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The task of the broadcast problem is, given a graph 𝐺 and a source vertex 𝑠, to compute the 
minimum number of rounds required to disseminate a piece of information from 𝑠 to all vertices 
in the graph. It is assumed that, at each round, an informed vertex can transmit the information 
to at most one of its neighbors. The broadcast problem is known to NP-hard. We show that the 
problem is FPT when parametrized by the size 𝑘 of a feedback edge set, or by the size 𝑘 of a 
vertex cover, or by 𝑘 = 𝑛 − 𝑡, where 𝑡 is the input deadline for the broadcast protocol to complete.

1. Introduction

The aim of broadcasting in a network is to transmit a message from a given source node of the network to all the other nodes. Let 
𝐺 = (𝑉 , 𝐸) be a connected simple graph modeling the network, and let 𝑠 ∈ 𝑉 be the source of a message 𝑀 . The standard telephone 
model [19] assumes that the communication proceeds in synchronous rounds. At any given round, any node 𝑢 ∈ 𝑉 aware of 𝑀 can 
forward 𝑀 to at most one neighbor 𝑣 of 𝑢. The minimum number of rounds for broadcasting a message from 𝑠 in 𝐺 to all other 
vertices is denoted by 𝑏(𝐺, 𝑠), and we let 𝑏(𝐺) =max𝑠∈𝑉 𝑏(𝐺, 𝑠) be the broadcast time of graph 𝐺. As the number of informed nodes 
(i.e., nodes aware of the message) can at most double at each round, 𝑏(𝐺, 𝑠) ≥ ⌈log2 𝑛⌉ in 𝑛-node networks. On the other hand, since 
𝐺 is connected, at least one uninformed node receives the message at any given round, and thus 𝑏(𝐺) ≤ 𝑛 −1. Both bounds are tight, 
as witnessed by the complete graph 𝐾𝑛 and the path 𝑃𝑛, respectively. The problem of computing the broadcast time 𝑏(𝐺, 𝑠) for a 
given graph 𝐺 and a given source 𝑠 ∈ 𝑉 is NP-hard [31] and, moreover, the problem remains hard when restricted to chordal or grid 
graphs [22]. Also, the results of [27] imply that it is NP-complete to decide whether 𝑏(𝐺, 𝑠) ≤ 𝑡 for graphs with 𝑛 = 2𝑡 vertices.

Three lines of research have emerged since the early days of studying broadcasting in the telephone model. One line is devoted 
to determining the broadcast time of specific classes of graphs judged important for their desirable properties as interconnection 
networks (e.g., hypercubes, de Bruijn graphs, Cube Connected Cycles, etc.). We refer to the surveys [14,21] for this matter. Another 
line of research takes inspiration from extremal graph theory. It aims at constructing 𝑛-node graphs 𝐺 with optimal broadcast 
time 𝑏(𝐺) = ⌈log2 𝑛⌉ and minimizing the number of edges sufficient to guarantee this property. Let 𝐵(𝑛) be the minimum number 
of edges of 𝑛-node graphs with broadcast time ⌈log2 𝑛⌉. It is known [16] that 𝐵(𝑛) = Θ(𝑛 𝐿(𝑛)) where 𝐿(𝑛) denotes the number of 
consecutive leading 1 s in the binary representation of 𝑛 −1. On the other hand, it is still not known whether 𝐵(⋅) is non-decreasing for 
2𝑡 ≤ 𝑛 < 2𝑡+1, for every 𝑡 ∈ ℕ. We are interested in a third, more recent line of research, namely the design of algorithms computing 
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efficient broadcast protocols. Note that a protocol for broadcasting from a source 𝑠 in a graph 𝐺 can merely be represented as a 
spanning tree 𝑇 rooted at 𝑠, with an ordering of all the children of each node in the tree.

Polynomial-time algorithms are known for trees [31] and some classes of tree-like graphs [4,15,18]. Several (polynomial-time) 
approximation algorithms have been designed for the broadcast problem. In particular, the algorithm in [24] computes, for ev-

ery graph 𝐺 and every source 𝑠, a broadcast protocol from 𝑠 performing in 2 𝑏(𝐺, 𝑠) + 𝑂(
√
𝑛) rounds, hence this algorithm has 

approximation ratio 2 + 𝑜(1) for graphs with broadcast time ≫
√
𝑛, but Θ̃(

√
𝑛) in general. Later, a series of papers tighten the 

approximation ratio, from 𝑂(log2 𝑛∕ log log𝑛) [29], to 𝑂(log𝑛) [1], and eventually 𝑂(log𝑛∕ log log𝑛) [10], which is, up to our knowl-

edge the current best approximation ratio for the broadcast problem. Better approximation ratios can be obtained for specific classes 
of graphs [2,3,17].

Despite all the achievements obtained on the broadcast problem, it has not yet been approached from the parameterized com-

plexity viewpoint [8]. There might be a good reason for that. Since at most 2𝑡 vertices can have received the message after 𝑡
communication rounds, an instance of the broadcast problem with time-bound 𝑡 in an 𝑛-vertex graph is a no-instance whenever 
𝑛 > 2𝑡. It follows that the broadcast problem has a trivial kernel when parameterized by the broadcast time. This makes the natural 
parameterization by the broadcast time not very significant. Nevertheless, as we shall show in this paper, there is a parameterization 
below the natural upper bound for the number of rounds that leads to interesting conclusions.

1.1. Our results

Let TELEPHONE BROADCAST be the following problem: given a connected graph 𝐺 = (𝑉 , 𝐸), a source vertex 𝑠 ∈ 𝑉 , and a nonneg-

ative integer 𝑡, decide whether there is a broadcast protocol from 𝑠 in 𝐺 that ensures that all the vertices of 𝐺 get the message in at 
most 𝑡 rounds. We first show that TELEPHONE BROADCAST can be solved in a single-exponential time by an exact algorithm.

Theorem 1. TELEPHONE BROADCAST can be solved in 3𝑛 ⋅ 𝑛(1) time for 𝑛-vertex graphs.

Motivated by the fact that the complexity of TELEPHONE BROADCAST remains open in pretty simple tree-like graphs (e.g., cactus 
graphs, and therefore outerplanar graphs), we first consider the cyclomatic number as a parameter, i.e., the minimum size of a 
feedback edge set, that is, the size of the smallest set of edges whose deletion results to an acyclic graph. We show that TELEPHONE 
BROADCAST is FPT when parameterized by this parameter.

Theorem 2. TELEPHONE BROADCAST can be solved in 2(𝑘 log𝑘) ⋅ 𝑛(1) time for 𝑛-vertex graphs with cyclomatic number at most 𝑘.

As far as we know, no NP-hardness result is known on graphs of treewidth at most 𝑘 ≥ 2. While we did not progress in that 
direction, we provide an interesting result for a stronger parameterization, namely the vertex cover number of a graph. (Note that, 
for all graphs, the treewidth never exceeds the vertex cover number.) As for the cyclomatic number, we do not only show that, for 
every fixed 𝑘, the broadcast time can be found in polynomial time on graphs with vertex cover at most 𝑘, but we prove a stronger 
result: the problem is FPT.

Theorem 3. TELEPHONE BROADCAST can be solved in 2(𝑘3) ⋅ 𝑛(1) time for 𝑛-vertex graphs with a vertex cover of size at most 𝑘.

Finally, we focus on graphs with very large broadcast time, for which the algorithm in [24] provides hope to derive very efficient 
broadcast protocols as this algorithm constructs a broadcast protocol performing in 2 𝑏(𝐺) +𝑂(

√
𝑛) rounds. While we were not able 

to address the problem over the whole range 
√
𝑛 ≪ 𝑡 ≤ 𝑛 − 1, we were able to provide answers for the range 𝑛 −𝑂(1) ≤ 𝑡 ≤ 𝑛 − 1. 

More specifically, we consider the parameter 𝑘 = 𝑛 − 𝑡, and study the kernelization for the problem under such parametrization.

Theorem 4. TELEPHONE BROADCAST admits a kernel with (𝑘) vertices in 𝑛-vertex graphs when parameterized by 𝑘 = 𝑛 − 𝑡.

As a direct consequence of Theorem 4, TELEPHONE BROADCAST is FPT for the parameterization by 𝑘 = 𝑛 − 𝑡. Specifically the 
problem can be solved in 2𝑂(𝑘) ⋅ 𝑛𝑂(1) time.

1.2. Related work

A classical generalization of the broadcast problem is the multicast problem, in which the message should only reach a given 
subset of target vertices in the input graph. Many of the previously mentioned approximation algorithms for the broadcast problem 
extend to the multicast problem, and, in particular, the algorithm in [10] is an 𝑂(log𝑘∕ log log𝑘)-approximation algorithm for the 
multicast problem with 𝑘 target nodes.

