use the
fact that, 1 [2, 0 − 1] is palindrome with Lemma 4.8 to conclude that '(, 1 [1, 1] �W′′) = '(W),
and to finally observe that, 1 [1, 1] �W′′ satisfies also all the other needed properties to contradict
the fact thatW is barren.

Case D.5. Note that here we have that A 11 ≠ 0, E11 = E1ℓ1 , and,
1 [2, ℓ1 − 1] is a palindrome. The

arguments are similar to case C.X: The vertex E11 does occur in the walkage (, 2, . . . ,, ? ), but it
occurs in it only a single time, which is a digon in the walk, 8 . So suppose thatW′ = (, 2, . . . ,, ? )
is not barren and consider the witnessW′′. By similar arguments as in case C.X, E11 cannot occur
inW′′. Therefore, we construct a labeled linkage, 1 [1, 1] tW′′ and use the fact that, 1 [2, 0 − 1]
is palindrome with Lemma 4.8 to conclude that '(, 1 [1, 1] tW′′) = '(W), and to finally observe
that, 1 [1, 1] tW′′ satisfies also all the other needed properties to contradict the fact thatW is
barren.

Case D.X. Note that here again, we have that A 11 ≠ 0 and, 1 [2, 0 − 1] is a palindrome, where
0 is the last occurrence of E11 in, 1. The arguments are similar to case C.X: The vertex E11 does
occur in the walkage (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ), but it occurs in it only a single time, which is
a digon in the walk, 8 . So again suppose thatW′ = (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) is not barren,
and consider the witness W′′. Again by arguments of C.X we have that E11 cannot occur in
W′′. Therefore, we again construct a labeled linkage, 1 [1, 1] � W′′ and use the fact that, 1

[2, 0− 1] is palindrome with Lemma 4.8 to conclude that '(, 1 [1, 1] �W′′) = '(W), and to finally
observe that, 1 [1, 1] �W′′ satisfies also all the other needed properties to contradict thatW
is barren.
The next three lemmas establish that q (W) is a proper barren labeled walkage. In addition,

Lemma 4.11 shows that q satisfies the properties 5 (q (W)) = 5 (W), T (q (W)) = T (W), and
start(q (W)) = start(W).

Lemma 4.11. LetW be a proper barren labeled walkage. It holds that q (W) is a labeled walkage,
start(q (W)) = start(W), T (q (W)) = T (W), and 5 (q (W)) = 5 (W).

Proof. We prove the lemma by induction on the length of the walkageW. Here, all of the cases
should be easy to verify, so the arguments we provide will be terse.
Cases A.1 works directly by induction, in particular, we can use the induction assumptions

that

—q (, 1 [2, ℓ1],, 2, . . . ,, ? ) is a labeled walkage,
—start(q (, 1 [2, ℓ1],, 2, . . . ,, ? )) = start((, 1 [2, ℓ],, 2, . . . ,, ? )),
—T (q (, 1 [2, ℓ1],, 2, . . . ,, ? )) = T ((, 1 [2, ℓ],, 2, . . . ,, ? )), and
— 5 (q (, 1 [2, ℓ1],, 2, . . . ,, ? )) = 5 ((, 1 [2, ℓ],, 2, . . . ,, ? )),
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to prove the same properties forW. In particular, we use the start vertex property to ensure
that the first vertex of the first walk of q (, 1 [2, ℓ1],, 2, . . . ,, ? ) is E12 , and therefore the first edge
of the first walk of, 1 [1, 1] �q (, 1 [2, ℓ1],, 2, . . . ,, ? ) is E11E12 .
Case A.2 works similarly to A.1. Case B works by the property that E80 = E

9

1
, in particular

observing that if both of the suffixes are non-empty, the suffix swap operation preserves the set
of ending vertices T (W). Case C.1.a works because E11 = E1

1
, and cases C.1.b and C.1.c work by

similar induction as A.1. Case C.2 works because E11 = E1
1
, in particular, even though the index of

the label in the walk changes, the vertex variable or the label-color pair variable do not change
because the vertex does not change. Case C.3 works because E11 = E10 . Case C.4.a works because
E10 = E1

1
and case C.4.b works by similar induction as A.1. Case C.X works again by induction. Case

D.1 works because E11 = E8
1
. Case D.2 works because E11 = E8

1
, by the same argument as case C.2.

In case D.3, all other conditions work directly by E11 = E82 , but we should pay attention to the
ending vertices condition T (q (W)) = T (W), because it can happen that one of the suffixes is
empty. As observed already in the definition, observe that at most one of the suffixes can be empty
because E11 = E82 and, 1 and, 8 have different ending vertices becauseW is proper. First, if ℓ1 = 1,
then the ending vertex of, 8 becomes E82 = E11 = E1ℓ1 , and the ending vertex of, 1 becomes E8ℓ8 , so
the condition holds. Second, if ℓ8 = 2 , then the ending vertex of, 1 becomes E11 = E82 = E8ℓ8 , and the
ending vertex of, 8 becomes E1ℓ1 , so the condition holds.

Case D.4 works because E11 = E10 . Case D.5 works by induction. Case D.6 works because E10+1 = E8
1+1

and the suffixes are guaranteed to be non-empty. Case D.X works by induction. �

Note that because 5 (W) and start(W) determine'(W), � (W), and the length ofW uniquely,
Lemma 4.11 implies that q (W) is a barren walkage (becauseW is barren). It remains to prove that
q (W) is proper, and to prove that q (W) is proper the only remaining thing to prove is that q (W)
does not contain labeled digons (Lemma 4.13). In particular, the property T (q (W)) = T (W)
guarantees that the ending vertices of q (W) are distinct, and 5 (q (W)) = 5 (W), which implies
'(q (W)) = '(W) guarantees that the labeled vertices of q (W) have different colors (because
W is proper).

We will make use of the following lemma that follows directly from Lemma 4.11.

Lemma 4.12. If a vertex occurs exactly once inW and this occurrence is a digon, then this vertex
also occurs exactly once in q (W) and this occurrence is also a digon with the same adjacent vertices.

Proof. Suppose that a vertex E occurs exactly once inW and this occurrence is a digon. There-
fore, it cannot be a starting or ending vertex inW. By Lemma 4.11, it holds that start(q (W)) =
start(W) andT (q (W)) = T (W) and therefore E cannot be a starting or ending vertex neither in
q (W). Then, since by Lemma 4.11, we have that 5 (q (W)) = 5 (W), implying � (q (W)) = � (W),
the vertex E must have the exactly same adjacent vertices in q (W) as inW. �

Then we prove that q (W) has no labeled digons.

Lemma 4.13. LetW be a proper barren labeled walkage. The labeled walkage q (W) has no labeled
digons.

Proof. We prove the lemma by induction on the length of the walkageW. �

Case A.1. In this case, as q (, 1 [2, ℓ1],, 2, . . . ,, ? ) has no labeled digons by induction, the only
potential place for a labeled digon could be index 2 of, 1. However, because E11 occurs only once
inW and therefore does not occur in q (, 1 [2, ℓ1],, 2, . . . ,, ? ), we have that the index 2 of, 1

cannot become a digon.
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Case A.2. Trivially by induction.

Case B. Here, by the definition of E80 and E
9

1
in case B, both E80 and E

9

1
are unlabeled and E80 = E

9

1

holds, so ifW ↔8, 9

0,1
would contain a labeled digon then alsoW would.

Case C.1.a. Here, the indices 1 and 1 of, 1 are not labeled so they cannot become labeled digons.
For indices in [2, 1 − 1], note that if 8 ∈ [2, 1 − 1] would be a labeled digon in, 1←−−−−−−−[2, 1 − 1], then
1 + 1 − 8 would have been a labeled digon in, 1.

Case C.1.b. Potential places for labeled digons here are incides 1 and 1+1 at, 1. However, 1 is not
labeled so no labeled digon can be at 1, and because E1

1
does not occur in (, 1 [1+1, ℓ1],, 2, . . . ,, ? ),

it cannot occur in q (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ) and therefore 1 + 1 cannot become labeled digon.

