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We study the 𝛼-FIXED CARDINALITY GRAPH PARTITIONING (𝛼-FCGP) problem, the generic local graph 
partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph 𝐺, 
two numbers 𝑘, 𝑝 and 0 ≤ 𝛼 ≤ 1, the question is whether there is a set 𝑆 ⊆ 𝑉 of size 𝑘 with a specified coverage 
function 𝖼𝗈𝗏𝛼(𝑆) at least 𝑝 (or at most 𝑝 for the minimization version). The coverage function 𝖼𝗈𝗏𝛼(⋅) counts 
edges with exactly one endpoint in 𝑆 with weight 𝛼 and edges with both endpoints in 𝑆 with weight 1 − 𝛼. 
𝛼-FCGP generalizes a number of fundamental graph problems such as DENSEST 𝑘-SUBGRAPH, MAX 𝑘-VERTEX 
COVER, and MAX (𝑘, 𝑛 − 𝑘)-CUT.
A natural question in the study of 𝛼-FCGP is whether the algorithmic results known for its special cases, like
MAX 𝑘-VERTEX COVER, could be extended to more general settings. One of the simple but powerful methods for 
obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. 
IPL 2011] for MAX 𝑘-VERTEX COVER is based on the greedy vertex degree orderings. The main insight of our 
work is that the idea of greedy vertex degree ordering could be used to design fixed-parameter approximation 
schemes (FPT-AS) for 𝛼 > 0 and subexponential-time algorithms for the problem on apex-minor free graphs for 
maximization with 𝛼 > 1∕3 and minimization with 𝛼 < 1∕3.4
1. Introduction

In this work, we study a broad class of problems called 𝛼-FIXED 
CARDINALITY GRAPH PARTITIONING (𝛼-FCGP), originally introduced by 
Bonnet et al. [2].5 The input is a graph 𝐺 = (𝑉 , 𝐸), two non-negative 
integers 𝑘, 𝑝, and a real number 0 ≤ 𝛼 ≤ 1. The question is whether there 
is a set 𝑆 ⊆ 𝑉 of size exactly 𝑘 with 𝖼𝗈𝗏𝛼(𝑆) ≥ 𝑝 (𝖼𝗈𝗏𝛼(𝑆) ≤ 𝑝 for the 
minimization variant), where

𝖼𝗈𝗏𝛼(𝑆) ∶= (1 − 𝛼) ⋅𝑚(𝑆) + 𝛼 ⋅𝑚(𝑆,𝑉 ⧵ 𝑆).
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Here, 𝑚(𝑆) is the number of edges with both endpoints in 𝑆 , and 
𝑚(𝑆, 𝑉 ⧵𝑆) is the number of edges with one endpoint in 𝑆 and other in 
𝑉 ⧵ 𝑆 . We will call the maximization and minimization problems MAX

𝛼-FCGP and MIN 𝛼-FCGP, respectively. This problem generalizes many 
problems, namely, DENSEST 𝑘-SUBGRAPH (for 𝛼 = 0), MAX 𝑘-VERTEX 
COVER6 (for 𝛼 = 1∕2), MAX (𝑘, 𝑛 − 𝑘)-CUT (for 𝛼 = 1), and their mini-
mization counterparts.

Although there are plethora of publications that study these special 
cases, the general 𝛼-FCGP has not received much attention, except for 
the work of Bonnet et al. [2], Koana et al. [20], and Schachnai and 
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6 This is problem is also referred to as PARTIAL VERTEX COVER.
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Zehavi [24]. In this paper, we aim to demonstrate the wider potential 
of the existing algorithms designed for specific cases, such as MAX 𝑘-
VERTEX COVER, by presenting an algorithm that can handle the more 
general problem of 𝛼-FCGP. Algorithms for these specific cases often 
rely on greedy vertex degree orderings. For instance, Manurangsi [21], 
showing that a (1 − 𝜀)-approximate solution can be found in the set of 
(𝑘∕𝜀) vertices with the largest degrees, gave a (1 − 𝜀)-approximation 
algorithm for MAX 𝑘-VERTEX COVER that runs in time (1∕𝜀)(𝑘) ⋅ 𝑛(1). 
Fomin et al. [15] gave a 2(

√
𝑘) ⋅𝑛(1)-time algorithm for MAX 𝑘-VERTEX 

COVER on apex-minor graphs via bidimensionality arguments, by show-
ing that an optimal solution 𝑆 is adjacent to every vertex of degree at 
least 𝑑 + 1, where 𝑑 is the minimum degree over vertices in 𝑆 . In this 
work, we will give approximation algorithms as well as subexponential-
time algorithms for apex-minor free graphs exploiting the greedy vertex 
ordering.

For approximation algorithms, we will show that both MAX 𝛼-FCGP
and MIN 𝛼-FCGP admit FPT Approximation Schemes (FPT-AS) for 𝛼 > 0, 
i.e., there is an algorithm running in time ( 𝑘

𝜀𝛼
)(𝑘) ⋅ 𝑛(1) that finds a 

set 𝑆 of size 𝑘 with 𝖼𝗈𝗏𝛼(𝑆) ≥ (1 − 𝜀) ⋅ OPT (or 𝖼𝗈𝗏𝛼(𝑆) ≤ (1 + 𝜀) ⋅ OPT
for the minimization variant), where OPT denotes the optimal value 
of 𝑝. Previously, the special cases were known to admit FPT approx-
imation schemes; see [23,17,18,21] for 𝛼 = 1∕2 and [2] for 𝛼 = 1. 
In particular, the state-of-the-art running time for MAX 𝛼-FCGP with 
𝛼 = 1∕2 is the aforementioned algorithm of Manurangsi that runs in 
time (1∕𝜀)(𝑘) ⋅ 𝑛(1) for maximization (also for the minimization vari-
ant). We generalize this argument for 𝛼 ≥ 1∕3, leading to a faster 
FPT-AS for MAX 𝛼-FCGP in this range. For 𝛼 = 0, the situation is more 
negative; MAX 𝛼-FCGP (namely, DENSEST 𝑘-SUBGRAPH) does not admit 
any 𝑜(𝑘)-approximation algorithm with running time 𝑓 (𝑘) ⋅ 𝑛(1) under 
the Strongish Planted Clique Hypothesis [22]. MIN 𝛼-FCGP is also hard 
to approximate when 𝛼 = 0 since it encompasses INDEPENDENT SET as a 
special case for 𝑝 = 0.