Many variants of the telephone model have been considered in the literature, motivated by different network technologies. One 
typical example is the line model [11], in which a call between a vertex 𝑢 and a vertex 𝑣 is implemented by a path between 𝑢
and 𝑣 in the graph, with the constraint that all calls performed at the same round must be performed along edge-disjoint paths. 
2

(The intermediate nodes along the path do not receive the message, which “cut through” them.) Interestingly, the broadcast time of 
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every 𝑛-node graph is exactly ⌈log2 𝑛⌉. The result extends to networks in which the paths are constructed by an underlying routing 
function [6]. The vertex-disjoint variant of the line model, i.e., the line model in which the calls performed at the same round must 
take place along vertex-disjoint paths, is significantly more complex. There is an 𝑂(log𝑛∕ log log𝑛)-approximation algorithm for the 
vertex-disjoint line model [24], which naturally extend to an 𝑂(log𝑛∕ logOPT)-approximation algorithm — see also [13] where an 
explicit 𝑂(log𝑛∕ logOPT)-approximation algorithm is provided. It is also worth mentioning that the broadcast model has been also 
extensively studied in models aiming at capturing any type of node- or link-latencies, e.g., the message takes 𝜆𝑒 units of time to 
traverse edge 𝑒, and the algorithm in [1] also handles such constraints. Other variants take into account the size of the message, e.g., 
a message of 𝐿 bits takes time 𝛼 + 𝛽 ⋅𝐿 to traverse an edge (see [23]). Under such a model, it might be efficient to split the original 
message into smaller packets and pipeline the broadcast of these packets through disjoint spanning trees [23,32].

2. Preliminaries

Parameterized complexity We refer to the book of Cygan et al. [8] for a detailed introduction to Parameterized Complexity and give 
here only crucial definitions.

Formally, a parameterized problem is language 𝐿 ⊆ Σ∗×ℕ, where Σ∗ is the set of strings over a finite alphabet Σ. Hence, an instance 
of a parameterized problem is a pair (𝑥, 𝑘), where 𝑥 ∈ Σ∗ is a string encoding the input and 𝑘 ∈ ℕ is a parameter. A parameterized 
problem is said to be fixed-parameter tractable (or FPT) if it can be solved in 𝑓 (𝑘) ⋅ |𝑥|(1) time for some computable function 𝑓 (⋅).

A kernelization algorithm (or simply a kernel) for a parameterized problem 𝐿 is a polynomial algorithm that maps each instance 
(𝑥, 𝑘) of 𝐿 into an instance (𝑥′, 𝑘′) of the same problem such that

(i) (𝑥, 𝑘) ∈𝐿 if and only if (𝑥′, 𝑘′) ∈𝐿, that is, the instances (𝑥, 𝑘) and (𝑥′, 𝑘′) are equivalent, and

(ii) |𝑥′| + 𝑘′ ≤ 𝑔(𝑘) for a computable function 𝑔(⋅).

It is said that 𝑔(⋅) is the kernel size, and a kernel is polynomial if 𝑔(⋅) is polynomial. It is well-known that every decidable parameterized 
problem is FPT if and only if it has a kernel. However, there are FPT parameterized problems that do not admit polynomial kernels 
up to some reasonable complexity assumptions. It is common to present a kernelization algorithm as a series of reduction rules. A 
reduction rule for a parameterized problem is an algorithm that takes an instance of the problem and computes in polynomial time 
another instance that is more “simple” in a certain way. A reduction rule is safe (or sound) if the computed instance is equivalent to 
the input instance.

Graphs We use standard graph-theoretic notation and refer to the textbook of Diestel [9] for non-defined notions. We consider only 
finite simple undirected graphs. We use 𝑉 (𝐺) and 𝐸(𝐺) to denote the sets of vertices and edges of a graph 𝐺. We denote by 𝑛 and 𝑚
the number of vertices and edges, respectively, if this does not create confusion. For a graph 𝐺 and a subset 𝑋 ⊆ 𝑉 (𝐺) of vertices, 
we write 𝐺[𝑋] to denote the subgraph of 𝐺 induced by 𝑋. We use 𝐺 −𝑋 to denote the graph obtained by deleting the vertices 
of 𝑋, that is, 𝐺 −𝑋 = 𝐺[𝑉 (𝐺) ⧵𝑋]; we write 𝐺 − 𝑣 instead of 𝐺 − {𝑣} for a single element set. We use the same convention for 
edges and write 𝐺−𝑆 and 𝐺− 𝑒 for the graph obtained from 𝐺 by the removal of a set of edges 𝑆 and a single edge 𝑒, respectively. 
For a vertex 𝑣, 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 (𝐺) ∣ 𝑣𝑢 ∈ 𝐸(𝐺)} is the open neighborhood of 𝑣, and 𝑑𝐺(𝑣) = |𝑁𝐺(𝑣)| is the degree of 𝑣. For a set 
𝑆 ⊆ 𝑉 (𝐺), 𝑁𝐺(𝑆) =

⋃
𝑣∈𝑆 𝑁𝐺(𝑣) ⧵ 𝑆 . Two vertices 𝑢 and 𝑣 are (false) twins if 𝑁𝐺(𝑢) =𝑁𝐺(𝑣). It is said that 𝐺′ = 𝐺∕𝑒 is obtained 

by the contraction of an edge 𝑒 = 𝑢𝑣 ∈𝐸(𝐺) if 𝐺′ is obtained by removing 𝑢 and 𝑣 and replacing them by a single vertex adjacent to 
all the vertices of 𝑁𝐺({𝑢, 𝑣}). Recall that in TELEPHONE BROADCAST we have a specific source vertex 𝑠. To keep such a vertex under 
contraction, we assume that the new vertex obtained by the contraction of an edge incident to 𝑠 becomes the source and we use the 
same name 𝑠 for it.

We write 𝑃 = 𝑣1⋯ 𝑣𝑘 to denote a path with the vertices 𝑣1, … , 𝑣𝑘 and edges 𝑣1𝑣2, … , 𝑣𝑘−1𝑣𝑘; 𝑣1 and 𝑣𝑘 are the end-vertices of 𝑃
and the vertices 𝑣2, … , 𝑣𝑘−1 are internal. We consider only simple paths, that is, the vertices 𝑣1, … , 𝑣𝑘 are distinct. We say that 𝑃 is 
an (𝑣1, 𝑣𝑘)-path. The length of 𝑃 is the number of edges in 𝑃 , and the distance dist𝐺(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 is the minimum 
length of a (𝑢, 𝑣)-path. We remind that 𝐺 is connected if for every two vertices 𝑢 and 𝑣, 𝐺 has a (𝑢, 𝑣)-path. We always assume 
that the considered graphs are connected if it is not explicitly said to be otherwise. If 𝐺 is disconnected, then the inclusion-wise 
maximal induced connected subgraphs of 𝐺 are (connected) components. An edge 𝑒 = 𝑢𝑣 is a bridge of a connected graph 𝐺 if 𝐺 − 𝑒
is disconnected; note that 𝐺 − 𝑒 has exactly two connected components and one of them contains 𝑢 and the other 𝑣. We also remind 
that 𝑇 is a spanning tree of 𝐺 if 𝑇 is a tree subgraph of 𝐺 with the same set of vertices as 𝐺.

A matching 𝑀 in a graph 𝐺 is a set of edges with distinct endpoints. A vertex 𝑣 is saturated in a matching 𝑀 if 𝑣 is incident to an 
edge of 𝑀 .

A set of vertices 𝑆 of a graph 𝐺 is a vertex cover if each edge of 𝐺 has at least one of its endpoints in 𝐺. The vertex cover number

of 𝐺 is the minimum size of a vertex cover. Note that for a vertex cover 𝑆 , the set 𝐼 = 𝑉 (𝐺) ⧵𝑆 is an independent set, that is, any two 
distinct vertices of 𝐼 are not adjacent. It is well-known (see [8]) that it is FPT to decide whether 𝐺 has a vertex cover of size at most 
𝑘 when the problem is parameterized by 𝑘. The currently best algorithm, given by Chen, Kanj, and Xia [5], runs in 1.2738𝑘 ⋅ 𝑛(1)
time.