Case C.1.c. Trivially by induction.

Case C.2. The index 1 of, 1 is not digon by definition of digon, and the index 1 is not digon by
definition of this case, so no labeled digons are created.

Case C.3. Here, the index 1 cannot be a digon by definition, and the index 0 of, 1 has A 10 = 0 by
case C.2, so they cannot become labeled digons. For indices in [2, 0 − 1], the same argument as in
case C.1.a applies.

Case C.4.a. Neither index 0 nor 1 is labeled so they cannot become labeled digons, and for indices
in [0 + 1, 1 − 1] the same argument as in case C.1.a applies.

Case C.4.b. Same argument as in C.1.b, and using that by case C.2, it holds that A 1
1
= 0.

Case C.X. Here, the index 0 of, 1 cannot become a labeled digon because it is not labeled. For
the index 0 + 1 the argument is more complicated: First note that the vertex E10 = E1

1
(= E11) occurs

only once in (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) (as E1
1
). Also, by case C.2, 1 is a digon in, 1. Therefore,

by Lemma 4.12, the vertex E1
1
= E10 occurs in q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) only once, and this

occurrence is a digon adjacent with vertex E1
1−1 = E1

1+1. Because by Lemma 4.11 q preserves the
starting vertices, and by case C.4 it holds that E10+1 ≠ E1

1−1, it holds that the occurrence of E
1
1
in

q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ) cannot be as the second vertex of the first walk. Therefore, the index
0 + 1 of the first walk cannot be a labeled digon in, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ).

Case D.1. As A 11 = A 8
1
= 0 and E11 = E8

1
, it holds that ifW ↔1,8

1,1 would contain a labeled digon then
alsoW would.

Case D.2. The index 1 of, 1 cannot become a digon by definition of digon. The index 1 of, 8

cannot become a digon by definition of this case.

Case D.3. Because E11 = E82 , in this case ifW ↔1,8
2,2+1 would have a labeled digon at index 2 of

, 1 or at index 2 + 1 of, 8 , then this same labeled digon would have existed also inW. Then, no
labeled digon can be created to index 1 of, 1 by definition of digon or to index 2 of, 8 because
A 11 ≠ 0 and therefore A 82 = 0 by case D.2.

Case D.4. The index 1 of, 1 cannot become a digon by definition, and the index 0 cannot become
a labeled digon because it is not labeled because the index 1 is labeled. For indices in [2, 0 − 1], the
same argument as in case C.1.a applies.

Case D.5. Trivially by induction.
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Case D.6. In this case, by cases D.1 and D.2 we have that A 11 ≠ 0 and A 8
1
= 0. The former implies

that A 10 = 0. Therefore, the index 0 of, 1 nor the index 1 of, 8 cannot become labeled digons
because they cannot become labeled. Then, if the index 0 + 1 of, 1 would be a labeled digon in
W ↔1,8

0+1,1+1, then the index 1 + 1 of, 8 would have been a labeled digon inW because E10 = E8
1

(and symmetrically for 1 + 1 of, 8 ).

Case D.X. Here, a similar argument as in C.X works: By Lemma 4.12, we know that E8
1
occurs

only as a digon surrounded by E8
1−1 = E8

1+1 in q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). Therefore, because q
maintains the starting vertices and E10+1 ≠ E8

1+1, it holds that the index 0 + 1 of, 1 cannot be a
digon in, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). The index 0 of, 1 cannot become a labeled digon
because it is not labeled.

The function q is an involution. Now we have shown that q is a function q : B → B, where B is
the set of all barren proper labeled walkages, and that 5 (q (W)) = 5 (W), T (q (W)) = T (W), and
start(q (W)) = start(W) hold. Next we show that q is an involution on B, i.e., q (q (W)) =W
holds.

Lemma 4.14. For any proper barren labeled walkageW it holds that q (q (W)) =W.

Proof. We use induction on the length of walkageW. The structure of the proof is to show
that in all cases except C.X and D.X, the walk q (W) goes to the same case of Definition 4.9 asW.
Then, the cases C.X and D.X are treated together. �

Case A.1. In bothW and q (W) it holds that the E11 occurs only once in the walkage and q does
not change the first vertex, so q (q (W)) =W holds by induction.

Case A.2. In this case the first walk ofW is the same as the first walk ofq (W), soq (q (W)) =W
holds by induction.

Case B. In this case, the function q preserves the set of walks in which E11 occurs, and moreover
preserves the walk in which E11 occurs as labeled (if it occurs as labeled in any walk). Therefore,
the walkage q (W) also goes to case B, and in case B the indices 8, 9 selected for q (W) are the
same as selected forW. The suffix swap operation also does not change the indices of the first
occurrences of E11 in,

8 and, 9 , so the indices 0 and 1 selected are the same. Then, the lemma
follows by observing thatW ↔8, 9

0,1
↔8, 9

0,1
=W.

At this point, let us observe thatW goes to cases C.1-4 if and only if q (W) goes to cases C.1-4.
This is because all of these cases maintain that E11 occurs only in the walk, 1, but multiple times in
the walk, 1. In particular, in the recursive cases this is maintained by the fact that E11 does not
occur in the recursive argument.
We also observe thatW goes to cases D.1-6 if and only if q (W) goes to cases D.1-6. This is

because all of these cases maintain that E11 occurs in exactly two different walks. In the cases D.1-4
and D.6 this is easy to observe since these are not recursive, and in the case D.5 this follows from the
fact that the walk, 1 is not changed and that in this case E11 occurs exactly once in (, 2, . . . ,, ? ).

Case C.1. Note that going to the cases C.1.a, C.1.b, and C.1.c depends only on the last occurrence
1 of E11 , and the labels A 11 and A 1

1
. None of these cases change these, so q (q (W)) = W holds in

case C.1.a because, 1
←−−−−−−−←−−−−−−−
[2, 1 − 1] = , 1 and reversing a subwalk does not change whether it is a

palindrome, and by induction in cases C.1.b and C.1.c.
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Case C.2. The order of the vertices in the walks and the fact that exactly one of A 11 and A
1
1
is labeled

is maintained, so ifW goes to case C.2 then also q (W) goes to C.2. Then, q (q (W)) =W because
W ⌢

1,1
1,1⌢

1,1
1,1=W.

Case C.3. It holds that 0 < 1, so therefore reversing, 1 [2, 0 − 1] does not change the fact that 1
is a digon in, 1. It also does not change the index 0 of the second last occurrence of E11 , nor the
index 1 of the last occurrence of E11 , nor the fact that A

1
1 ≠ 0, nor the fact that, 1 [2, 0 − 1] is not a

palindrome.

Case C.4.a. Because E10+1 = E1
1−1, reversing,

1 [0 + 1, 1 − 1] does not change the fact that 1 is
a digon in, 1. Reversing, 1 [0 + 1, 1 − 1] also does not change the index 0 of the second last
occurrence of E11 , nor the index 1 of the last occurrence of E11 , nor the fact that A

1
1 ≠ 0, nor the fact

that, 1 [2, 0 − 1] is a palindrome.

Case C.4.b. Going to the case C.4.b depends only on the subwalk, 1 [1, 1] and on the vertex with
index 1 + 1 in, 1 (whether the index 1 is a digon). Clearly, q does not change the subwalk, 1 [1, 1]
in this case. The vertex with index 1 + 1 is not changed because by Lemma 4.11 the starting vertices
are preserved by q (, 1 [1 + 1, ℓ1],, 2, . . . ,, ? ), so the lemma holds by induction.

Before moving to the cases C.X and D.X, we handle the cases D.1-D.5.

Case D.1. In this case, the operationW ↔1,8
1,1 does not change the two walks in which E11 occurs,

nor it changes the fact that the first occurrence of E11 in,
8 is at index 1, nor that A 11 = A 8

1
= 0. The

lemma follows from the fact thatW ↔1,8
1,1↔

1,8
1,1=W.