Next, we discuss the regime of subexponential-time algorithms. 
Amini et al. [1] showed that MAX 𝑘-VERTEX COVER is FPT on graphs of 
bounded degeneracy, including planar graphs, giving a 𝑘(𝑘) ⋅𝑛(1)-time 
algorithm. They left it open whether it can be solved in time 2𝑜(𝑘) ⋅𝑛𝑂(1). 
This was answered in the affirmative by Fomin et al. [15], who showed 
that MAX 𝑘-VERTEX COVER on apex-minor free graphs can be solved in 
time 2(

√
𝑘) ⋅𝑛(1) time. Generalizing this result, we give a 2(

√
𝑘) ⋅𝑛(1)-

time algorithm for MAX 𝛼-FCGP with 𝛼 > 1∕3 and MIN 𝛼-FCGP with 
𝛼 < 1∕3. The complexity landscape of MAX 𝛼-FCGP with 𝛼 < 1∕3 (and
MIN 𝛼-FCGP with 𝛼 > 1∕3) is not well understood. It is a long-standing 
open question whether DENSEST 𝑘-SUBGRAPH on planar graphs is NP-
hard [4]. Note that the special case CLIQUE is trivially polynomial-time 
solvable on planar graphs because a clique on 5 vertices does not admit 
a planar embedding.

Further related work. As mentioned, special cases of 𝛼-FCGP when 
𝛼 ∈ {0, 1∕2, 1} have been extensively studied. For instance, the W[1]-
hardness for the parameter 𝑘 has been long known for these special 
cases [3,11,16]. Both MAX 𝛼-FCGP and MIN 𝛼-FCGP are actually W[1]-
hard for every 𝛼 ∈ [0, 1] with the exception 𝛼 ≠ 1∕3, as can be seen 
from a parameterized reduction from CLIQUE and INDEPENDENT SET on 
regular graphs. Note that 𝛼-FIXED CARDINALITY GRAPH PARTITIONING

becomes trivial when 𝛼 = 1∕3 because 𝖼𝗈𝗏𝛼(𝑆) =
1
3 ⋅

∑
𝑣∈𝑆 𝑑(𝑣) for any 

𝑆 ⊆ 𝑉 where 𝑑(𝑣) is the degree of 𝑣.
Bonnet et al. [2] gave a (Δ𝑘)2𝑘 ⋅ 𝑛(1)-time algorithm for 𝛼-FCGP

where Δ is the maximum degree. They also gave an algorithm with 
running time Δ𝑘 ⋅𝑛(1) for MAX 𝛼-FCGP with 𝛼 > 1∕3 and MIN 𝛼-FCGP
with 𝛼 < 1∕3. This result was strengthened by Schachnai and Zehavi 
[24]; they gave a 4𝑘+𝑜(𝑘)Δ𝑘 ⋅ 𝑛(1)-time algorithm for any value of 𝛼. 
Koana et al. [20] showed that MAX 𝛼-FCGP admits polynomial ker-
nels on sparse families of graphs when 𝛼 > 1∕3. For instance, MAX

𝛼-FCGP admits a 𝑘(𝑑)-sized kernel where 𝑑 is the degeneracy of the 
input graph. They also showed analogous results for MIN 𝛼-FCGP with 
2

𝛼 < 1∕3.
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Preliminaries. For an integer 𝑛, let [𝑛] denote the set {1, ⋯ , 𝑛}.
We use the standard graph-theoretic notation and refer to the text-

book of Diestel [10] for undefined notions. In this work, we assume 
that all graphs are simple and undirected. For a graph 𝐺 and a vertex 
set 𝑆 , let 𝐺[𝑆] be the subgraph of 𝐺 induced by 𝑆 . For a vertex 𝑣 in 
𝐺, let 𝑑(𝑣) be its degree, i.e., the number of its neighbors. For vertex 
sets 𝑋, 𝑌 , let 𝑚(𝑋) ≔ |{𝑢𝑣 ∈ 𝐸 ∣ 𝑢, 𝑣 ∈ 𝑋}| and 𝑚(𝑋, 𝑌 ) ≔ |{𝑢𝑣 ∈ 𝐸 ∣
𝑢 ∈𝑋, 𝑣 ∈ 𝑌 }|. In this work, an optimal solution for MAX 𝛼-FCGP (and
MIN 𝛼-FCGP) is a vertex set 𝑆 of size 𝑘 such that 𝖼𝗈𝗏𝛼(𝑆) ≥ 𝖼𝗈𝗏𝛼(𝑆′)
(resp., 𝖼𝗈𝗏𝛼(𝑆) ≤ 𝖼𝗈𝗏𝛼(𝑆′)) for every vertex set of size 𝑘. A graph 𝐻 is 
a minor of 𝐺 if a graph isomorphic to 𝐻 can be obtained from 𝐺 by 
vertex and edge removals and edge contractions. Given a graph 𝐻 , a 
family of graph  is said to be 𝐻 -minor free if there is no 𝐺 ∈ hav-
ing 𝐻 as a minor. A graph 𝐻 is an apex graph if 𝐻 can be made planar 
by the removal of a single vertex.

We refer to the textbook of Cygan et al. [5] for an introduction to 
Parameterized Complexity and we refer to the paper of Marx [23] for 
an introduction to the area of parameterized approximation.

2. FPT approximation algorithms

In this section, we design an FPT Approximation Schemes for MAX

𝛼-FCGP as well as MIN 𝛼-FCGP parameterized by 𝑘 and 𝛼, assuming 
𝛼 > 0.