A set of edges 𝑆 of a graph 𝐺 is a feedback edge set if 𝐺−𝑆 has no cycle. The cyclomatic number of a graph 𝐺 is the minimum size 
of a feedback edge set. It is well-known, that for a connected graph 𝐺, the cyclomatic number is 𝑚 − 𝑛 + 1 and a feedback edge set 
3

can be found in linear time by constructing a spanning tree (see, e.g., [7,9]).
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Broadcasting Let 𝐺 be a graph and let 𝑠 ∈ 𝑉 (𝐺) be a source vertex from which a message is broadcasted. In general, a broadcasting 
protocol is a mapping that for each round 𝑖 ≥ 1, assigns to each vertex 𝑣 ∈ 𝑉 (𝐺) that is either a source or has received the message 
in rounds 1, … , 𝑖 − 1, a neighbor 𝑢 to which 𝑣 sends the message in the 𝑖-th round. However, it is convenient to note that it can be 
assumed that each vertex 𝑣 that got the message, in the next 𝑑 ≤ 𝑑𝐺(𝑣) rounds, transmits the message to some neighbors in a certain 
order in such a way that each vertex receives the message only once. This allows us to formally define a broadcasting protocol as a 
pair (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}), where 𝑇 is a spanning tree of 𝐺 rooted in 𝑠 and for each 𝑣 ∈ 𝑉 (𝑇 ), 𝐶(𝑣) is an ordered set of children of 𝑣
in 𝑇 . As soon as 𝑣 gets the message, 𝑣 starts to send it to the children in 𝑇 in the order defined by 𝐶(𝑣). For 𝐺 and 𝑠 ∈ 𝑉 (𝐺), we use 
𝑏(𝐺, 𝑠) to denote the minimum integer 𝑡 ≥ 0 such that there is a broadcasting protocol such that every vertex of 𝐺 gets the message 
after 𝑡 rounds. We say that a broadcasting protocol ensuring that every vertex gets a message in 𝑏(𝑠, 𝐺) rounds is optimal. We use the 
following straightforward observation.

Observation 1. Let 𝑇 be a spanning tree of 𝐺 and let 𝑠 ∈ 𝑉 (𝐺). Then 𝑏(𝐺, 𝑠) ≤ 𝑏(𝑇 , 𝑠).

Observation 1 can be generalized as follows.

Observation 2. Let 𝑇 be a tree subgraph of 𝐺 and let 𝑠 ∈ 𝑉 (𝑇 ). Then 𝑏(𝐺, 𝑠) ≤ 𝑏(𝑇 , 𝑠) + |𝑉 (𝐺) ⧵ 𝑉 (𝑇 )|.

Proof. Let 𝑃 = (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}) an optimal broadcasting protocol for 𝑇 . We extend it to a protocol for 𝐺 as follows. First, we 
construct a spanning subtree 𝑇 ′ of 𝐺 by extending 𝑇 , that is, 𝑇 is a subtree of 𝑇 ′. For every 𝑣 ∈ 𝑉 (𝑇 ), we construct the ordered 
set of the children 𝐶 ′(𝑣) by appending to the end of 𝐶(𝑣) the children of 𝑣 in 𝑇 ′ that are not in 𝑇 in arbitrary order. For every 
𝑣 ∈ 𝑉 (𝑇 ′) ⧵ 𝑉 (𝑇 ), we define 𝐶 ′(𝑣) to be an arbitrary ordered set of the children of 𝑣. We have that (𝑇 ′, {𝐶 ′(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}) is a 
broadcasting protocol for 𝐺 that takes at most 𝑏(𝑇 , 𝑠) + |𝑉 (𝐺) ⧵𝑉 (𝑇 )| rounds to transfer the message to the vertices of 𝐺 because the 
vertices of 𝑇 get the message in the first 𝑏(𝑇 , 𝑠) rounds and in every subsequent round, at least one vertex of 𝑉 (𝐺) ⧵ 𝑉 (𝑇 ) receives 
the message unless all the vertices are already aware of the message. □

As it was proved by Proskurowski [28] and Slater, Cockayne, and Hedetniemi [31], 𝑏(𝐺, 𝑠) can be computed in linear time for 
trees by dynamic programming.

Lemma 1 ([28,31]). For an 𝑛-vertex tree 𝑇 and 𝑠 ∈ 𝑉 (𝑇 ), 𝑏(𝑇 , 𝑠) can be computed in (𝑛) time.

3. Exact algorithm for the broadcast problem

We prove that TELEPHONE BROADCAST can be solved in a single-exponential time by an exact algorithm, hence establishing 
Theorem 1. We do so using dynamic programming over subsets (see the textbook [12] for an introduction to exact exponential 
algorithms).

3.1. Proof of Theorem 1

Let (𝐺, 𝑠, 𝑡) be an instance of TELEPHONE BROADCAST. For each 𝑖 ∈ {0, … , 𝑡}, we enumerate all subsets of vertices 𝑋 ⊆ 𝑉 (𝐺)
containing 𝑠 such that 𝐺[𝑋] is a connected graph and 𝑏(𝐺[𝑋], 𝑠) ≤ 𝑖. We denote these families of sets 𝑖 for 𝑖 ∈ {0, … , 𝑡}. Observe 
that (𝐺, 𝑠, 𝑡) is a yes-instance if and only if 𝑉 (𝐺) ∈ 𝑡. For 𝑖 = 0, it is straightforward that 𝑖 contains the unique set {𝑠}. We 
consecutively compute 𝑖 for 𝑖 = 1, 2, … , 𝑡 using the following claim.

Claim 3.1. Let 𝑋 ⊆ 𝑉 (𝐺) such that 𝑠 ∈𝑋 and 𝐺[𝑋] is connected, and let 𝑖 ≥ 1. Then 𝑏(𝐺[𝑋], 𝑠) ≤ 𝑖 if and only if there is 𝑌 ⊆ 𝑋 such 
that (i) 𝑠 ∈ 𝑌 , 𝐺[𝑌 ] is connected, 𝑏(𝐺[𝑌 ], 𝑠) ≤ 𝑖 −1, and (ii) either 𝑋 = 𝑌 or the bipartite graph 𝐻 with the set of vertices 𝑋 and the edges 
𝐸(𝐻) = {𝑢𝑣 ∈𝐸(𝐺) ∣ 𝑢 ∈ 𝑌 , 𝑣 ∈𝑋 ⧵ 𝑌 } has a matching saturating every vertex of 𝑋 ⧵ 𝑌 .

Proof of Claim 3.1. Suppose that for 𝑋 ⊆ 𝑉 (𝐺), it holds that 𝑠 ∈ 𝑋, 𝐺[𝑋] is connected, and 𝑏(𝐺[𝑋], 𝑠) ≤ 𝑖. Consider an optimal 
broadcasting protocol for 𝐺[𝑋] and 𝑠. Let 𝑌 ⊆ 𝑋 be the set of vertices that receive the message in the first 𝑖 − 1 rounds. We have 
that (i) holds for 𝑌 . Condition (ii) is trivial if 𝑋 = 𝑌 . Assume that this is not the case and 𝑋 ⧵ 𝑌 ≠ ∅. Then for every 𝑣 ∈ 𝑋 ⧵ 𝑌 , 
there is 𝑢𝑣 ∈ 𝑌 such that 𝑣 receives the message of the 𝑖-th round from 𝑢𝑣. We obtain that 𝑀 = {𝑣𝑢𝑣 ∣ 𝑣 ∈𝑋 ⧵ 𝑌 } is a matching in 𝐻
saturating every vertex of 𝑋 ⧵ 𝑌 .

Assume now that there is 𝑌 ⊆𝑋 satisfying (i) and (ii). Then there is a broadcasting protocol for 𝐺[𝑌 ] and 𝑠 such that every vertex 
of 𝑌 gets the message in 𝑖 − 1 rounds. If 𝑋 = 𝑌 , then 𝑏(𝐺[𝑋], 𝑠) ≤ 𝑖 − 1. Suppose that 𝑋 ⧵ 𝑌 ≠ ∅. Then 𝐻 has a matching 𝑀 which 
saturates every vertex of 𝑋 ∈ 𝑌 . We extend the protocol for 𝑌 and 𝑠 by defining that each vertex 𝑢 ∈ 𝑌 which is saturated in 𝑀
sends the message to the neighbor along the edge of 𝑀 incident to 𝑣 in the last available round. Thus each vertex of 𝑋 ⧵ 𝑌 gets the 
message in 𝑖 rounds. □

Suppose that 𝑖 ≥ 1 and the family 𝑖−1 is already constructed. Initially, we set 𝑖 ∶=𝑖−1. Then we consider all subsets 𝑋 ⊆ 𝑉 (𝐺)
4

and proper 𝑌 ⊂ 𝑋 such that 𝑠 ∈ 𝑋, 𝐺[𝑋] is connected, and 𝑌 ∈ 𝑖−1. For each pair (𝑋, 𝑌 ) of such sets, we check whether the 
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bipartite graph 𝐻 with the set of vertices 𝑋 and the edges 𝐸(𝐻) = {𝑢𝑣 ∈ 𝐸(𝐺) ∣ 𝑢 ∈ 𝑌 , 𝑣 ∈𝑋 ⧵ 𝑌 } has a matching saturating every 
vertex of 𝑋 ⧵ 𝑌 , and if this holds, then we set 𝑖 ∶=𝑖 ∪ {𝑋}.