Case D.2. This case does not change the vertices of the walks, so it is maintained that E11 occurs
only in, 1 and, 8 . It also does not change the fact that exactly one of A 11 and A

8
1
is labeled or the

fact the index 1 is not a digon in, 8 , so the lemma follows from the fact thatW ⌢
1,8
1,1⌢

1,8
1,1=W.

Case D.3. This case does not change the index 1 of the first occurrence of E11 in,
8 or the index

2 of the second occurrence of E11 in,
8 , and neither does it change the fact that A 11 ≠ 0. Because

2 > 1 + 1, it also does not change that the index 1 is a digon in, 8 . The lemma follows from the fact
thatW ↔1,8

2,2+1↔
1,8
2,2+1=W.

Case D.4. This case does not change the index 1 of the first occurrence of E11 in,
8 , nor that A 11 ≠ 0,

nor that 1 is a digon in, 8 , nor that E11 occurs only once in, 8 . It also does not change the index 0
of the last occurrence of E11 in,

8 , or the fact that, 1 [2, 0 − 1] is a palindrome so the lemma holds.

Case D.5. The vertex E11 occurs exactly once in (, 2, . . . ,, ? ), so it is also maintained that E11
occurs in exactly two walks. The walk, 1 is not changed, so it is maintained that A 11 ≠ 0 and
therefore q (W) does not go to case D.1. By Lemma 4.12, we have that q (W) does not go to case
D.2, and again because E11 occurs only once in (, 2, . . . ,, ? ) we have that q (W) does not go to
case D.3. As, 1 is not changed we have that q (W) does not go to case D.4. Then, as case D.5 does
not change the walk, 1, it is maintained that 0 = ℓ1, so q (W) goes to case D.5.

Case D.6. This case does not change that A 11 ≠ 0, so q (W) does not go to case D.1. It also does
not change the index 1 of the first occurrence of E11 in, 8 , and because E10+1 = E8

1+1, it does not
change that 1 is a digon in, 8 , and therefore q (W) does not go to case D.2. Because 0 is the last
occurrence of E11 in,

1, it also does not change that E11 occurs in,
8 only once, so q (W) does not

go to case D.3. It also does not change the index 0 of the last occurrence of E11 in,
1 or the subwalk
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, 1 [2, 0 − 1], so q (W) does not go to cases D.4. or D.5. Therefore, q (W) goes to case D.6 with the
same values of 0, 1, and 8 , so q (q (W)) =W holds becauseW ↔1,8

0+1,1+1↔
1,8
0+1,1+1=W.

Case C.X. We aim to prove that ifW goes to case C.X, then q (W) also goes to case C.X or
to case D.X, with the same value of the index 0, and therefore q (q (W)) = W will hold by
induction, as in both cases q is defined as q (W) =, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). First,
it is maintained that E11 occurs more than once, but in at most two walks, because E11 occurs only
once in (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). Therefore, q (W) does not go to case A or B.
Suppose that E11 occurs in q (W) only in the walk, 1, i.e., goes to case C. We will show that

q (W) goes to case C.X. It is maintained that A 11 ≠ 0, so q (W) does not go to case C.1. Then, by
Lemma 4.12 it is maintained that the last occurrence of E11 must be a digon so q (W) does not go
to case C.2. Also, this case does not change the index 0 of the second last occurrence of E11 nor
the walk, 1 [2, 0 − 1], so it is maintained that, 1 [2, 0 − 1] is a palindrome and therefore q (W)
does not go to case C.3. Then, to argue that q (W) does not go to case C.4, observe that because q
maintains the starting vertex, the vertex at the position 0 + 1 is maintained. The vertices around
the digon at the last occurrence of E11 are maintained by Lemma 4.12, so therefore ifW does not go
to case C.4 then also q (W) does not go to case C.4. Therefore q (W) goes to case C.X, and as the
walk, 1 [1, 0] is maintained, it goes to this case with the same value of 0, so the lemma holds by
induction.
Then, suppose that E11 occurs in q (W) in two walks, 1 and, 8 , i.e., goes to case D. We will

show that q (W) goes to case D.X. It is maintained that A 11 ≠ 0, so q (W) does not go to case D.1.
Then, by Lemma 4.12 it must be that E11 occurs in,

8 only once and as a digon, and therefore q (W)
does not go to case D.2 or D.3. Now, it will hold that the index 0 of the last occurrence of E11 in the
walk, 1 of q (W) is the same as the index 0 of the last occurrence of E11 in the walk, 1 ofW.
Therefore, the subwalk, 1 [1, 0] will be the same inW and q (W), and therefore q (W) will not
go to case D.4 becauseW did not go to case C.3. Then, because q cannot turn a non-empty walk
into an empty walk, it is maintained that the length of, 1 is more than 0, so q (W) cannot go to
case D.5. Then, for case D.6 we again note that q maintains the vertex at position 0 + 1, and that
the digon around the occurrence of E11 outside of,

1 [1, 0] is maintained by Lemma 4.12. Therefore,
q (W) goes to case D.X with the same value of 0, so the lemma holds by induction.

Case D.X. We will show that ifW goes to case D.X, then q (W) also goes to case D.X or to case
C.X, with the same value of the index 0, and therefore q (q (W)) =W will hold by induction, as in
both cases q is defined as q (W) =, 1 [1, 0] �q (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ). First, it is maintained
that E11 occurs more than once, so therefore q (W) does not go to case A. Then, as E11 occurs only
once in (, 1 [0 + 1, ℓ1],, 2, . . . ,, ? ), it can occur in at most two walks in q (W), so q (W) cannot
go to case B.
Suppose that E11 occurs in q (W) only in the walk, 1, i.e., goes to case C. We will show that

q (W) goes to case C.X. It is maintained that A 11 ≠ 0, so q (W) does not go to case C.1. Then,
because, 1 [1, 0] contains all other occurrences of E11 inW except the occurrence in, 8 , it must
be that now the last occurrence of E11 in,

1 of q (W) corresponds to the occurrence of E11 in,
8 of

W, in particular, by Lemma 4.12 the last occurrence of E11 in,
1 of q (W) must be a digon, and

therefore q (W) does not go to case C.2. By the same reasoning, it also must be that the the index
0 of the last occurrence of E11 in,

1 ofW is the same as the index 0 of the second last occurrence
of E11 in,

1 of q (W), and therefore the subwalk, 1 [1, 0] of q (W) in case C is the same as the
subwalk, 1 [1, 0] ofW in case D. Then, it follows that becauseW did not go to case D.4, q (W)
does not go to case C.3. Then, as the case D.X does not change the vertex at the index 0 + 1 of, 1,
it holds that the vertex at the index 0 + 1 of, 1 is the same inW and q (W). Also, by Lemma 4.12
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the vertices around the digon of the last occurrence of E11 are the same inW and q (W), so q (W)
does not go to case C.4 becauseW did not go to case D.5. Therefore, q (W) must go to case C.X,
and we already reasoned that the index 0 is the same as forW in case D.X, so the lemma holds by
induction.
Suppose that E11 occurs in q (W) in two different walks, i.e., goes to case D. We will show that

q (W) goes to case D.X. First, it is maintained that A 11 ≠ 0, so q (W) does not go to case D.1. Then,
we note that the walk, 8 that contains the other occurrence of E11 may be different for q (W) than
W. However, it is maintained that E11 occurs only once outside of, 1, and by Lemma 4.12 that the
other occurrence is a digon and the vertices around this digon are maintained. Therefore, q (W)
does not go to case D.2, nor to case D.3. Now, the index 0 of the last occurrence of E11 in,

1 will be
the same for q (W) andW because q (W) does not change the subwalk, 1 [1, 0]. Therefore, it is
maintained that, 1 [2, 0 − 1] is a palindrome, and therefore q (W) does not go to case D.4. Then,
because q cannot turn a non-empty walk into an empty walk, it is maintained that the length of
, 1 is more than 0, so q (W) cannot go to case D.5. Then, by the start vertex property of q , the
vertex at index 0 + 1 of, 1 is also maintained, and by Lemma 4.12 the vertices around the digon
of the other occurrence of E11 are maintained, so q (W) does not go to case D.6. Therefore, q (W)
goes to case D.X, with the same value of 0, and therefore the lemma holds by induction.