2.1. FPT-AS for Max/Min 𝛼-FCGP for any 𝛼 > 0

Theorem 1. For any 0 < 𝛼 ≤ 1 and 0 < 𝜀 ≤ 1, MAX 𝛼-FCGP and MIN

𝛼-FCGP each admits an FPT-AS parameterized by 𝑘, 𝜀 and 𝛼. More specif-

ically, given a graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑘, there exists an algo-

rithm that runs in time 
(
𝑘

𝜀𝛼

)(𝑘)
⋅ 𝑛(1), and finds a set 𝑆 ⊆ 𝑉 such that 

𝖼𝗈𝗏𝛼(𝑆) ≥ (1 − 𝜀) ⋅ 𝖼𝗈𝗏𝛼(𝑂) for MAX 𝛼-FCGP and 𝖼𝗈𝗏𝛼(𝑆) ≤ (1 + 𝜀) ⋅
𝖼𝗈𝗏𝛼(𝑂) for MIN 𝛼-FCGP, where 𝑂 ⊆ 𝑉 is an optimal solution.

For the case that OPT ≔ 𝖼𝗈𝗏𝛼(𝑂) is large, the following greedy ar-
gument will be helpful.

Lemma 1. For MAX 𝛼-FCGP, let 𝑆 be the set of 𝑘 vertices with the largest 
degrees. Then, 𝖼𝗈𝗏𝛼(𝑆) ≥ OPT− 2𝑘2. For MIN 𝛼-FCGP, let 𝑆 be the set of 
𝑘 vertices with the smallest degrees. Then, 𝖼𝗈𝗏𝛼(𝑆) ≤ OPT + 2𝑘2.

Proof. Without loss of generality, we assume that 𝑂 ≠ 𝑆 . Let 𝑆 ⧵𝑂 ={
𝑦1, 𝑦2,… , 𝑦𝑡

}
, and 𝑂 ⧵ 𝑆 =

{
𝑤1,𝑤2,… ,𝑤𝑡

}
, where 1 ≤ 𝑡 ≤ 𝑘. Here, 

we index the vertices so that 𝑑(𝑦𝑖) ≥ 𝑑(𝑦𝑗 ) and 𝑑(𝑤𝑖) ≥ 𝑑(𝑤𝑗 ) (for MIN

𝛼-FCGP, 𝑑(𝑦𝑖) ≤ 𝑑(𝑦𝑗 ) and 𝑑(𝑤𝑖) ≤ 𝑑(𝑤𝑗 )) for 𝑖 < 𝑗. Note that due to the 
choice of 𝑆 , it holds that 𝑑(𝑦𝑖) ≥ 𝑑(𝑤𝑖) (𝑑(𝑦𝑖) ≤ 𝑑(𝑤𝑖) for MIN 𝛼-FCGP) 
for each 1 ≤ 𝑖 ≤ 𝑡.

Now we define a sequence of solutions 𝑂0, 𝑂1, … , 𝑂𝑡, where 𝑂0 =𝑂, 
and for each 1 ≤ 𝑖 ≤ 𝑡, 𝑂𝑖 ∶= (𝑂𝑖−1 ⧵

{
𝑤𝑖

}
) ∪

{
𝑦𝑖
}

. Note that 𝑂𝑡 = 𝑆 . 
We claim that for each 1 ≤ 𝑖 ≤ 𝑡, 𝖼𝗈𝗏𝛼(𝑂𝑖) ≥ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) − 2𝑘 for MAX

𝛼-FCGP and 𝖼𝗈𝗏𝛼(𝑂𝑖) ≤ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 2𝑘 for MIN 𝛼-FCGP. To this end, 
we note that 𝑂𝑖 is obtained from 𝑂𝑖−1 by removing 𝑤𝑖 and adding 𝑦𝑖. 
Thus, 𝖼𝗈𝗏𝛼(𝑂𝑖) = 𝖼𝗈𝗏𝛼(𝑂𝑖−1) − (𝛼𝑚1 + ((1 − 𝛼) − 𝛼) ⋅ 𝑚2) + 𝛼𝑚3 + ((1 −
𝛼) − 𝛼) ⋅𝑚4, where

𝑚1 ∶=𝑚(
{
𝑤𝑖

}
, 𝑉 ⧵𝑂𝑖−1), 𝑚2 ∶=𝑚(

{
𝑤𝑖

}
,𝑂𝑖−1 ⧵

{
𝑤𝑖

}
),

𝑚3 ∶=𝑚(
{
𝑦𝑖
}
, 𝑉 ⧵𝑂𝑖), 𝑚4 ∶=𝑚(

{
𝑦𝑖
}
,𝑂𝑖 ⧵

{
𝑤𝑖

}
).

Observe that 𝑑(𝑤𝑖) − 𝑘 ≤ 𝑚1 ≤ 𝑑(𝑤𝑖), 𝑑(𝑦𝑖) − 𝑘 ≤ 𝑚3 ≤ 𝑑(𝑦𝑖), and 0 ≤
𝑚2, 𝑚4 ≤ 𝑘. We consider MAX 𝛼-FCGP first. We have that

𝖼𝗈𝗏𝛼(𝑂𝑖) = 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 𝛼(𝑚3 −𝑚1) + (1 − 2𝛼)(𝑚4 −𝑚2)
≥ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 𝛼(𝑚3 −𝑚1) − |(1 − 2𝛼)(𝑚4 −𝑚2)|.
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Since 𝑚3 − 𝑚1 ≥ 𝑑(𝑦𝑖) − 𝑑(𝑤𝑖) − 𝑘 ≥ −𝑘 and |(1 − 2𝛼)(𝑚4 − 𝑚2)| ≤ 𝑘, 
we obtain 𝖼𝗈𝗏𝛼(𝑂𝑖) ≥ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) − 2𝑘, regardless of the value of 𝛼. We 
consider MIN 𝛼-FCGP next. It holds that

𝖼𝗈𝗏𝛼(𝑂𝑖) = 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 𝛼(𝑚3 −𝑚1) + (1 − 2𝛼)(𝑚4 −𝑚2)

≤ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 𝛼(𝑚3 −𝑚1) + |(1 − 2𝛼)(𝑚4 −𝑚2)|.
Since 𝑚3 − 𝑚1 ≤ 𝑑(𝑦𝑖) − 𝑑(𝑤𝑖) + 𝑘 ≤ 𝑘 and |(1 − 2𝛼)(𝑚4 − 𝑚2)| ≤ 𝑘, we 
obtain 𝖼𝗈𝗏𝛼(𝑂𝑖) ≤ 𝖼𝗈𝗏𝛼(𝑂𝑖−1) + 2𝑘, regardless of the value of 𝛼.