Claim 3.1 guarantees correctness of the construction of 𝑖 from 𝑖−1. To evaluate the running time, note that we consider at most 
3𝑛 pairs of sets (𝑋, 𝑌 ). Then for each pair, 𝐻 can be constructed in polynomial time and then the existence of a matching saturating 
the vertices of 𝑋 ⧵ 𝑌 can be verified in polynomial time in the standard way (see, e.g., [7]). Thus 𝑖 can be constructed in 3𝑛 ⋅ 𝑛(1)
time. Taking into account that we iterate for 𝑖 = 1, 2, … , 𝑡 and we can assume without loss of generality that 𝑡 ≤ 𝑛 − 1, we have that 
the total running time is 3𝑛 ⋅ 𝑛(1).

4. TELEPHONE BROADCAST parameterized by the cyclomatic number

In this section, we prove Theorem 2. We need some auxiliary results.

Let 𝑇 be a tree and let 𝑥 and 𝑦 be distinct leaves, that is, vertices of degree one in 𝑇 . For an integer ℎ ≥ 0, we use 𝑏ℎ(𝑇 , 𝑥, 𝑦) to 
denote the minimum number of rounds needed to broadcast the message from the source 𝑥 to 𝑦 in such a way that every vertex of 
𝑇 gets the message in at most ℎ rounds. We assume that 𝑏ℎ(𝑇 , 𝑥, 𝑦) = +∞ if 𝑏(𝑇 , 𝑥) > ℎ. We prove that 𝑏ℎ(𝑇 , 𝑥, 𝑦) can be computed 
in linear time similarly to 𝑏(𝑇 , 𝑠) (see [28,31]). The difference is that it is more convenient to use recursion instead of dynamic 
programming.

Lemma 2. For an 𝑛-vertex tree 𝑇 with given distinct leaves 𝑥 and 𝑦 of 𝑇 and an integer ℎ ≥ 0, 𝑏ℎ(𝑇 , 𝑥, 𝑦) can be computed in (𝑛) time.

Proof. Let 𝑇 be a tree and let 𝑥 and 𝑦 be leaves of 𝑇 . Let also ℎ ≥ 0 be an integer. We use Lemma 1 to check whether 𝑏(𝑇 , 𝑥) ≤ ℎ
and set 𝑏ℎ(𝑇 , 𝑥, 𝑦) = +∞ if 𝑏(𝑇 , 𝑥) > ℎ because in this case the message cannot be transmitted to every vertex of 𝑇 in ℎ rounds. From 
now we assume that 𝑏(𝑇 , 𝑥) ≤ ℎ. Notice that this implies that 𝑏ℎ(𝑇 , 𝑥, 𝑦) < +∞.

Let 𝑃 = 𝑣1… 𝑣𝓁 be the (𝑥, 𝑦)-path in 𝑇 , 𝑥 = 𝑣1 and 𝑦 = 𝑣𝓁 . Note that if 𝓁 = 2, then, trivially, 𝑏ℎ(𝑇 , 𝑥, 𝑦) = 1. Suppose that 𝓁 ≥ 3. 
Denote by 𝑇 ′ the inclusion-wise maximal subtree of 𝑇 containing 𝑣2 and 𝑦 such that 𝑣2 is a leaf of 𝑇 ′. We construct recurrences that 
allow to compute 𝑏ℎ(𝑇 , 𝑥, 𝑦) from 𝑏ℎ′ (𝑇 ′, 𝑣2, 𝑦) for a certain ℎ′ < ℎ.

If 𝑑𝑇 (𝑣2) = 2, then 𝑏ℎ(𝑇 , 𝑥, 𝑦) = 1 + 𝑏ℎ−1(𝑇 ′, 𝑣2, 𝑦) by definition.

Suppose that 𝑑𝑇 (𝑣2) ≥ 3. Denote by 𝑢1, … , 𝑢𝑘 the neighbors of 𝑣2 distinct from 𝑣1 and 𝑣3, and let 𝑇1, … , 𝑇𝑘 be the connected 
components of 𝑇 − 𝑣2 containing 𝑢1, … , 𝑢𝑘, respectively. Notice that 𝑘 ≤ ℎ − 2, because at least 𝑘 + 2 rounds are needed to transmit 
the message to 𝑢1, … , 𝑢𝑘 and 𝑣3. Observe also that the message is broadcasted from 𝑣2 to every 𝑢𝑖 and to broadcast the message from 
each 𝑢𝑖 to other vertices of 𝑇𝑖, we can use an optimal protocol for 𝑇𝑖 with the source 𝑢𝑖. We compute 𝑏(𝑇𝑖, 𝑢𝑖) for 𝑖 ∈ {1, … , 𝑘} and 
assume that 𝑏(𝑇1, 𝑢1) ≥⋯ ≥ 𝑏(𝑇𝑘, 𝑢𝑘). Observe that max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖 ∈ {1, … , 𝑘}} ≤ ℎ − 1, because at least max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖 ∈
{1, … , 𝑘}} + 1 rounds are necessary to transmit the message to all the vertices of 𝑇1, … , 𝑇𝑘.

Because max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖 ∈ {1, … , 𝑘}} ≤ ℎ − 1, there is 𝑗 ∈ {1, … , 𝑘 + 1} such that either 𝑗 ≤ 𝑘 and max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 + 1 ∣ 𝑖 ∈
{𝑗, … , 𝑘}} ≤ ℎ −1 or 𝑗 = 𝑘 +1. We find the minimum value of 𝑗 satisfying this condition. Observe that 𝑗 +1 is the minimum number 
of a round such that the message can be transmitted from 𝑣2 to 𝑣3 in such a way that every vertex of 𝑇1, … , 𝑇𝑘 gets the message in 
at most ℎ rounds. Because we aim to minimize the transmission time to 𝑦 = 𝑣𝑘, we set 𝑏ℎ(𝑇 , 𝑥, 𝑦) = 𝑗 + 𝑏ℎ−𝑗 (𝑇 ′, 𝑣2, 𝑦).

The correctness of the algorithm follows from its description. To evaluate the running time, note that to compute 𝑏ℎ(𝑇 , 𝑥, 𝑦), we 
have to find 𝑃 = 𝑣1… 𝑣𝓁 and then for each 𝑖 ∈ {2, … , 𝓁}, compute the neighbors 𝑢𝑖1, … , 𝑢𝑖

𝑘𝑖
of 𝑣𝑖 distinct from 𝑣𝑖−1 and 𝑣𝑖+1 and 

the components 𝑇 𝑖1 , … , 𝑇 𝑖
𝑘𝑖

of 𝑇 − 𝑉 (𝑃 ) containing 𝑢𝑖1, … , 𝑢𝑖
𝑘𝑖

. All these computations can be done in the total linear time. Also in 
(𝑛) time, we can order 𝑇 𝑖1 , … , 𝑇 𝑖

𝑘𝑖
by the decrease 𝑏(𝑇 𝑖

𝑝
, 𝑢𝑝) for 𝑝 ∈ {1, … , 𝑘𝑖}. Then computing 𝑏ℎ(𝑇 , 𝑥, 𝑦) can be done in linear time 

following the recurrences. □

We also need a subroutine computing the minimum number of rounds for broadcasting from two sources with the additional 
constraint that the second source starts sending the message with a delay. Let 𝑇 be a tree and let 𝑥 and 𝑦 be distinct leaves of 𝑇 . Let 
also ℎ ≥ 0 be an integer. We use 𝑑ℎ(𝑇 , 𝑥, 𝑦) to denote the minimum rounds needed to broadcast the message from 𝑥 and 𝑦 to every 
vertex of 𝑇 − 𝑦 in such a way that 𝑦 can send the message starting from the (ℎ + 1)-th round (that is, we assume that 𝑦 gets the 
message from outside in the ℎ-th round).

Lemma 3. For an 𝑛-vertex tree 𝑇 with given distinct leaves 𝑥 and 𝑦 of 𝑇 and an integer ℎ ≥ 0, 𝑑ℎ(𝑇 , 𝑥, 𝑦) can be computed in (𝑛2) time.