Finally, we show that q is fixed-point-free.

Lemma 4.15. For any proper barren labeled walkageW it holds that q (W) ≠W.

Proof. We prove this by induction on the length ℓ of the walkage. In the recursive cases A.1,
A.2, C.1.b, C.1.c, C.4.b, C.X, D.5, and D.X this holds directly by induction. In cases B, D.1, D.3, and
D.6, q changes the suffixes of two walks, and at least one of the suffixes is non-empty. Because
W is proper, the ending vertices of all walks inW are different, so the ending vertex of at least
one of the walks involved in the suffix swap is changed (in fact the ending vertices of both of the
walks change, but it is not necessary for this proof). In cases C.1.a, C.3, C.4.a, and D.4, q reverses a
non-palindromic subwalk so q (W) ≠W. In cases C.2 and D.2 q changes a label from one position
to another, so q (W) ≠W. �

This completes the proof of Lemma 4.6.

5 From Colored Graphs to Frameworks
In this section, we extend our results from weighted colored graphs to weighted frameworks, in
particular, we prove Theorem 1.5 (recall that Theorem 1.5 implies Theorem 1.3), and then discuss
even further extensions to frameworks where the matroid is not necessarily represented over a
finite field.

5.1 Frameworks
We recall definitions related to frameworks.

Matroids. We refer to the textbook of Oxley [41] for the introduction to Matroid Theory.

Definition 5.1. A pair " = (+ ,I), where + is a ground set and I is a family of subsets of + ,
called independent sets of" , is a matroid if it satisfies the following conditions, called independence
axioms:

(1) ∅ ∈ I,
(2) if - ⊆ . and . ∈ I then - ∈ I,
(3) if -,. ∈ I and |- | < |. |, then there is E ∈ . \ - such that - ∪ {E} ∈ I.
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An inclusion maximal set of I is called a base. We use + (") and I(") to denote the ground set
and the family of independent sets of" , respectively.
The direct sum of matroids " and # is the matroid whose ground set is the disjoint union of

+ (") and + (# ), and whose independent sets are the disjoint unions of an independent set of"
with an independent set of # .

Let " = (+ ,I) be a matroid. We use 2+ to denote the set of all subsets of + . A function
A : 2+ → Z≥0 such that for every - ⊆ + ,

A (- ) = max{|. | : . ⊆ - and . ∈ I},

is called the rank function of" . The rank of" , denoted A ("), is A (+ ); equivalently, the rank of"
is the size of any base of " . A matroid " ′ = (+ ,I′) is a :-truncation of " = (+ ,I) if for every
- ⊆ + , - ∈ I′ if and only if - ∈ I and |- | ≤ : .

We work with several particular types of matroids. A uniform matroid is defined by the ground
set + and its rank A ; every subset ( of + of size at most A is independent. Partition matroids are
the matroids that can be written as disjoint sums of uniform matroids. Transversal matroids arise
from graphs. For a bipartite graph � = (+ ∪ �, �) with all edges between + and �, we can define a
matroid" = (+ ,I) such that a set ( ⊆ + is independent if there exists a matching in � such that
every vertex in ( is an endpoint of a matching edge.

Matroid representations. Let " = (+ ,I) be a matroid and let F be a field. An A × =-matrix �

is a representation of " over F if there is a bijective correspondence 5 between + and the set of
columns of � such that for every - ⊆ + , - ∈ I if and only if the set of columns 5 (- ) consists of
linearly independent vectors of FA . Equivalently, � is a representation of" if" is isomorphic to
the column matroid of �, that is, the matroid whose ground set is the set of columns of the matrix
and the independence of a set of columns is defined as the linear independence. If " has a such a
representation, then " is representable over F and it is also said " is a linear (or F-linear ) matroid.
We can assume that the number of rows A = A (") for a matrix representing" [37].

Whenever we consider a linear matroid, it is assumed that its representation is given and the
size of " is ‖" ‖ = ‖�‖, that is, the bit-length of the representation matrix. Notice that given a
representation of a matroid, deciding whether a set is independent demands a polynomial number
of field operations. In particular, if the considered field is a finite or is the field of rationals, we can
verify independence in time that is a polynomial in ‖" ‖.

Frameworks. A framework is a pair (�,"), where " = (+ ,I) is a matroid whose ground set
is the set of vertices of � , i.e., + (") = + (�). A weighted framework is a triple (�,", we), where
(�,") is a framework and we : + (�) → Z≥1 is a weight function. An ((,) )-linkage P in a
weighted framework (�,", we) is (:,F)-ranked if + (P) contains a set - ⊆ + (P) with - ∈ I,
size |- | = : , and weight we(- ) = F . When discussing algorithms for (weighted) frameworks, we
explicitly specify how" is represented.

5.2 From Colored Graphs to Frameworks
In this section, we prove Theorem 1.5. We reduce the more general cases of matroids to the case of
Theorem 1.4.
We start by giving our algorithm for the special case when the rank of " is bounded by : , in

particular when" is represented as a : × = matrix.

Lemma 5.2. There is a randomized algorithm, that given a weighted framework (�,", we), where�
is an =-vertex graph and" is represented as a : ×= matrix over a finite field of order @, sets of vertices
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(,) ⊆ + (�), and integers ?, :,F , in time 2?+O(:
2 log@)=O(1)F either finds a (:,F)-ranked ((,) )-

linkage of order ? and of minimum total length, or determines that (�,", we) has no (:,F)-ranked
((,) )-linkages of order ? .

Proof. The matrix has at most @: distinct column vectors so we can guess the : column vectors
forming the independent set - of size : that we are looking for with at most @:2 guesses. By
inserting |( | new vertices with neighborhoods equal to ( , all-zero column vector, and weight 1,
we can assume that the vectors of the starting vertices ( will never correspond to the guessed
basis. Then, we : + 1-color the graph, assigning the color : + 1 to the vertices of the set ( and other
vertices whose column vectors are not in the guessed basis, and the colors [:] to the other vertices
according to which of the : guessed column vectors they correspond to. We also assign the weight
of all vertices whose column vector is not in the guessed basis to be 1.

Then, (�,", we) has a (:,F)-ranked ((,) )-linkage of order ? if and only if it has a (: + 1,F + 1)-
colored ((,) )-linkage of order ? . In particular, the extra color : + 1 contributes weight one and
one color more, and the selected set - ⊆ + (P) without the extra color must correspond to an
independent set of " . Therefore, we get an algorithm with time complexity @:

2
2?+:=O(1)F =

2?+O(:
2 log@)=O(1)F . �

By extending Lemma 5.2 to matrices with a large number of rows by using randomized lossy
truncation, we prove Theorem 1.5.

Proof of Theorem 1.5. Let � be a A × = matrix representing" . Our goal is to obtain a “lossy”
representation of the :-truncation of" as a :×= matrix over a field of order O(@+:2). In particular,
a representation so that any independent set of" of size : is independent in the representation
with probability ≥ 1/2, and any dependent set of" is dependent in the representation. Then, we
obtain the algorithm by applying the algorithm of Lemma 5.2. Note that 2?+O(:2 log(@+:2 ) )=O(1)F =

2?+O(:
2 log(@+: ) )=O(1)F .