Therefore, 𝖼𝗈𝗏𝛼(𝑂𝑡) ≥ 𝖼𝗈𝗏𝛼(𝑂0) −2𝑘𝑡 ≥ OPT−2𝑘2 for MAX 𝛼-FCGP
and 𝖼𝗈𝗏𝛼(𝑂𝑡) ≤ 𝖼𝗈𝗏𝛼(𝑂0) + 2𝑘𝑡 ≤ OPT + 2𝑘2 for MIN 𝛼-FCGP. □

Lemma 1 allows us to find an approximate solution when OPT is 
sufficiently large. The case that OPT is small remains. We use different 
approaches for MAX 𝛼-FCGP and MIN 𝛼-FCGP.

Algorithm for MAX 𝛼-FCGP. Let 𝑣1 be a vertex with the largest degree. 
Our algorithm considers two cases depending on whether 𝑑(𝑣1) > Δ ≔
2𝑘2
𝜀𝛼

+𝑘. If 𝑑(𝑣1) >Δ, we can argue that the set 𝑆 from Lemma 1 a (1 −𝜀)-
approximate solution. To that end, we make the following observation.

Observation 1. If 𝑑(𝑣1) >Δ, then 2𝑘2 ≤ 𝜀 ⋅ 𝖼𝗈𝗏𝛼(𝑆).

Proof. Note that 𝑚(𝑆, 𝑉 ⧵𝑆) =
∑
𝑢∈𝑆 𝑚({𝑢} , 𝑉 ⧵𝑆) ≥𝑚({𝑣1}, 𝑉 ⧵𝑆) ≥

𝑑(𝑣1) − 𝑘, where the inequality follows from the fact that at most 𝑘
edges incident to 𝑣1 can have the other endpoint in 𝑆 . This implies that

𝖼𝗈𝗏𝛼(𝑆) ≥ 𝛼 ⋅𝑚(𝑆,𝑉 ⧵𝑆) ≥ 𝛼 ⋅ (𝑑(𝑣1) − 𝑘) ≥
2𝑘2
𝜀
,

where we use the assumptions that 0 < 𝛼 ≤ 1 and 𝑑(𝑣1) ≥Δ. □

Thus, for 𝑑(𝑣1) > Δ, we have OPT ≤ 𝖼𝗈𝗏𝛼(𝑆) + 2𝑘2 ≤ (1 + 𝜀) ⋅
𝖼𝗈𝗏𝛼(𝑆), and thus 𝖼𝗈𝗏𝛼(𝑆) ≥ (1 − 𝜀) ⋅ OPT.

So assume that 𝑑(𝑣1) < Δ. In this case, the maximum degree of the 
graph is bounded by Δ = 2𝑘2

𝜀𝛼
+ 𝑘 = ( 𝑘

2

𝜀𝛼
). In this case, we solve the 

problem optimally using the algorithm of Shachnai and Zehavi [24] for
MAX 𝛼-FCGP, that runs in time 4𝑘+𝑜(𝑘) ⋅ Δ𝑘 ⋅ 𝑛(1), which is at most (
𝑘2

𝜀𝛼

)(𝑘)
⋅ 𝑛(1). Combining both cases, we conclude the proof of Theo-

rem 1 for MAX 𝛼-FCGP.

Algorithm for MIN 𝛼-FCGP. For MIN 𝛼-FCGP, our algorithm considers 
two cases depending on the value of OPT. If OPT ≥

2𝑘2
𝜀

, then our algo-

rithm returns the set 𝑆 from Lemma 1. Note that 𝖼𝗈𝗏𝛼(𝑆) ≤ OPT+2𝑘2 ≤
(1 + 𝜀) ⋅ OPT.

Now suppose that OPT < 2𝑘2
𝜀

. In this case, we know that 𝑂 can-

not contain a vertex of degree larger than Δ ∶= 2𝑘2
𝛼𝜀

+ 𝑘, for otherwise, 
𝖼𝗈𝗏𝛼(𝑂) > 𝛼(Δ − 𝑘) ≥ OPT, which is a contradiction. Thus, in this case 
the maximum degree of the graph is bounded by Δ, and again we can 

solve the problem optimally in time 
(
𝑘2

𝜀𝛼

)(𝑘)
⋅𝑛(1), using the algorithm 

of Shachnai and Zehavi [24] for MIN 𝛼-FCGP.
Since the value of OPT is unknown to us, we cannot directly con-

clude which case is applicable. So we find a solution for each case and 
return a better one. This completes the proof of Theorem 1 for MIN

𝛼-FCGP.

2.2. Faster FPT-AS for MAX 𝛼-FCGP when 𝛼 ≥ 1∕3

In this section, we show that a simpler idea of Manurangsi [21] gives 
a faster FPT-AS for MAX 𝛼-FCGP when 𝛼 ≥ 1∕3, i.e., 𝛼 ≥ 1 −2𝛼, leading 
to the following theorem.

Theorem 2. For any 1∕3 ≤ 𝛼 ≤ 1, MAX 𝛼-FCGP admits an FPT-AS run-( )(𝑘)
3

ning in time 1
𝜀

⋅ 𝑛(1).
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Proof. Let 0 < 𝜀 < 1 be fixed and let us sort the vertices of 𝑉 (𝐺)
by their degrees (breaking ties arbitrarily). Let 𝑉 ′ ⊆ 𝑉 (𝐺) denote the 
𝑘 + ⌈ 4𝑘

𝜀2
⌉ vertices of the largest degrees. We show that 𝑉 ′ contains a 

(1 − 𝜀)-approximate solution. Let 𝑂 denote an optimal solution for MAX

𝛼-FCGP. Further define 𝑂𝑖 ∶=𝑂 ∩ 𝑉 ′, 𝑂𝑜 ∶=𝑂 ⧵ 𝑉 ′.
Let 𝑈 ∶= 𝑉 ′ ⧵ 𝑂𝑖 and let 𝑈∗ ⊆ 𝑈 be a subset of size |𝑂𝑜| chosen 

uniformly at random from 𝑈 . Let 𝜌 ∶= |𝑂𝑜||𝑈 | ≤
𝑘

|𝑈 | ≤ 𝜀2∕4. In Lemma 2, 
we show that 𝔼[𝖼𝗈𝗏𝛼(𝑂𝑖 ∪ 𝑈∗)] ≥ (1 − 𝜀) ⋅ 𝖼𝗈𝗏𝛼(𝑂), which implies that 
𝑉 ′ contains a (1 − 𝜀)-approximate solution. The algorithm simply enu-
merates all subsets of size 𝑘 from 𝑉 ′ and returns the best solution 
found. It follows that the running time of the algorithm is 

(|𝑉 ′|
𝑘

)
⋅𝑛(1) =(

1
𝜀

)(𝑘)
⋅ 𝑛(1). All that remains is the proof of the following lemma.