Proof. Let 𝑇 be a tree and let 𝑥 and 𝑦 be leaves of 𝑇 . Let also ℎ ≥ 0 be an integer. Consider the (𝑥, 𝑦)-path 𝑃 = 𝑣1… 𝑣𝓁 in 𝑇 , where 
𝑥 = 𝑣1 and 𝑦 = 𝑣𝓁 . Then we have that 𝑑ℎ(𝑇 , 𝑥, 𝑦) = 𝑏(𝑇 − 𝑦, 𝑥) if 𝑏(𝑇 − 𝑦, 𝑥) ≤ ℎ. If 𝑏(𝑇 − 𝑦, 𝑥) > ℎ, then

𝑑ℎ(𝑇 ,𝑥, 𝑦) = min
𝑖∈{2,…,𝓁}

max{𝑏(𝑇 𝑖1 , 𝑥), 𝑏(𝑇
𝑖
2 , 𝑦) + ℎ}, (1)

where 𝑇 𝑖1 is the connected component of 𝑇 − 𝑣𝑖−1𝑣𝑖 containing 𝑥 and 𝑇 𝑖2 is the connected component of 𝑇 − 𝑣𝑖−1𝑣𝑖 containing 𝑦. The 
equality (1) follows from the observation that the sets of vertices receiving the message from 𝑥 and 𝑦, respectively, should form a 
partition of 𝑉 (𝑇 ), where each part induces a subtree. The path 𝑃 can be found in linear time. Then computing 𝑑ℎ(𝑇 , 𝑥, 𝑦) can be 
5

done in (𝑛2) time using Lemma 1. □
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Now we are ready to prove Theorem 2.

4.1. Proof of Theorem 2

Let (𝐺, 𝑠, 𝑡) be an instance of TELEPHONE BROADCAST. If 𝐺 is a tree, then we can compute 𝑏(𝐺, 𝑠) in linear time using Lemma 1. 
Assume that this is not the case, and let 𝑘 =𝑚 − 𝑛 + 1 ≥ 1 be the cyclomatic number of 𝐺. We find in linear time a feedback edge set 
𝑆 of size 𝑘 by finding an arbitrary spanning tree 𝐹 of 𝐺 and setting 𝑆 =𝐸(𝐺) ⧵𝐸(𝐹 ).

We iteratively construct the set 𝑈 as follows. Initially, we set

𝑈 ∶=𝑊 = {𝑠} ∪ {𝑣 ∈ 𝑉 (𝐺) ∣ 𝑣 is an endpoint of an edge of 𝑆}.

Then while 𝐺 −𝑈 has a vertex 𝑣 such that 𝐺 has three internally vertex-disjoint paths joining 𝑣 and 𝑈 , we set 𝑈 ∶= 𝑈 ∪ {𝑣}. The 
properties of 𝑈 are summarized in the following claims.

Claim 4.1. |𝑈 | ≤ 4𝑘.

Proof of Claim 4.1. The claim is trivial if 𝑈 =𝑊 because |𝑈 | ≤ 2𝑘 + 1 ≤ 4𝑘 in this case. Assume that |𝑈 | > |𝑊 |, that is, 𝐺 −𝑊
has a vertex 𝑣 such that 𝐺 has three internally vertex-disjoint paths joining 𝑣 and 𝑊 . Consider the graph 𝐺′ obtained from 𝐺 by the 
iterative deletion of all the vertices of degree one that are not in 𝑊 . Observe that 𝐹 =𝐺′ − 𝑆 is a tree whose leaves are in 𝑊 , and 
each vertex 𝑣 ∈ 𝑉 (𝐺′) ⧵𝑊 can be joined by three vertex-disjoint paths with 𝑊 if and only if 𝑣 is a vertex of degree at least three in 
𝐹 . It is folklore knowledge that if 𝓁 is the number of leaves and 𝑝 is the number of vertices of degree at least three in a tree, then 
𝑝 ≤ 𝓁 − 2. This implies that 𝑈 is constructed from 𝑊 by adding at most |𝑊 | − 2 ≤ 2𝑘 − 1 vertices. Hence, |𝑈 | ≤ 4𝑘. □

Claim 4.2. For each connected component 𝐹 of 𝐺 −𝑈 , 𝐹 is a tree such that each vertex 𝑥 ∈𝑈 has at most one neighbor in 𝐹 and

(i) either 𝑈 has a unique vertex 𝑥 that has a neighbor in 𝐹 ,

(ii) or 𝑈 contain exactly two vertices 𝑥 and 𝑦 having neighbors in 𝐹 .

Proof of Claim 4.2. We have that each connected component 𝐹 of 𝐺 − 𝑈 is a tree because 𝐺 − 𝑆 is a tree and the endpoints of 
the edges of 𝑆 are in 𝑈 . For the same reasons, each vertex 𝑥 ∈ 𝑈 is adjacent to at most one vertex of each 𝐹 . Consider arbitrary 
𝐹 . If only one vertex 𝑥 ∈ 𝑈 has a neighbor in 𝐹 , then (i) is fulfilled. Suppose that at least two vertices of 𝑈 are adjacent to some 
vertices of 𝐹 . Then exactly two vertices 𝑥, 𝑦 ∈ 𝑈 have neighbors in 𝐹 because, otherwise, 𝐹 would have a vertex 𝑣 which could be 
joined with 𝑈 by three vertex-disjoint paths but such a vertex would be included in 𝑈 . This implies that (ii) holds and concludes the 
proof. □

If 𝐹 is a connected component of 𝐺 − 𝑈 satisfying (i) of Claim 4.2, then we say that 𝐹 is a 𝑥-tree and 𝑥 is its anchor. For a 
connected component 𝐹 of 𝐺 −𝑈 satisfying (ii), we say that 𝐹 is an (𝑥, 𝑦)-tree and call 𝑥 and 𝑦 anchors of 𝐹 . We also say that 𝐹 is 
anchored in 𝑥 (𝑥 and 𝑦, respectively). Because 𝐺 −𝑆 is a tree and |𝑈 | ≤ 4𝑘 by Claim 4.1, we immediately obtain the next property.

Claim 4.3. For every distinct 𝑥, 𝑦 ∈ 𝑈 , 𝐺 −𝑈 has at most one (𝑥, 𝑦)-tree. Furthermore, the graph 𝐻 with 𝑉 (𝐻) =𝑈 such that 𝑥𝑦 ∈𝐸(𝐻)
if and only if 𝐺 −𝑈 has an (𝑥, 𝑦)-tree is a forest. In particular, the total number of (𝑥, 𝑦)-trees is at most 4𝑘 − 1.

To prove the theorem, we have to verify the existence of a broadcasting protocol 𝑃 = (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}) that ensures that 
every vertex receives the message after at most 𝑡 rounds. To do it, we guess the scheme of 𝑃 restricted to 𝑈 . Namely, we consider the 
graph 𝐺′ obtained from 𝐺 by the deletion of the vertices of 𝑥-trees for all 𝑥 ∈𝑈 and for each vertex 𝑥 ∈𝑈 , we guess how the message 
is broadcasted to 𝑥 and from 𝑥 to the neighbors of 𝑥 in 𝐺′. Notice that 𝑇 ′ = 𝑇 [𝑉 (𝐺′)] is a tree by the definition of 𝐺′. Observe also 
that for each 𝑥-tree 𝐹 for 𝑥 ∈𝑈 , the message is broadcasted to the vertices of 𝐹 from 𝑥, because 𝑠 ∈𝑈 . In particular, this means that 
the parents of the vertices of 𝑈 in 𝑇 are in 𝐺′. For each 𝑣 ∈𝑈 distinct from 𝑠, we guess its parent 𝑝(𝑣) ∈ 𝑉 (𝐺′) in 𝑇 ′ and assume that 
𝑝(𝑠) = 𝑠. Then for each 𝑣 ∈ 𝑈 , we guess the ordered subset 𝑅(𝑣) of vertices of 𝑁𝐺′ (𝑣) ⧵ {𝑝(𝑣)} such that 𝑅(𝑣) = 𝐶(𝑣) ∩𝑁𝐺′ (𝑣). We 
guess 𝑝(𝑣) and 𝑅(𝑣) for 𝑣 ∈ 𝑈 by considering all possible choices. To guess 𝑅(𝑣) for each 𝑣 ∈ 𝑈 , we first guess the (unordered) set 
𝑆(𝑣) and then consider all possible orderings of the elements of 𝑆(𝑣). The selection of 𝑝(𝑣) and 𝑆(𝑣) is done by brute force. However, 
we are only interested in choices, where the selection of the neighbors 𝑝(𝑣) and 𝑆(𝑣) of 𝑣 for 𝑣 ∈ 𝑈 can be extended to a spanning 
tree 𝑇 ′ of 𝐺′.