We use two techniques from [37], increasing the order of the field and truncation. First, we make
sure that the order of the field is at least 2: by choosing the least integer 8 such that @8 ≥ 2: , and
going to the field of order @8 , as detailed in Proposition 3.2 of [37]. Now, we can assume that � is
over a field of order at least 2: and at most O(@ + :2).
Then, we truncate the matroid by multiplying the matrix � by a random : × A matrix ', in

particular we claim that the : × = matrix � = '� is now the desired representation of the :-
truncation of" . The analysis here is the same as in Proposition 3.7 of [37], but with a smaller field.
In particular, let us consider a subset * of the ground set of " , and let �0 be the A × |* | submatrix
of � corresponding to ( . Now, in �, the : × |* | submatrix corresponding to ( will be the matrix
�0 = '�0. The rank of �0 is at most the rank of �0, so if* is dependent in" it will be dependent in
the representation by �. Then, assume that* is an independent set of" and |* | = : . Now, det'�0

can be considered as a degree-: polynomial, that is not the zero polynomial, whose variables are
the :A random entries of '. Therefore, by Lemma 3.1, the probability that det'�0 = 0 is at most
:/2: . �

With minor adjustments, Theorem 1.5 can be adapted for frameworks with matroids that are in
general not representable over a finite field of small order. For example, uniform matroids, and more
generally transversal matroids, are representable over a finite field, but the field of representation
must be large enough. We first show how Theorem 1.1 can be applied in the case of transversal
matroids.

Theorem 5.3. There is a randomized algorithm that given a weighted framework (�,", we), where
� is an =-vertex graph and " is a transversal matroid represented by the corresponding bipartite
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graph, sets of vertices (,) ⊆ + (�), and integers ?, :,F , in time 2?+O(:
2 log: )=O(1)F either finds a

(:,F)-ranked ((,) )-linkage of order ? and of minimum total length, or determines that (�,", we)
has no (:,F)-ranked ((,) )-linkages of order ? .

Proof. We will construct a representation of the transversal matroid as a linear matroid over a
finite field of order O(:), so that any independent set of" of size : is independent in the represen-
tation with probability ≥ 1/2, and any dependent set of" is dependent in the representation. This
yields the algorithm by then using Theorem 1.5.
Our construction is the same as the construction of [37], except by using a smaller field. We

choose the least prime ? with ? ≥ 2: and work in the field of order ? . Let the bipartition of the
vertices of the bipartite graph be (�, �). We construct an |� | × |�| matrix, so that an entry of the
matrix is a random element of the field if it corresponds to an edge, and zero otherwise. Now,
the determinant of a submatrix is guaranteed to be zero if there is no corresponding matching,
so any dependent set of " is dependent in the representation. Otherwise, the determinant of a
: × : submatrix can be seen as a degree-: polynomial (which is not the zero polynomial) that was
evaluated for an uniformly random assignment of values to the variables. Therefore, as ? ≥ 2: , by
Lemma 3.1, the probability that it is not zero is at least 1/2. �

It is also possible to apply Theorem 1.5 in the situation when " is represented by an integer
matrix over rationals with entries bounded by =O(: ) .

Theorem 5.4. There is a randomized algorithm that given a weighted framework (�,", we), where
� is an =-vertex graph and" is represented as an integer matrix over rationals with entries bounded
by =O(: ) , sets of vertices (,) ⊆ + (�), and integers ?, :,F , in time 2?+O(:

2 log: )=O(1)F either finds a
(:,F)-ranked ((,) )-linkage of order ? and of minimum total length, or determines that (�,", we)
has no (:,F)-ranked ((,) )-linkages of order ? .

Proof. Let 2 be a constant so that the entries of the matrix are bounded by =2: . We pick a
random prime ? among the first 2 log2 (:!=2:

2 ) primes, go to the finite field of order ? by taking
every entry modulo ? , and then apply the algorithm of Theorem 1.1.
We first analyze the time complexity and then the correctness. By the prime number theorem,

the prime ? is bounded by

? = O(log:!=2:2 · log log:!=2:2 ) = O(:3 log= log log=).

We can find such random prime in =O(1) time by elementary methods. Then, the time complex-
ity by using Theorem 1.1 will be 2O(?+:

2 log(:+:3 log= log log=)=O(1) . Denote C (=) = log= log log=
and consider two cases. First, if C (=) ≤ :5, then the time complexity is 2O(?+:2 log(:8 )=O(1) =

2O(?+:
2 log: )=O(1) . Second, if C (=) > :5, then the time complexity is 2O(?+:

2 log:3C (=) )=O(1) =

2O(?+C (=)
1/2 log C (=) )=O(1) = 2O(? ) · 2O(log1/2 = logO(1) log=) = 2O(? )=O(1) .

Then, for the correctness we show that any dependent set of" is dependent in the representation
and any independent set of" of size : is independent in the representation with probability ≥ 1/2.
Let � be a square submatrix of the original representation and �? the corresponding submatrix
in the presentation modulo ? . Now, det�? = det� mod ? . Therefore, all dependent sets stay
dependent. Then, assume that � is a : × : submatrix corresponding to an independent set, i.e.,
det� ≠ 0. Now, the independent set can change into dependent only if det� is divisible by ? . The
value det� is bounded by :!=2:2 , so there are at most log2 (:!=2:

2 ) primes dividing it. We chose ?
randomly among the first 2 log2 (:!=2:

2 ) primes, so with probability ≥ 1/2 the prime ? does not
divide det�. �
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6 Deterministic Algorithm for Longest (S,T )-Linkage
This section is dedicated to the proof of Theorem 1.2.
We start with showing the main combinatorial lemma behind the theorem. The lemma is illus-

trated in Figure 3.

Lemma 6.1. Let� be a digraph and let�1,…,�@ be disjoint sets in+ (�). For B, C ∈ + (�) let %1,…, %@
be internally-disjoint (B, C)-paths. For each 8 ∈ [@], let E8 ∈ + (%8 ) be such that the suffix of %8 starting
from E8 lies inside �8 , except for C . For each 8 ∈ [@], let &8 be a path from E8 to C with all internal
vertices in�8 . Then there exist internally-disjoint (B, C)-paths % ′1,…, % ′@ such that % ′8 is either (i) %8 or (ii)
a composition of a prefix of %8 not containing any vertices of %8 beyond E8 , and a suffix of & 9 for some
9 ∈ [@], and there is at least one path of type (ii) among % ′1,…, %

′
@ .

Proof. For each 8 ∈ [@], denote the subpath of %8 from B to E8 by %→8 , and from E8 to C by %←8 .
First, assume there exists 8 ∈ [@] such that &8 does not share a common internal vertex with any
%→9 , 9 ∈ [@]. In this case, the solution is immediate: for each 9 ≠ 8 , set % ′9 = % 9 , and set % ′8 = %→8 ◦&8 .
The path %→8 does not intersect any other % ′9 internally since %1,…, %@ are internally-disjoint, and
by the assumption &8 internally intersects neither %→8 nor any other % ′9 . So for the remaining part
of the proof we assume that for each &8 there exists 9 ∈ [@] such that &8 and %→9 share a common
internal vertex.
We now show the statement by analyzing a certain token sliding game. Intuitively, we put a

token on each of the paths %1,…, %@ , originally on the place of the first intersection between %8 and
some & 9 (see Figure 3(b)). Then we slide the tokens further along the paths according to certain
rules, until the tokens reach a state where no rules can be applied (Figure 3(c) and (d)). Our goal is
to show that in this case we obtain the desired paths % ′1,…, %

′
@ .

More formally, we define a state( as a tuple (C1, . . . , C@), where C8 ∈ + (%8 ) for each 8 ∈ [@]. The
original state (1 = (C11 , . . . , C1@) is defined as follows: for each 8 ∈ [@], among all vertices of %8
that belong to & 9 for some 9 ∈ [@], C18 is the one closest to B . The game then proceeds iteratively,
constructing the state (ℎ+1 from (ℎ for each ℎ starting from ℎ = 1 by applying one of the following
rules. For 9 ∈ [@], we shall refer to a path & 9 as active if Cℎ9 ≠ C .

Clear: Let Cℎ8 = E8 for some 8 ∈ [@]. Then set Cℎ+18 = C , and for each 9 ∈ [@] such that Cℎ9 ∈ + (&8 )\{C},
set Cℎ9 to be the next vertex along the path % 9 that belongs to an active & 9 ′ for some 9 ′ ∈ [@], here
&8 is not considered active. For all remaining 9 ∈ [@], set Cℎ+19 = Cℎ9 .