Lemma 2. 𝔼[𝖼𝗈𝗏𝛼(𝑂𝑖 ∪𝑈∗)] ≥ (1 − 𝜀) ⋅ 𝖼𝗈𝗏𝛼(𝑂).

Proof. We fix some notation. For a vertex 𝑢 ∈ 𝑉 and a subset 𝑅 ⊆ 𝑉 , 
we use 𝑑𝑅(𝑢) to denote the number of neighbors of 𝑢 in 𝑅. When 𝑅 = 𝑉 , 
we use 𝑑(𝑢) instead of 𝑑𝑉 (𝑢). Let 𝑆 = 𝑂𝑖 ∪ 𝑈∗ = (𝑂 ⧵ 𝑂𝑜) ∪ 𝑈∗. We 
want to analyze the expected value of 𝖼𝗈𝗏𝛼(𝑆). To this end, we write 
𝖼𝗈𝗏𝛼(𝑆) = 𝖼𝗈𝗏𝛼(𝑂) − 𝐴 + 𝐵, where 𝐴 is the “loss” in the objective due 
to removal of 𝑂𝑜 and 𝐵 is the “gain” in the objective due to addition of 
𝑈∗, defined as follows.

𝐴 = 𝛼 ⋅𝑚(𝑂𝑜,𝑉 ⧵𝑂𝑜) + (1 − 𝛼) ⋅𝑚(𝑂𝑜)

𝐵 =𝑄1 +𝑄2 − 𝛼 ⋅𝑚(𝑂𝑖,𝑈∗),where,

𝑄1 = 𝛼 ⋅𝑚(𝑈∗, 𝑉 ⧵ (𝑈∗ ∪𝑂𝑖)) + (1 − 𝛼) ⋅𝑚(𝑈∗)

𝑄2 = (1 − 𝛼) ⋅𝑚(𝑂𝑖,𝑈∗)

𝑄1 is the total contribution of the edges with at least one endpoint in 
𝑈∗ and other outside 𝑆 , and 𝑄2 is the total contribution of edges with 
one endpoint in 𝑈∗ and other in 𝑂𝑖. Note that the lemma is equivalent 
to showing that 𝔼[𝐵 −𝐴] ≥ −𝜀 ⋅ 𝖼𝗈𝗏𝛼(𝑂), where the expectation is over 
the choice of 𝑈∗.

Since 𝐴 does not depend on the choice of 𝑈∗, we have

𝔼[𝐴] =𝐴 = 𝛼 ⋅𝑚(𝑂𝑜,𝑉 ⧵𝑂𝑜) + (1 − 𝛼) ⋅𝑚(𝑂𝑜)

≤ 𝛼 ⋅𝑚(𝑂𝑜,𝑉 ⧵𝑂𝑜) + 2𝛼 ⋅𝑚(𝑂𝑜) = 𝛼
∑
𝑣∈𝑂𝑜

𝑑(𝑣) (1)

Here the inequality follows from 𝛼 ≥ 1∕3. Now let us consider 𝔼[𝐵] =
𝔼[𝑄1 + 𝑄2 − 𝛼 ⋅ 𝑚(𝑈∗, 𝑂𝑖)]. For any pair of distinct vertices 𝑢, 𝑣, let 
𝑋𝑢𝑣 = 1 if {𝑢, 𝑣} is an edge and 𝑋𝑢𝑣 = 0 otherwise. Then, consider

𝔼[𝑚(𝑈∗,𝑂𝑖)] =
∑
𝑢∈𝑈

∑
𝑣∈𝑂𝑖

𝑋𝑢𝑣 ⋅ Pr(𝑣 ∈𝑈∗)

= 𝜌
∑
𝑢∈𝑈

∑
𝑣∈𝑂𝑖

𝑋𝑢𝑣 ≤
𝜀2

4
⋅𝑚(𝑂𝑖,𝑈 ) (2)

Now we analyze 𝔼[𝑄1]. For every edge with one endpoint in 𝑈 and the 
other in 𝑉 ⧵ (𝑈 ∪𝑂𝑖), there is a contribution 𝛼 to 𝑄1 with probability 𝜌. 
Moreover, for every edge with both endpoints in 𝑈 , the contribution to 
𝑄1 is 𝛼 with probability 2𝜌(1 − 𝜌) and 1 − 𝛼 with probability 𝜌2. Thus, 
we obtain

𝔼[𝑄1] = 𝛼𝜌 ⋅𝑚(𝑈,𝑉 ⧵ (𝑈 ∪𝑂𝑖)) + (2𝛼𝜌(1 − 𝜌) + (1 − 𝛼)𝜌2) ⋅𝑚(𝑈 )

= 𝛼𝜌 ⋅𝑚(𝑈,𝑉 ⧵ (𝑈 ∪𝑂𝑖)) + (2𝛼𝜌+ (1 − 3𝛼)𝜌2) ⋅𝑚(𝑈 )

≥ 𝛼𝜌 ⋅ (𝑚(𝑈,𝑉 ⧵ (𝑈 ∪𝑂𝑖)) + 2𝑚(𝑈 )) = 𝛼𝜌
∑
𝑢∈𝑈

𝑑𝑉 ⧵𝑂𝑖 (𝑢). (3)