Let 𝑇 ′ be an arbitrary spanning tree of 𝐺′ rooted in 𝑠. Let 𝑇 ′′ be the tree obtained from 𝑇 ′ by the iterative deletion of leaves not 
included in 𝑈 . Observe that 𝑇 ′′ is a tree such that 𝑈 ⊆ 𝑉 (𝑇 ′′) and each leaf of 𝑇 ′′ is a vertex of 𝑈 . By Claim 4.2, each edge of 𝑇 ′′

is either an edge of 𝐺[𝑈 ] or is an edge of an (𝑥, 𝑦)-path 𝑄 for distinct 𝑥, 𝑦 ∈ 𝑈 such that the internal vertices of 𝑄 are the vertices 
of the (𝑥, 𝑦)-tree 𝐹 ; in the second case, each edge of 𝑄 is in 𝑇 ′′. Notice also that 𝑠 ∈ 𝑉 (𝑇 ′′) and for each 𝑣 ∈ 𝑈 distinct from 𝑠, the 
parent of 𝑣 in 𝑇 is the parent of 𝑣 in 𝑇 ′′ with respect to the source vertex 𝑠. Hence, our first step in constructing 𝑝(𝑣) and 𝑆(𝑣), is to 
consider all possible choices of 𝑇 ′′. Observe that 𝐺[𝑈 ] has at most 

(4𝑘
2

)
edges by Claim 4.1 and the total number of (𝑥, 𝑦)-trees is at 

most 4𝑘 −1 by Claim 4.3. Because 𝑇 ′′ is a tree, it contains |𝑈 | −1 edges of 𝐺[𝑈 ] and (𝑥, 𝑦)-paths 𝑄 in total. We obtain that we have 
6

𝑘(𝑘) possibilities to choose 𝑇 ′′. From now on, we assume that 𝑇 ′′ is fixed.
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The choice of 𝑇 ′′ defines 𝑝(𝑣) for 𝑣 ∈ 𝑈 ⧵ {𝑠}. For each 𝑣 ∈ 𝑈 , we initiate the construction of 𝑆(𝑣) by including in the set the 
neighbors of 𝑣 in 𝑇 ′′ distinct from 𝑝(𝑣). We proceed with guessing of 𝑆(𝑣) by considering (𝑥, 𝑦)-trees 𝐹 for 𝑥, 𝑦 ∈ 𝑈 such that the 
(𝑥, 𝑦)-path with the internal vertices in 𝐹 is not included in 𝑇 ′′. Clearly, the vertices of every 𝐹 of such a type should receive the 
message either via 𝑥, or via 𝑦, or via both 𝑥 and 𝑦. Let 𝐹 be an (𝑥, 𝑦)-tree of this type. Denote by 𝑥′ and 𝑦′ the neighbors of 𝑥 and 𝑦, 
respectively. We have that either 𝑥′ ∈ 𝑆(𝑥) and 𝑦′ ∉ 𝑆(𝑦), or 𝑥 ∉ 𝑆(𝑥) and 𝑦 ∈ 𝑆(𝑌 ), or 𝑥′ ∈ 𝑆(𝑥), 𝑦′ ∈ 𝑆(𝑦) and 𝑥′ ≠ 𝑦′. Thus, we 
have three choices for 𝐹 . By Claim 4.3, the total number of choices is 2(𝑘). We go over all the choices and include the vertices to 
the sets 𝑆(𝑣) for 𝑣 ∈𝑈 with respect to them. By Claim 4.2, this concludes the construction of the sets 𝑆(𝑣). From now on, we assume 
that 𝑆(𝑣) for 𝑣 ∈𝑈 are fixed.

We construct the ordered sets 𝑅(𝑣) by considering all possible orderings of the elements of 𝑆(𝑣). The number of these orderings 
is Π𝑣∈𝑈 (|𝑆(𝑣)|!). Recall that the sets 𝑆(𝑣) are sets of neighbors of 𝑣 in a spanning tree of 𝐺′. This and Claims 4.2 and 4.3 imply that ∑
𝑣∈𝑈 |𝑆(𝑣)| ≤ 2(|𝑈 | − 1) + 2(4𝑘 − 1) ≤ 16𝑘. Therefore, the total number of orderings is Π𝑣∈𝑈 (|𝑆(𝑣)|!) = 𝑘(𝑘). This completes the 

construction of 𝑅(𝑣). Now we can assume that 𝑝(𝑣) for each 𝑣 ∈ 𝑈 ⧵ {𝑠} and 𝑅(𝑣) for each 𝑣 ∈𝑈 are given.

The final part of our algorithm is checking whether the guessed scheme for a broadcasting protocol can be extended to the 
protocol itself. This is done in two stages.

In the first stage, we compute for each 𝑣 ∈ 𝑈 , the minimum number 𝑟(𝑣) of a round in which 𝑣 can receive the message and 
the ordered set 𝐶(𝑣). Initially, we set 𝑟(𝑠) = 0 and set 𝑋 ∶= {𝑠}. Then we iteratively either compute 𝐶(𝑣) for 𝑣 ∈ 𝑋 or extend 𝑋
by including a new vertex 𝑣 ∈ 𝑈 ⧵𝑋 and computing 𝑟(𝑣). We proceed until we get 𝑋 = 𝑈 and compute 𝐶(𝑣) for every 𝑣 ∈ 𝑈 . We 
also stop and discard the current choice of the scheme if we conclude that the choice cannot be extended to a broadcasting protocol 
terminating in at most 𝑡 steps.

Suppose that there is 𝑣 ∈ 𝑋 such that 𝐶(𝑣) is not constructed yet. Notice that 𝑟(𝑣) is already computed. To construct 𝐶(𝑣), we 
observe that for each 𝑣-tree 𝐹 anchored in 𝑣, the vertices of 𝐹 should receive the message via 𝑣. Hence, to construct 𝐶(𝑣), we extend 
𝑅(𝑣) by inserting the neighbors of 𝑣 in the 𝑣-trees. If there is no 𝑣-tree anchored in 𝑣, then we simply set 𝐶(𝑣) =𝑅(𝑣). Assume that 
this is not the case and let 𝐹1, … , 𝐹𝑘 be the 𝑣-trees anchored in 𝑣. Denote by 𝑢1, … , 𝑢𝑘 the neighbors of 𝑣 in 𝑇1, … , 𝑇𝑘, respectively. 
Because the message is broadcasted from 𝑣 to each 𝑢𝑖, we can assume that to broadcast the message from 𝑢𝑖 to the other vertices 
of 𝑇𝑖, an optimal protocol requiring 𝑏(𝑇𝑖, 𝑢𝑖) rounds is used. We compute the values 𝑏(𝑇𝑖, 𝑢𝑖) for all 𝑖 ∈ {1, … , 𝑘} and assume that 
𝑏(𝑇1, 𝑢1) ≥⋯ ≥ 𝑏(𝑇𝑘, 𝑢𝑘).

If 𝑟(𝑣) + |𝑅(𝑣)| + 𝑘 > 𝑡, we discard the current choice of the scheme, because we cannot transmit the message to the neighbors 
of 𝑣 in 𝑡 rounds. Notice also that 𝑟(𝑣) + max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖 ∈ {1, … , 𝑘}} rounds are needed to transmit the message to the vertices 
of all 𝑣-trees. Hence, if 𝑟(𝑣) +max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖 ∈ {1, … , 𝑘}} > 𝑡, we discard the considered scheme. From now on, we assume that 
𝑟(𝑣) + |𝑅(𝑣)| + 𝑘 ≤ 𝑡 and 𝑟(𝑣) +max{𝑏(𝑇𝑖, 𝑢𝑖) + 𝑖 ∣ 𝑖{1 ∈, … , 𝑘}} ≤ 𝑡.

The main idea for constructing 𝐶(𝑣) is to ensure that the message is sent to the vertices of 𝑅(𝑣) as early as possible. To achieve 
this, we put 𝑢1, … , 𝑢𝑘 in 𝐶(𝑣) in such a way, that the message is sent to each 𝑢𝑖 as late as possible. Since |𝐶(𝑣)| = |𝑅(𝑣)| + 𝑘, we 
represent 𝐶(𝑣) as an |𝑅(𝑣)| + 𝑘-element array whose elements are indexed 1, 2, … , |𝑅(𝑣)| + 𝑘. Because 𝑏(𝑇1, 𝑢1) ≥ ⋯ ≥ 𝑏(𝑇𝑘, 𝑢𝑘), 
we can assume that the ordering of the vertices 𝑢1, … , 𝑢𝑘 in 𝐶(𝑣) is (𝑢1, … , 𝑢𝑘). Therefore, we insert 𝑢𝑖 in 𝐶(𝑣) consecutively for 
𝑖 = 𝑘, 𝑘 − 1, … , 1.