Push: Let 8 and 8′, 8 ≠ 8′ ∈ [@], be such that both Cℎ8 and Cℎ
8′ belong to & 9 − {C} for some 9 ∈ [@];

additionally, let Cℎ8 be the farthest of two from C along & 9 . Set Cℎ+18 to be the next vertex along the
path %8 that belongs to an active & 9 ′ for some 9 ′ ∈ [@]. For all 8′′ ∈ [@], 8′′ ≠ 8 , set Cℎ+1

8′′ = Cℎ
8′′ .

Intuitively, in the Clear rule, if at any step ℎ the current token Cℎ8 of the path %8 reaches the vertex
E8 , we forfeit this path: the token is moved to C , which corresponds to the 8th path of the shorter
solution being exactly %8 , and all other tokens on &8 are moved next along their paths, until they
hit another & 9 ′ . As for the Push rule, if two tokens end up on the same & 9 for some 9 ∈ [@], we
move the farthest of them from C further along its path %8 , similarly to the Clear rule.

As long as there is a possibility, a Clear rule is applied; Push is only applied if no Clear is available.
If there are several options for applying the same rule, ties are breaking arbitrarily. We observe that
every application of each rule moves at least one of the state vertices further along its respective
path, and these vertices are never moved back. Thus, after a finite number of steps we reach a state
where neither of the rules is applicable. Denote this state by ()8 , our goal is to show the following.

Claim 6.2. Let ()8 = (C)1 , . . . , C)@ ). There is 8 ∈ [@] such that C)8 ≠ C .
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Before showing the proof of Claim 6.2 we make the following simple observation.

Claim 6.3. For a state (ℎ , ℎ ∈ [) ], for each 9 ∈ [@], Cℎ9 ∈ + (% 9 ), and Cℎ9 is either C or belongs to an
active &8 for some 8 ∈ [@]. Moreover, all of Cℎ9 that are not C , are distinct.

Proof. By construction, the first part of the statement holds for the starting state (1. Both rules
either move vertices to an active &8 further along its path, or directly to C . The second part follows
immediately from the fact that the paths % 9 are internally-disjoint. �

We first explain how Claim 6.2 implies the claim in the lemma. By Claim 6.2, there is at least one
8 ∈ [@] such that C)8 ≠ C ; let � ⊆ [@] be the set of all indices with this property. By Claim 6.3, each
vertex in {C)8 }8∈� lies on an active & 9 for some 9 ∈ [@], and these vertices are all distinct. Moreover,
since the rule Push is not applicable, no two of these vertices share the same & 9 . Let c : � → [@] be
the injection that maps 8 ∈ � to the index 9 such that C)8 ∈ + (& 9 ). We construct the desired family
of paths as follows: for 8 ∈ [@] \ � , let % ′8 be %8 , and for 9 ∈ � , let % ′9 be a concatenation of the subpath
of %8 from B to C)9 (denoted %̂8 ), and the subpath of &c (8 ) from C)9 to C (denoted &̂8 ). Observe also
that for each 8 ∈ � , C)8 is not E8 since the rule Clear is not applicable. Moreover, since � is non-empty,
there is at least one path of type (ii) in the constructed family. It only remains to show that the
paths {% ′8 }8∈[@ ] are internally-disjoint.

For 8 ∈ [@] \ � , denote %̂8 = %→8 and &̂8 = %←8 . For 8 ≠ 8′ ∈ [@], B is the only intersection between %̂8
and %̂8′ since %̂8 and %̂8′ are proper prefixes of %8 and %8′ respectively, and these paths are internally
disjoint by the assumption of the lemma. Observe that for each 8 ∈ [@], the vertices of &̂8 except C
lie in the set � 9 , for some 9 ∈ [@], and this correspondence between {&̂8 }8∈[@ ] and {� 9 } 9∈[@ ] is a
bijection defined by c on � and by the identity permutation on [@] \ � . Since the sets {� 9 } 9∈[@ ] are
disjoint, for any 8 ≠ 8′ ∈ [@], we get that the paths &̂8 and &̂8′ share the only common vertex C .
It remains to verify that for each 8 ≠ 8′ ∈ [@], %̂8 shares no common vertices with &̂8′ . For

8′ ∈ [@] \ � , &̂8′ = %←
8′ , which is a suffix of %8′ , and this path cannot intersect %̂8 which is a prefix

of %8 ; thus in the following we assume 8′ ∈ � . Assume the contrary, then there is a vertex D on %̂8
that belongs to &c (8′ ) , and is located on &c (8′ ) closer to C than C)

8′ , which is the starting vertex of
&̂8′ . Observe that the rule Clear has never been applied to &c (8′ ) , otherwise &c (8′ ) would not be
active in () . Thus, there is a state (ℎ where Cℎ8 = D, since any application of the rules to Cℎ′8 for any
ℎ′ ∈ [) ] either leaves this vertex in place or moves it to the next vertex of %8 belonging to an active
& 9 for some 9 ∈ [@]. Now observe that no application of the rule Push makes the closest vertex to C
on &c (8′ ) − {C} among the vertices of {Cℎ9 } 9∈[@ ] farther, by definition of Push; or, in other words,
the “leading” token on &c (8′ ) − {C} only gets closer to C with further steps. However, we get that
Cℎ8 is closer to C on &c (8′ ) than C)

8′ , but C
)
8′ is the only vertex of {C)9 } 9∈[@ ] on &c (8′ ) − {C}. This is a

contradiction. Hence the assumption that %̂8 and &̂8′ intersect cannot hold.

Proof of Claim 6.2. Assume the contrary, that C)8 = C for each 8 ∈ [@]. Since the paths {%←8 }8∈[@ ]
are non-empty, ) > 1. Thus, the state ()−1 is defined and () is obtained by applying a rule to ()−1.
First, observe that this rule could not have been Push, as it assumes there exist distinct C)−18 and
C)−1
8′ on & 9 − {C} for some 8, 8′, 9 ∈ [@], and only moves C)−18 away while keeping C)

8′ on & 9 − {C}.
Therefore, Clear has been applied to ()−1, replacing C)−18 = E 9 by C)8 = C , for some 8, 9 ∈ [@]. Now,
we claim that there is another 8′ ∈ [@], 8′ ≠ 8 such that C)−1

8′ ∈ + (& 9 ) \ {C}. Indeed, by the starting
assumption of the proof, there exists 8′ such that %→

8′ and & 9 share an internal vertex D. Since & 9

is active until the last step, and since the application of any rule moves Cℎ
8′ to the next vertex of

%8′ intersecting some active & 9 ′ , there exists a step ℎ ∈ [) − 1] where Cℎ
8′ = D. Before the step
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) − 1, only the rule Push could have been applied to & 9 , and an application of this rule never
makes the intersection {Cℎ

8′′ }8′′∈[@ ] ∩ (& 9 \ {E 9 , C}) empty. Therefore there exists 8′′ ∈ [@] such that
C)−1
8′′ ∈ & 9 \ {E 9 , C}. This contradicts the assumption that C)

8′′ = C since the application of Clear to
& 9 moves C)−1

8′′ to the next vertex on %8′′ on an active & 9 ′ ; this will not take C)8′′ farther than E8′′

along %8′′ . �

Before we move to the proof of the main theorem, we note that the basic idea of random
separation is to exploit random colorings of the vertex set. We, on the other hand, are first and
foremost looking for a deterministic algorithm; the standard approach would be to enumerate a
sufficiently “expressive” set of colorings, instead of trying a pre-set number of random colorings.
Unfortunately, the existing results on derandomization of random separation algorithms cannot be
applied directly, as normally random separation is considered for constant number of sets; most
often two. Thus in the next lemma we directly construct a suitable family of functions by using the
standard tool of perfect hash families, given by the classical result of Naor et al. [39] (we refer to
[14, Chapter 5] for the detailed introduction to the concept). For integers = and : , an (=, :)-perfect
hash familyF is a family of functions from [=] to [:] such that for each set ( ⊆ [=] of size : there
exists 5 ∈ F that acts on ( injectively. We are now ready to state our derandomization lemma.
Lemma 6.4. For an =-element set * and integers @, ℓ , there exists a family of functions F of size

@O(ℓ ) log= mapping * to {1, . . . , @} with the following property. For any collection of disjoint sets
�1,…,�@ ⊆ * with

∑@

8=1 |�8 | ≤ ℓ , there exists a function 5 ∈ F such that 5 (G) = 8 if G ∈ �8 . Moreover,
F can be computed in time @O(ℓ )= log=.