Here the inequality is due to 𝛼 ≥ 1∕3.
Note that for any 𝑢 ∈𝑈 , and 𝑣 ∈𝑂𝑜, 𝑑(𝑢) ≥ 𝑑(𝑣), which implies that ∑

𝑑(𝑣)

for any 𝑢 ∈𝑈 , 𝑑(𝑢) ≥ 𝑣∈𝑂𝑜|𝑂𝑜| . Therefore,
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∑
𝑢∈𝑈

𝑑(𝑢) ≥ |𝑈 |
|𝑂𝑜|

∑
𝑣∈𝑂𝑜

𝑑(𝑣) = 1
𝜌
⋅
∑
𝑣∈𝑂𝑜

𝑑(𝑣) (4)

Now we consider two cases.
Case 1:

∑
𝑢∈𝑈 𝑑(𝑢) ≤

4
𝜀
⋅𝑚(𝑂𝑖, 𝑈 ). Then,

4
𝜀
⋅𝑚(𝑂𝑖,𝑈 ) ≥

∑
𝑢∈𝑈

𝑑(𝑢) ≥ 1
𝜌
⋅
∑
𝑣∈𝑂𝑜

𝑑(𝑣) (Using (4))

⟹ 4
𝜀
⋅𝑚(𝑂𝑖,𝑈 ) ≥

8
𝜀2

⋅
∑
𝑣∈𝑂𝑜

𝑑(𝑣) (Since 𝜌 ≤ 𝜀2∕4)

⟹ 𝜀∕2 ⋅ 𝛼 ⋅𝑚(𝑂𝑖,𝑈 ) ≥ 𝛼
∑
𝑣∈𝑂𝑜

𝑑(𝑣) ≥ 𝔼[𝐴] (5)

Note that we use (1) in the last inequality. Then consider,

𝔼[𝐵 −𝐴] ≥ −𝛼 ⋅ 𝔼[𝑚(𝑈∗,𝑂𝑖)] − 𝔼[𝐴]

≥
𝜀2

8
𝛼 ⋅𝑚(𝑂𝑖,𝑈 ) −

𝜀

2
⋅ 𝛼 ⋅𝑚(𝑂𝑖,𝑈 ) ≥ −𝜀𝛼 ⋅𝑚(𝑂𝑖,𝑈 )

(Using (2) and (5))

≥ −𝜀 ⋅ 𝖼𝗈𝗏𝛼(𝑂) (6)

This finishes the first case.
Case 2:

∑
𝑢∈𝑈 𝑑(𝑢) >

4
𝜀
⋅𝑚(𝑂𝑖, 𝑈 ). This implies that,

𝜀

4
⋅
∑
𝑢∈𝑈

𝑑(𝑢) >
∑
𝑢∈𝑈

𝑑𝑂𝑖
(𝑢)

⟹
∑
𝑢∈𝑈

𝑑𝑉 ⧵𝑂𝑖 (𝑢) ≥
(
1 − 𝜀

4

)
⋅
∑
𝑢∈𝑈

𝑑(𝑢) (7)

Then, plugging back in (3), we obtain,

𝔼[𝑄1] ≥ 𝛼𝜌(1 − 𝜌∕2) ⋅ (1 − 𝜀∕4) ⋅
∑
𝑢∈𝑈

𝑑(𝑢)

≥ 𝛼𝜌(1 − 𝜀∕2) ⋅
∑
𝑢∈𝑈

𝑑(𝑢)

≥ 𝛼𝜌(1 − 𝜀∕2) ⋅ |𝑈 |
|𝑂𝑜|

∑
𝑣∈𝑂𝑖

𝑑(𝑣) (From (4))

≥ 𝛼(1 − 𝜀∕2) ⋅
∑
𝑣∈𝑂𝑖

𝑑(𝑣)

≥𝐴 ⋅ (1 − 𝜀∕2) (8)

Note that we use (1) in the last inequality. Then, by (2) and (8), we 
obtain that,

𝔼[𝐵 −𝐴] = 𝔼[𝐵] − 𝔼[𝐴] ≥ −𝜀∕2 ⋅ 𝔼[𝐴] − 𝛼𝜀 ⋅𝑚(𝑂𝑖,𝑉 ⧵𝑂) (9)

Now we argue that 𝛼 ⋅ 𝑚(𝑂𝑖, 𝑉 ⧵ 𝑂) + 𝔼[𝐴] = 𝛼 ⋅ 𝑚(𝑂𝑖, 𝑉 ⧵ 𝑂) + 𝐴 ≤
𝖼𝗈𝗏𝛼(𝑂). All edges with one endpoint in 𝑂𝑖 and other outside 𝑂 con-
tribute 𝛼 to the objective, which corresponds to the first term. Note that 
𝐴 is exactly the contribution of edges with at least one endpoint in 𝑂𝑜
to the objective. Further, note that no such edge has one endpoint in 𝑂𝑖
and other outside 𝑂, and thus is not counted in the first term. Thus, the 
sum of two terms is upper bounded by the objective, 𝖼𝗈𝗏𝛼(𝑂). Plugging 
it back in (9), we obtain that 𝔼[𝐵−𝐴] ≥ −𝜀 ⋅ 𝖼𝗈𝗏𝛼(𝑂) in the second case 
as well. □

With the proof of Lemma 2, the proof of Theorem 2 is complete. □

Example showing a gap for 𝛼 < 1∕3. We now describe examples show-
ing that for each fixed 𝛼 < 1∕3, the above strategy of focusing on a 
bounded number of vertices of the largest degree does not lead to 
a (1 − 𝜀)-approximation, for large enough 𝑘. Let 𝑓 (𝑘, 𝜀) be an arbi-
trary function. Consider any 𝛼 = 1∕3 − 𝜇, where 0 < 𝜇 ≤ 1∕3, and let 
𝑁 ≥ 𝑓 (𝑘, 𝜖) be a large positive integer. The graph 𝐺 = (𝑉 , 𝐸) showing 
a gap is defined as follows. 𝑉 =𝐻 ⊎𝐿 ⊎ 𝑂, where |𝐻| =𝑁, |𝐿| = 𝑘𝑁
4

and |𝑂| = 𝑘, thus |𝑉 | =𝑁(𝑘 + 1) + 𝑘. For each vertex 𝑣 ∈𝐻 , we attach 
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𝑘 distinct vertices from 𝐿 as pendants. Finally, we add all 
(𝑘
2