Suppose that 𝑖 ∈ {1, … , 𝑘} and 𝑢𝑖+1, … , 𝑢𝑘 are in 𝐶(𝑣). Denote by ℎ𝑖+1 the index of 𝑢𝑖+1 assuming that ℎ𝑘+1 = |𝑅(𝑣)| + 𝑘 + 1. We 
find maximum positive integer ℎ < ℎ𝑖+1 such that 𝑟(𝑣) + ℎ + 𝑏(𝑇𝑖, 𝑢𝑖) ≤ 𝑡 and set the index ℎ𝑖 = ℎ for 𝑢𝑖. In other words, we find the 
maximum index that is prior to the index of 𝑢𝑖+1 such that if we transmit the message from 𝑣 to 𝑢𝑖 in the ℎ-th round after 𝑣 got 
aware of the message, then the vertices of 𝑇𝑖 still may get the message in 𝑡 rounds. After placing 𝑢1, … , 𝑢𝑘 into the array, we place 
the vertices of 𝑅(𝑣) in the remaining |𝑅(𝑣)| places following the order in 𝑅(𝑣). This completes the construction of 𝐶(𝑣).

Suppose that 𝑈 ⧵𝑋 ≠ ∅ and for each 𝑣 ∈ 𝑋, 𝐶(𝑣) is given. We assume that for each 𝑣 ∈ 𝑋, the elements of 𝐶(𝑣) are indexed 
1, … , |𝐶(𝑣)| according to the order. By the constriction of the schemes, there is 𝑦 ∈ 𝑈 ⧵𝑋 such that 𝑦 receives the message from 
some vertex 𝑥 ∈𝑋 either directly or via some (𝑥, 𝑦)-tree 𝐹 anchored in 𝑥 and 𝑦. We find such a vertex 𝑦, compute 𝑟(𝑦), and include 
𝑦 in 𝑋.

If there is 𝑦 ∈ 𝑈 ⧵𝑋 such that 𝑝(𝑦) = 𝑥 ∈𝑋, then we set 𝑟(𝑦) = 𝑟(𝑥) + ℎ, where ℎ is the index of 𝑦 in 𝐶(𝑥) and set 𝑋 ∶=𝑋 ∪ {𝑦}. 
Since 𝑟(𝑥) is the minimum number of a round when 𝑥 gets the message, 𝑟(𝑦) is the minimum number of a round in which 𝑦 gets 
the message. Suppose that such a vertex 𝑦 does not exist. Then by the construction of the considered scheme, there are 𝑥 ∈𝑋 and 
𝑦 ∈ 𝑈 ⧵𝑋 such that the tree 𝑇 ′′ which was used to construct the scheme contains an (𝑥, 𝑦)-path whose internal vertices are in the 
(𝑥, 𝑦)-tree 𝐹 anchored in 𝑥 and 𝑦. This means that the neighbor 𝑥′ of 𝑥 in 𝐹 is included in 𝐶(𝑥). Let ℎ be the index of 𝑥′ in 𝐶(𝑥). We 
also have that 𝑦′ = 𝑝(𝑦) is the unique neighbor of 𝑦 in 𝐹 . In other words, we have to transmit the message from 𝑥 to 𝑦 according to 
the scheme. To compute 𝑟(𝑦), we have to transmit the message as fast as possible. For this, we use Lemma 2. Notice that the vertices 
of 𝐹 should receive the message in at most 𝑡′ = 𝑡 − 𝑟(𝑥) − ℎ + 1 rounds because 𝑥 receives the message in the round 𝑟(𝑥) and ℎ − 1
vertices of 𝐶(𝑥) get the message before 𝑥′. Let 𝐹 ′ be the tree obtained from 𝐹 by adding the vertices 𝑥, 𝑦 and the edges 𝑥𝑥′, 𝑦𝑦′. We 
compute 𝑏𝑡′ (𝐹 ′, 𝑥, 𝑦) using the algorithm from Lemma 2. If 𝑏𝑡′ (𝐹 ′, 𝑥, 𝑦) = +∞, we discard the considered scheme because 𝑦 cannot 
receive the message in 𝑡 rounds. Otherwise, we set 𝑟(𝑦) = 𝑟(𝑥) + (ℎ − 1) + 𝑏𝑡′ (𝐹 ′, 𝑥, 𝑦) and set 𝑋 ∶=𝑋 ∪ {𝑦}.

This completes the first stage where we compute 𝑟(𝑣) and 𝐶(𝑣) for 𝑣 ∈ 𝑈 . Observe that if we completed this stage without 
discarding the considered choice of the scheme, we already have a partially constructed broadcasting protocol that ensures that (i) 
the vertices of 𝑣-trees for 𝑣 ∈𝑈 get the message in at most 𝑡 rounds, (ii) the vertices of (𝑥, 𝑦)-trees that are assigned by the scheme to 
transmit the message from 𝑥 to 𝑦 receive the message in at most 𝑡 rounds, and (iii) for each 𝑣 ∈𝑈 , 𝑟(𝑣) is the minimum number of a 
7

round when 𝑣 can receive the message according to the scheme. By Claim 4.2, it remains to check whether the vertices of (𝑥, 𝑦)-trees 
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𝐹 that are not assigned by the scheme to transmit the message from 𝑥 to 𝑦 or vice versa can receive the message in at most 𝑡 rounds. 
We do it using Lemmas 1 and 3.

Suppose that 𝐹 is a (𝑥, 𝑦)-tree anchored in 𝑥, 𝑦 ∈ 𝑈 such that 𝑝(𝑥), 𝑝(𝑦) ∉ 𝑉 (𝐹 ), that is, 𝐹 is not assigned by the scheme to 
transmit the message from 𝑥 to 𝑦 or vice versa. Let 𝑥′ and 𝑦′ be the neighbors in 𝐹 of 𝑥 and 𝑦, respectively. By the construction of 
the schemes, we have three cases: (i) 𝑥′ ∈ 𝐶(𝑥) and 𝑦′ ∉ 𝐶(𝑦), (ii) 𝑥′ ∉ 𝐶(𝑥), 𝑦′ ∈ 𝐶(𝑦), and (iii) 𝑥′ ∈ 𝐶(𝑥), 𝑦′ ∈ 𝐶(𝑦), and 𝑥′ ≠ 𝑦′.

In case (i), the vertices of 𝐹 should receive the message via 𝑥. Clearly, we can use an optimal protocol for 𝐹 with the source 𝑥′
to transmit the message from 𝑥′. Let ℎ be the index of 𝑥′ in 𝐶(𝑥). We use Lemma 1, to verify whether 𝑡 − 𝑟(𝑥) − ℎ ≥ 𝑏(𝐹 , 𝑥). If the 
inequality holds, we conclude that the message can be transmitted to the vertices of 𝐹 in at most 𝑡 rounds. Otherwise, we conclude 
that this is impossible and discard the scheme. Case (ii) is symmetric and the arguments are the same.

Suppose that 𝑥′ ∈ 𝐶(𝑥), 𝑦′ ∈ 𝐶(𝑦), and 𝑥′ ≠ 𝑦′. Then the vertices of 𝐹 receive the message from both 𝑥 and 𝑦. Denote by 𝑖 and 𝑗
the indexes of 𝑥′ and 𝑦′ in 𝐶(𝑥) and 𝐶(𝑦), respectively. By symmetry, we assume without loss of generality that 𝑟(𝑥) + 𝑖 ≤ 𝑟(𝑦) + 𝑗
and let ℎ = (𝑟(𝑦) + 𝑗) − (𝑟(𝑥) + 𝑖). Notice that the vertices of 𝐹 start to get the message after the round 𝑟(𝑣) + 𝑖 − 1. Denote by 
𝐹 ′ the tree obtained from 𝐹 by adding the vertices 𝑥, 𝑦 and the edges 𝑥𝑥′, 𝑦𝑦′. We use Lemma 3 and compute 𝑑ℎ(𝐹 ′, 𝑥, 𝑦). If 
𝑑ℎ(𝐹 ′, 𝑥, 𝑦) ≤ 𝑡 − 𝑟(𝑣) − 𝑖 + 1, then we obtain that the message can be transmitted to the vertices of 𝐹 in at most 𝑡 rounds. Otherwise, 
we cannot do it and discard the scheme.

This completes the description of the second stage of the verification of whether the considered scheme can be extended to a 
broadcasting protocol terminating in at most 𝑡 rounds.