Proof. First, for each integer C ≤ ℓ we construct an (=, C)-perfect hash family HC of size
4CC O(log C ) log= in time 4CC O(log C )= log= by the result of Naor, Schulman, and Srinivasan [39]. For
each integer C ≤ ℓ , every ℎ ∈ HC and a partition [C] = �1 ∪ . . . ∪ �@ , add a function 5 ℎ

�1,...,�@
to F . The

function acts as follows: for any G ∈ * , 5 ℎ
�1,...,�@

(G) = 8 if ℎ(G) ∈ �8 .
We now show that F defined above satisfies the conditions of the lemma. Fix the subsets �1,…,

�@ of* , denote� = �1∪ . . .∪�@ , and let |�| = C ≤ ℓ . If C = 0, any function satisfies the requirement.
Otherwise, by the definition of an (=, C)-perfect hash family, there exists ℎ ∈ HC such that the
images ℎ(G) are distinct for all G ∈ �. For each 8 ∈ [@], define �8 to be the set of indices that ℎ
assigns to �8 . By definition, 5 ℎ

�1,...,�@
(G) = 8 if ℎ(G) ∈ �8 , and ℎ(G) ∈ �8 if and only if G ∈ �8 .

It remains to bound the size of F . For each C ≤ ℓ , the number of partitions �1,…, �@ of [C] is at
most @C , since the total number of functions [C] → [@] is @C . For each C ≤ ℓ , |HC | ≤ 4CC O(log C ) log=,
therefore |F | ≤ ∑ℓ

C=1 |HC | · @C = @O(ℓ ) log=. Clearly, F can be computed in time @O(ℓ )= log= as
well. �

Finally, with Lemma 6.1 and Lemma 6.4 at hand, we move to the proof of Theorem 1.2 itself.

Proof of Theorem 1.2. First, we observe that finding an ((,) )-linkage of order ? and total
length at least : is equivalent to finding an (B, C)-linkage of order ? and total length at least (: + 2),
where moreover B ≠ C and B is not adjacent to C . Indeed, consider the digraph� ′ that is a copy of�
with two new vertices B and C , where # +

� ′ (B) = ( and # −
� ′ (C) = ) . Then, any directed (B, C)-linkage

of order ? and length : + 2 in � ′ induces a directed ((,) )-linkage of order ? and length : in �

by removing B and C , and vice versa. Thus for the rest of the proof we assume that the task is to
find an (B, C)-linkage of order ? and total size at least : , B ≠ C , and B is not adjacent to C . We now
describe two separate subroutines of our algorithm, tailored for different cases of the maximum
length of the path in the target (B, C)-linkage. The short case succeeds if there is an (B, C)-linkage
where all paths have less than 2: internal vertices, and the main case succeeds otherwise (the proof
of correctness follows after the description of the algorithm). �
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Algorithm 1:Main Case of the Algorithm in Theorem 1.2
1 for @′ = 1, . . . , ? do
2 Invoke Lemma 6.4 with* = + (�) \ {C}, @ = ? + 1, ℓ = 2:@, to obtain the function family

F ;
3 foreach 5 ∈ F do
4 Denote by �1, . . . ,�?+1 the vertices colored by the respective colors via 5 ;
5 for 8 = 1, . . . , @′ do
6 foreach E8 ∈ �8 at distance : from C in �8 = � [�8 ∪ {C}] do
7 Find a shortest (E8 , C)-path &8 in �8 ;
8 Find paths %1, %2, …, %? in � − (+ (&8 ) \ {E8 , C}), where %8 is an (B, E8 )-path

and for each 9 ≠ 8 , % 9 is an (B, C)-path, such that no two paths share a vertex
except for B and C , and %8 does not contain C ;

9 if such paths %1, %2, …, %? exist then
10 Set %8 = %8 ◦&8 ;
11 return the paths %1, %2, …, %? ;
12 end
13 end
14 end
15 end
16 end

Short case. For each 8 ∈ [?], we branch over the number of internal vertices :8 of the 8th path
in the target linkage, 1 ≤ :8 < 2: . If

∑?

8=1 :8 < : − 2, we disregard the choice of {:8 }?8=1 and
proceed to the next branch. Otherwise, consider a function family F given by an invocation of
Lemma 6.4 with * = + (�) \ {B, C}, @ = ? and ℓ =

∑?

8=1 :8 . Branch over the choice of 5 ∈ F and
denote by �1,�2, . . . ,�? the vertices colored by the respective colors via 5 . For each 8 ∈ [?], we
use a deterministic algorithm for finding a directed (B, C)-path with exactly :8 internal vertices in
the graph � [�8 ∪ {B, C}] in time 2$ (:8 ) · =O(1) . The fastest-known such algorithm is the algorithm3

of Zehavi [48] running in time O(2.597:8 ) · =O(1) . If for some choice of {:8 }?8=1 and 5 the desired
collection of paths is found, the algorithm returns it. If no branch succeeds, the algorithm reports a
no-instance.

We now argue for correctness of the algorithm above. Since the paths are internally disjoint by
construction and

∑?

8=1 :8 ≥ : − 2, if the algorithm returns a collection of paths, they clearly form a
solution. In the other direction, fix a solution induced by directed (B, C)-paths %∗1 ,…, %∗? , where for
each 8 ∈ [?] the 8th path contains exactly :8 < 2: internal vertices, and consider the respective
branch of the algorithm above. If for each 8 ∈ [?] the set �8 contains the internal vertices of the
8th path, the algorithm succeeds, as � [�8 ∪ {B, C}] contains an (B, C)-path with exactly :8 internal
vertices. Denote by �8 the set of internal vertices of %∗8 , for each 8 ∈ [?], Lemma 6.4 guarantees that
there exists 5 ∈ F that colors each �8 in color 8 , concluding the proof of correctness in this case.
Main case. The basic procedure is given in Algorithm 1. Observe that the task in Line 8 can be

easily reduced to an instance of network flow, thus the whole procedure given in Lines 4 to 14 runs
in polynomial time. If no iteration returns a collection of paths, the algorithm reports a no-instance.

3While the result in [48] is stated for finding an arbitrary path of certain length, it could be easily adjusted to finding an
(B, C )-path.
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It is easy to observe that if Algorithm 1 returns a collection of paths, then these paths constitute a
solution to the given instance. Indeed, by construction, %1,…, %? are internally-disjoint (B, C)-paths.
The length of &8 is exactly : , since the path %8 contains &8 as a subpath, the (B, C)-linkage given
by the paths %1,…, %? is of order ? and length at least : . It remains to verify that if there exists an
(B, C)-linkage of order ? where there is a path with at least 2: internal vertices, then our algorithm
successfully returns a collection of paths for some choice of 5 . Denote the ?-many (B, C)-paths that
form a solution of minimum total length by %∗1 ,…, %

∗
? , assuming that the paths are ordered from

longest to shortest. In particular, |+ (%∗1 ) \ {B, C}| ≥ 2: . Denote by @′ the maximum index such that
|+ (%∗

@′ ) \ {B, C}| ≥ 2: , 1 ≤ @′ ≤ ? .
We say that the coloring �1, . . . ,�? ,�?+1agrees with the paths %∗1 ,…, %

∗
? if the following holds:

(i) for each 8 ∈ [@′], the last : internal vertices of %∗8 belong to �8 ,
(ii) the first : vertices of %∗1 belong to �?+1,
(iii) for each 9 ∈ [?] \ [@′], all internal vertices of %∗9 belong to � 9 .