)
edges 

among the vertices of 𝑂, making in into a complete graph.
Each vertex of 𝐻 has degree exactly 𝑘, each vertex of 𝑂 has degree 

exactly 𝑘 − 1, and each vertex of 𝐿 has degree exactly 1. This gives 
the sorted order of vertices by non-increasing degrees. It follows that 
the first 𝑓 (𝑘, 𝜀) vertices in the sorted order, say 𝑇 , all belong to 𝐻 . 
Furthermore, for any subset 𝑆 ⊆ 𝑇 of size 𝑘, 𝖼𝗈𝗏𝛼(𝑆) = 𝛼 ⋅ 𝑘2 = ( 13 −

𝜇) ⋅ 𝑘2. On the other hand, 𝖼𝗈𝗏𝛼(𝑂) = (1 − 𝛼) ⋅
(𝑘
2

)
= ( 23 + 𝜇) ⋅ 𝑘

2−𝑘
2 ≈

( 13 + 𝜇

2 ) ⋅ 𝑘
2, assuming 𝑘 is large enough. Hence, any 𝑘-sized subset 

𝑆 ⊆ 𝑇 , 𝖼𝗈𝗏𝛼 (𝑆)
𝖼𝗈𝗏𝛼 (𝑂)

<
1∕3−𝜇

1∕3+𝜇∕2 ≤ 1 − 3𝜇. Thus, 𝑇 does not contain a (1 − 𝜀)-
approximate solution for any 𝜀 < 3𝜇. This shows that our analysis of 
Theorem 2 is tight for the range of 𝛼 ≥ 1∕3.

3. Subexponential FPT algorithm for MAX 𝜶-FCGP on apex-minor 
free graphs

Fomin et al. [15] showed that PARTIAL VERTEX COVER on apex-

minor free graphs can be solved in time 2(
√
𝑘) ⋅ 𝑛(1). In this section, 

we will prove its generalization to MAX 𝛼-FCGP as well as MIN 𝛼-FCGP:

Theorem 3. For an apex graph 𝐻 , let  be a family of 𝐻 -minor free 
graphs.

• For any 𝛼 ≥ 1∕3, MAX 𝛼-FCGP for  can be solved in 2(
√
𝑘) ⋅ 𝑛(1)

time.

• For any 𝛼 ≤ 1∕3, MIN 𝛼-FCGP for  can be solved in 2(
√
𝑘) ⋅ 𝑛(1)

time.

We will give a proof for the maximization variant. The minimiza-
tion variant follows analogously. Let 𝜎 = 𝑣1, 𝑣2, … , 𝑣𝑛 be an ordering 
of vertices of 𝑉 in the non-increasing order of degrees, with ties bro-
ken arbitrarily. That is, 𝑑(𝑣1) ≥ 𝑑(𝑣2) ≥ … ≥ 𝑑(𝑣𝑛−1) ≥ 𝑑(𝑣𝑛). We will 
denote the graph by 𝐺 = (𝑉𝜎, 𝐸) to emphasize the fact that the vertex 
set is ordered w.r.t. 𝜎. We also let 𝑉 𝑗𝜎 =

{
𝑣1,… , 𝑣𝑗

}
. We first prove the 

following lemma.

Lemma 3. Let 𝐺 = (𝑉𝜎, 𝐸) be a yes-instance for MAX 𝛼-FCGP, where 
1∕3 ≤ 𝛼 ≤ 1. Let 𝐶 =

{
𝑢𝑖1
, 𝑢𝑖2
,… , 𝑢𝑖𝑘

}
be the lexicographically smallest 

solution for MAX 𝛼-FCGP and 𝑢𝑖𝑘 = 𝑣𝑗 for some 𝑗. Then 𝐶 is a dominating 
set of size 𝑘 for 𝐺[𝑉 𝑗𝜎 ].

Proof. Suppose for the contradiction that 𝐶 is not a dominating set for 
𝐺[𝑉 𝑗𝜎 ]. Then, there exists a vertex 𝑣𝑖 with 1 ≤ 𝑖 < 𝑗 such that 𝑁[𝑣𝑖] ∩
𝐶 = ∅. Set 𝐶 ′ = (𝐶 ⧵

{
𝑣𝑗
}
) ∪

{
𝑣𝑖
}

. Note that 𝑑(𝑣𝑖) ≥ 𝑑(𝑣𝑗 ). Define the 
following:

𝑚1 =𝑚(
{
𝑣𝑗
}
, 𝑉 ⧵𝐶),

𝑚2 =𝑚(
{
𝑣𝑗
}
,𝐶 ⧵

{
𝑣𝑗
}
),

𝑚3 =𝑚(
{
𝑣𝑖
}
, (𝑉 ⧵𝐶) ∪

{
𝑣𝑗
}
) = 𝑑(𝑣𝑖),

𝑚4 =𝑚(
{
𝑣𝑖
}
,𝐶 ⧵

{
𝑣𝑗
}
) = 0.

We will show that 𝐶 ′ is another solution for the MAX 𝛼-FCGP instance. 
Since 𝐶 ′ ⧵

{
𝑣𝑖
}
= 𝐶 ⧵

{
𝑣𝑗
}

, it suffices to show that

𝖼𝗈𝗏𝛼(𝐶 ′) − 𝖼𝗈𝗏𝛼(𝐶) = (𝖼𝗈𝗏𝛼(𝐶 ′) − 𝖼𝗈𝗏𝛼(𝐶 ′ ⧵
{
𝑣𝑖
}
))