For 8 ∈ [@′], denote by �8 the last : internal vertices of %∗8 ; by �?+1 the first : vertices of
%∗1 ; for 9 ∈ [?] \ [@′], denote by � 9 all internal vertices of %∗9 , we have that |� 9 | ≤ 2: . Since∑?+1
8=1 |�8 | ≤ 2: (? + 1), by Lemma 6.4, there exists 5 ∈ F that induces a coloring �1,…, �?+1 with

�8 ⊆ �8 for each 8 ∈ [? + 1], meaning that this coloring agrees with the solution %∗1 ,…, %
∗
? . In the

remainder of the proof, we argue that for this choice of 5 Algorithm 1 outputs a solution.
For 8 ∈ [@′], let�8 denote the graph� [�8 ∪ {C}] and let E8 be the vertex of %∗8 at distance exactly

: from C along the path. Since the coloring agrees with the solution, the last : internal vertices of %∗8
belong to �8 , including E8 . If E8 is at distance : from C in�8 , denote by &8 the shortest (E8 , C)-path in
�8 that the algorithm finds on Line 7; otherwise denote by&8 an arbitrary shortest (E8 , C)-path in�8 .
We now apply Lemma 6.1 to the paths %∗1 ,…, %

∗
@′ in the graph� with selected disjoint vertex subsets

�1,…, �@′ , with selected vertices E1,…, E@′ and paths &1,…, &@′ . By the lemma, there exist internally
disjoint (B, C)-paths % ′1,…, % ′@′ , such that for each 8 ∈ [@′], % ′8 is either %∗8 or a concatenation of a
prefix %̂8 of %∗8 not extending beyond E8 , and a suffix &̂8 of & 9 for some 9 ∈ [@′]; moreover, at least
one of the paths is of the second type.

First, we claim that the paths % ′1,…, %
′
@′ , %

∗
@′+1,…, %

∗
? together form an ({B}, {C})-linkage of length

at least : . Indeed, the paths %∗1 ,…, %
∗
? are internally-disjoint from the beginning; thus for each

@′ < 8 < 9 ≤ ? , %∗8 and %∗9 do not share common internal vertices. Moreover, for each 8 ∈ [@′],
9 ∈ [?] \ [@′], % ′8 and %∗9 are immediately internally disjoint in case % ′8 = %∗8 . In case % ′8 is a
concatenation of %̂8 and &̂8 , the path %̂8 again does not share a vertex with %∗9 as a prefix of %∗8 ,
except for B . The suffix &̂8 − {C} on the other hand is fully contained in some �8′ , 8′ ∈ [@′], while
%∗9 − {B, C} is contained in � 9 by the property (iii) of the coloring. Finally, for the length observe
that the path % ′1 contains the first : vertices of %∗1 . This holds since by Lemma 6.1, % ′1 contains a
prefix of %∗1 that ends either in C , or in a vertex of � 9 , for 9 ∈ [@]; on the other hand, �?+1 contains
the first : vertices of %∗1 and is disjoint from C and any � 9 , 9 ∈ [@], therefore these : vertices are
also contained in % ′1.
Consider now a path % ′8 that is not %

∗
8 , but a concatenation %̂8 ◦ &̂8 . The length of &̂8 is at most

: , which is the length of the suffix of %∗8 from E8 to C , and %̂8 is at most as long as the prefix of
%∗8 from B to E8 . Therefore, the length of the path % ′8 is at most the length of %∗8 . Since this holds
for every 8 ∈ [@′], also when % ′8 = %∗8 , the total length of % ′1,…, %

′
@′ , %

∗
@′+1,…, %

∗
? is at most the total

length of %∗1 ,…, %
∗
? . By the previous argument, the former is an ({B}, {C})-linkage of length at least

: , while the latter by definition is such an ({B}, {C})-linkage of smallest total length. Therefore, it
must be the case that for each 8 ∈ [@′], the length of % ′8 is equal to the length of %∗8 . In particular, if
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% ′8 is not %
∗
1 , but a concatenation %̂8 ◦ &̂8 , then %̂8 is exactly the prefix of %∗8 from B to E8 , and &̂8 is

&8 ; additionally, &8 is then of length exactly : , thus E8 is at distance : from C in �8 , and &8 is the
shortest path chosen by the algorithm in Line 7.
We now claim that the existence of (B, C)-linkage % ′1,…, % ′@′ , %∗@′+1,…, %∗? implies that Line 8 is

executed successfully for the respective choice of 8 and E8 . Specifically, let 8 ∈ [@′] be such that
the path % ′8 is not %

∗
8 , but a concatenation %̂8 ◦ &̂8 , and let E8 be the common endpoint of %̂8 and

&̂8 . Indeed, denote %8 = %̂8 , for each 8′ ∈ [@′], 8′ ≠ 8 , denote %8′ = % ′8 , and for each 9 ∈ [?] \ [@′],
denote % 9 = %∗9 . This collection of paths is of form required by the conditions in Line 8, and thus the
algorithm of Line 8 returns a suitable collection of paths as well (not necessarily the same). This
concludes the proof of correctness for Main case.

Finally, observe that the running time of both cases is dominated by the invocation of Lemma 6.4
with @ = ? + 1 and ℓ ≤ 2: (? + 1), resulting in the total running time of ?O(:? ) · =O(1) . �

7 Conclusion
We conclude with several concrete open questions. The first question is about derandomizing
Theorem 1.1, even for the case when ? = 1. The algorithm in Theorem 1.1 is based on DeMillo–
Lipton–Schwartz–Zippel lemma for polynomial identity testing, and therefore we do not expect to
derandomize it using similar techniques [27, 38]. However, similarly to Theorem 1.2, we do not
exclude that other methods could result in (maybe slower) deterministic algorithms. We are not
aware of any deterministic and FPT in : algorithm for Maximum Colored Path.
The second question is about the Disjoint Paths problem. Here for a given set of pairs of

terminal vertices (B1, C1), . . . , (BA , CA ), the problem is to decide whether there are vertex-disjoint
(B8 , C8 )-paths, 8 ∈ [A ]. The problem is FPT parameterized by A by the seminal algorithm of Robertson
and Seymour [43]. A natural extension of this problem would be on colorful graphs, where we
want the disjoint paths to collect at least : colors. We do not know whether the colored variant of
the problem is FPT parameterized by : even for 2-Disjoint Paths, that is for A = 2.
The third question concerns extending Theorem 1.3, where we demand matroid" to be repre-

sented as a matrix over a finite field of order @. The natural question here is whether there is an
FPT algorithm for :-ranked (B, C)-path (and more generally, for :-ranked ((,) )-linkage of order ?)
in frameworks (�,"), where" is a linear matroid represented as a matrix over rationals. We also
ask what is the complexity of this problem when" is given by an independence oracle. As was
shown by Jensen and Korte [26], various matroid problems have unconditional complexity lower
bounds asserting that they admit no algorithms where the number of oracle calls is bounded by a
polynomial on the size of the matroid ground set. For example, this concerns the classical Matroid
Parity problem that can be solved in polynomial time on linear matroids as it was shown by
Lovász (see, e.g., [36]). It is natural to ask whether such a lower bound can be shown for :-ranked
(B, C)-path.
The last concrete question is about Longest (B, C)-Path and Longest Cycle. Our algorithm

implies the first 2:=O(1) time algorithms for these problems, and the dependency on : in the time
complexity of our algorithm is unlikely to be improved in the general colored case. However, it
remains an interesting open problem whether Longest (B, C)-Path or Longest Cycle could be
solved in time (2 − Y):=O(1) for some Y > 0, especially keeping in mind that :-Path admits an
1.66:=O(1) time algorithm [3].
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