− (𝖼𝗈𝗏𝛼(𝐶) − 𝖼𝗈𝗏𝛼(𝐶 ⧵
{
𝑣𝑗
}
))

is nonnegative. By definition,

𝖼𝗈𝗏𝛼(𝐶 ′) − 𝖼𝗈𝗏𝛼(𝐶 ′ ⧵
{
𝑣𝑖
}
) = 𝛼 ⋅𝑚3 + ((1 − 𝛼) − 𝛼) ⋅𝑚4 = 𝛼 ⋅ 𝑑(𝑣𝑖) and

𝖼𝗈𝗏𝛼(𝐶) − 𝖼𝗈𝗏𝛼(𝐶 ⧵
{
𝑣𝑗
}
) = 𝛼 ⋅𝑚1 + ((1 − 𝛼) − 𝛼) ⋅𝑚2 ≤ 𝛼 ⋅ (𝑚1 +𝑚2)
= 𝛼 ⋅ 𝑑(𝑣𝑗 ), (10)
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where the inequality is due to the assumption that 𝛼 ≥ 1∕3. Therefore,

𝖼𝗈𝗏𝛼(𝐶 ′) − 𝖼𝗈𝗏𝛼(𝐶) = 𝛼 ⋅ (𝑑(𝑣𝑖) − 𝑑(𝑣𝑗 )) ≥ 0,

which is a contradiction to the assumption that 𝐶 is the lexicographi-
cally smallest solution for MAX 𝛼-FCGP. □

In view of Lemma 3, we can use the following approach to search for 
the lexicographically smallest solution 𝐶 . First, we guess the last ver-
tex 𝑣𝑗 of 𝐶 in the ordering 𝜎, i.e., we search for a solution 𝐶 such that 
𝑣𝑗 ∈ 𝐶 and 𝐶 ⊆ 𝑉 𝑗𝜎 . If 𝐺[𝑉 𝑗𝜎 ] has no dominating set of size at most, say 
2𝑘, then we reject. This can be done in polynomial time, since DOM-
INATING SET admits a PTAS on apex-minor free graphs [7]. We thus 
may assume that there is a dominating set of size 2𝑘 in 𝐺[𝑉 𝑗𝜎 ]. It is 
known that an apex-minor free graph with a dominating set of size 𝜅 has 
treewidth (

√
𝜅), where  hides a factor depending on the apex graph 

whose minors are excluded [6,9,13]. We can use a constant-factor ap-
proximation algorithm of Demaine [8] to find a tree decomposition  of 
width 𝑤 ∈(

√
𝑘). Finally, we solve the problem via dynamic program-

ming over the tree decomposition. Bonnet et al. [2] gave a ∗(2𝑤)-time 
algorithm that solves MAX 𝛼-FCGP with a tree decomposition of width 
𝑤 given. We need to solve a slightly more general problem because 
is the tree decomposition is over 𝑉 𝑗𝜎 . To remove 𝑉 ⧵𝑉 𝑗𝜎 , we introduce a 
weight 𝜔∶ 𝑉 𝑗𝜎 → ℕ defined by 𝜔(𝑣) = |𝑁(𝑣) ∩ (𝑉 ⧵ 𝑉 𝑗𝜎 )|. The objective 
is then to maximize 𝖼𝗈𝗏𝛼(𝐶) +𝛼

∑
𝑣∈𝐶 𝜔(𝐶). The dynamic programming 

algorithm of Bonnet et al. can be adapted to solve this weighted variant 
in the same running time. Thus, we obtain a 2(

√
𝑘) ⋅ 𝑛(1)-time algo-

rithm for MAX 𝛼-FCGP.
For MIN 𝛼-FCGP, we can show the following lemma whose proof is 

omitted because it is almost analogous to the previous one. The only 
change is that, 𝑉𝜎 refers to the vertices in the non-decreasing order of 
degrees. Also, we consider the regime where 0 ≤ 𝛼 ≤ 1∕3, which implies 
𝛼 ≤ 1 − 2𝛼, which would give the reverse inequality in (10).

Lemma 4. Let 𝐺 = (𝑉𝜎, 𝐸) be a yes-instance for MAX 𝛼-FCGP, where 
0 ≤ 𝛼 ≤ 1∕3. Let 𝐶 =

{
𝑢𝑖1
, 𝑢𝑖2
,… , 𝑢𝑖𝑘

}
be the lexicographically smallest 

solution for MAX 𝛼-FCGP and 𝑢𝑖𝑘 = 𝑣𝑗 for some 𝑗. Then 𝐶 is a dominating 
set of size 𝑘 for 𝐺[𝑉 𝑗𝜎 ].

With this lemma at hand, an analogous algorithm solves MIN

𝛼-FCGP in 2(
√
𝑘) ⋅ 𝑛(1) time, thereby proving Theorem 3.

4. Conclusion

In this paper, we demonstrated that the algorithms exploiting the 
“degree-sequence” that have been successful for designing algorithms 
for MAX 𝑘-VERTEX COVER naturally generalize to MAX/MIN 𝛼-FCGP. 
Specifically, we designed FPT approximations for MAX∕MIN 𝛼-FCGP
parameterized by 𝑘, 𝛼, and 𝜀, for any 𝛼 ∈ (0, 1]. For MAX 𝛼-FCGP, this 
result is tight since, when 𝛼 = 0, the problem is equivalent to DENS-
EST 𝑘-SUBGRAPH, which is hard to approximate in FPT time [22]. We 
also designed subexponential FPT algorithms for MAX 𝛼-FCGP (resp.
MIN 𝛼-FCGP) for the range 𝛼 ≥ 1∕3 (resp. 𝛼 ≤ 1∕3) on any apex-minor 
closed family of graphs. It is a natural open question whether one can 
obtain subexponential FPT algorithms for MAX∕MIN 𝛼-FCGP for the 
entire range 𝛼 ∈ [0, 1]. A notable special case is that of DENSEST 𝑘-
SUBGRAPH on planar graphs. In this case, the problem is not even known 
to be NP-hard, if the subgraph is allowed to be disconnected. For the
DENSEST CONNECTED 𝑘-SUBGRAPH problem, it was shown by Keil and 
Brecht [19] that the problem is NP-complete on planar graphs. From 
the other side, it can be shown that DENSEST CONNECTED 𝑘-SUBGRAPH

admits a subexponential in 𝑘 randomized algorithm on apex-minor free 
graphs using the general results of Fomin et al. [14]. Thus, dealing with 
disconnected dense subgraphs is difficult for both algorithms and lower 
5

bounds.
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