If we find a scheme that allows us to conclude that the message can be broadcasted in at most 𝑡 rounds, we conclude that (𝐺, 𝑠, 𝑡)
is a yes-instance. Otherwise, if every scheme gets discarded, we return that (𝐺, 𝑠, 𝑡) is a no-instance of TELEPHONE BROADCAST. This 
concludes the description of the algorithm.

To argue that the algorithm is correct, note that if there is a scheme for which we report that (𝐺, 𝑠, 𝑡) is a yes-instance, then 
the description of the verification procedure of the extendability of the scheme implies the existence of a broadcasting protocol 
terminating in at most 𝑡 rounds. For the opposite direction, assume that (𝐺, 𝑠, 𝑡) is a yes-instance of TELEPHONE BROADCAST. Then 
there is a broadcasting protocol 𝑃 terminating in at most 𝑡 rounds. For 𝑣 ∈ 𝑉 (𝐺), denote by 𝑟𝑃 (𝑣) the number of the round on which 
𝑣 gets the message. Among all 𝑃 = (𝑇 , {𝐶 ′(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) terminating in 𝑡 rounds, we select 𝑃 to be protocol such that 

∑
𝑣∈𝑈 𝑟𝑃 (𝑣)

is minimum. We construct 𝐺′ as described in the algorithm and consider 𝑇 ′ = 𝑇 [𝑉 (𝐺′)]. Then we construct 𝑇 ′′ from 𝑇 ′ by the 
iterative deletion of leaves that are not included in 𝑈 . Then we define the scheme by setting 𝑝(𝑣) to be parent of each 𝑣 ∈ 𝑈 in 
𝑇 ′′ with respect to the root 𝑠 (𝑝(𝑠) = 𝑠) and defining 𝑅(𝑣) = 𝐶 ′(𝑣) ∩𝑁𝑇 ′′ (𝑣) for 𝑣 ∈ 𝑈 . Observe that the obtained scheme is one of 
the schemes constructed by the algorithm. Then the description of the algorithm implies that the verification step of the algorithm 
returns the yes-answer for the scheme. In particular, we get that for every 𝑣 ∈𝑈 , 𝑟(𝑣) = 𝑟𝑃 (𝑣) and the indices of the elements of 𝑅(𝑣)
in the set 𝐶(𝑣) obtained by the algorithm are the same as in 𝐶 ′(𝑣).

To evaluate the running time, observe that the feedback edge set 𝑆 and the set of vertices 𝑈 are constructed in polynomial time. 
Given 𝑈 , we can list all 𝑥-trees and (𝑥, 𝑦)-trees for 𝑥, 𝑦 ∈ 𝑈 in polynomial time. Then the schemes can be constructed in 𝑘(𝑘) time. 
For each scheme, the verification step requires polynomial time as we use the polynomial algorithms from Lemmas 1, 2, and 3. We 
conclude that the total running time is 2(𝑘 log𝑘) ⋅ 𝑛(1). This completes the proof.

5. TELEPHONE BROADCAST parameterized by the vertex cover number

In this section, we prove Theorem 3. Recall that we aim to show that TELEPHONE BROADCAST is FPT on graphs with the vertex 
cover number at most 𝑘 when the problem is parameterized by 𝑘. We start with some auxiliary claims about the broadcasting on a 
graph with a given vertex cover 𝑆 .

Lemma 4. Let 𝐺 be a graph with at least one edge and 𝑠 ∈ 𝑉 (𝐺). Let also 𝑆 be a vertex cover of 𝐺. Then there is an optimal broadcasting 
protocol for 𝐺 with the source 𝑠 such that the vertices of 𝑆 receive the message in at most 2|𝑆| − 1 rounds.

Proof. Let (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}) be an optimal broadcasting protocol for 𝐺 with the source 𝑠. Observe that we can assume without 
loss of generality that the protocol is greedy, meaning that for each round 𝑖, if it holds that 𝑣 is a vertex that is aware of the message 
after 𝑖 rounds, it would always send the message in the next round to some neighbor unless all the neighbors either got the message 
in the first 𝑖 rounds or will receive the message in the (𝑖 + 1)-th round from vertices that are distinct from 𝑣. In other words, a vertex 
does not stay idle if it can communicate the message to a new recipient. Furthermore, we can assume that for each 𝑣 ∈ 𝑉 (𝑇 ), the 
children of 𝑣 of degree one, i.e., leaves of 𝑇 , are at the end of the ordered set 𝐶(𝑣). Otherwise, we can rearrange each 𝐶(𝑣) to achieve 
this property and the obtained protocol would be optimal. Also, we can include the leaf children of each 𝑣 in 𝐶(𝑣) in arbitrary order 
because any rearrangement of these vertices does not change the number of rounds. Hence, we assume that (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}) is 
a greedy optimal broadcasting protocol such that for each 𝑣 ∈ 𝑉 (𝑇 ), (i) the children of 𝑣 of degree one are at the end of the ordered 
set 𝐶(𝑣) and (ii) the children of degree one that are in 𝑆 are before the children of degree one in 𝐼 = 𝑉 (𝐺) ⧵𝑆 . We claim that every 
vertex of 𝑆 gets the message in the first 2|𝑆| − 1 round.

For the sake of contradiction, assume that this is not the case. Then there is a nonnegative integer ℎ ≤ 2|𝑆| − 2 such that neither 
in round ℎ nor in round ℎ + 1, there is a vertex of 𝑆 that receives the message. Let 𝑆′ ⊆ 𝑆 be the set of vertices of 𝑆 that got the 
message after ℎ − 1 rounds and let 𝑆′′ = 𝑆 ⧵ 𝑆′. Let also 𝐼 ′ ⊆ 𝐼 be the set of vertices of 𝐼 that got the message after ℎ − 1 rounds 
and denote by 𝐼 ′′ ⊆ 𝐼 the set of vertices of 𝐼 that get the message in the ℎ-th round. Because no vertex of 𝑆 gets the message in the 
8

ℎ-th round, we have that 𝐼 ′′ ≠ ∅. Observe that no vertex of 𝐼 ′ ∪ 𝐼 ′′ is adjacent to a vertex of 𝑆′′ as, otherwise, at least one vertex 
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of 𝑆′ would get the message in the (ℎ + 1)-th round. In particular, this means that the vertices of 𝐼 ′′ are leaves of 𝑇 . Because 𝐺
is connected and 𝑇 is a spanning tree, we have that there is a vertex 𝑣 ∈ 𝑆′ which is adjacent to a vertex 𝑢 ∈ 𝑆′′ in 𝑇 . Since the 
protocol is greedy, 𝑣 sent the message to a vertex of 𝐼 ′′ in the ℎ-th round. However, this contradicts that the protocol satisfies (i) and 
(ii) for 𝑣. If 𝑢 is not a leaf of 𝑇 , then 𝑣 should send the message to 𝑢 instead of a vertex of 𝐼 ′′ by (i), and if 𝑢 is a leaf, then 𝑢 is a leaf 
in 𝑆 and 𝑣 should send the message to 𝑢 in the ℎ-th round by (ii). The obtained contradiction proves the lemma. □

We also use the bound for the number of vertices of 𝐼 = 𝑉 (𝐺) ⧵ 𝑆 getting the message in the first 𝑝 rounds.

Lemma 5. Let 𝐺 be a graph with at least one edge and 𝑠 ∈ 𝑉 (𝐺). Let also 𝑆 be a vertex cover of 𝐺 and 𝑝 ≥ 1 be an integer. Then for any 
broadcasting protocol for 𝐺 with the source 𝑠, at most 𝑝|𝑆| vertices of 𝐼 = 𝑉 (𝐺) ⧵ 𝑆 receive the message in the first 𝑝 rounds.

Proof. Note that each vertex 𝑣 ≠ 𝑠 in 𝐼 can receive the message only from its neighbor in 𝑆 . If 𝑠 ∈ 𝑆 , then each vertex of 𝑆 can send 
the message to at most 𝑝 neighbors in 𝑝 round. Therefore, at most 𝑝|𝑆| can get the message in 𝑝 rounds. If 𝑠 ∈ 𝐼 , then each vertex of 
𝑆 can send the message to at most 𝑝 − 1 neighbors. Hence, at most (𝑝 − 1)|𝑆| + 1 ≤ 𝑝|𝑆| vertices of 𝐼 can receive the message in 𝑝
rounds. □

Now we are ready to prove Theorem 3.

5.1. Proof of Theorem 3

Let (𝐺, 𝑠, 𝑡) be an instance of TELEPHONE BROADCAST and let 𝑘 ≥ 0 be an integer. TELEPHONE BROADCAST is trivial for 𝑘 = 0 as 𝐺
has the empty vertex cover if and only if 𝐺 has a single vertex (recall that 𝐺 is connected by our assumption). Also, the problem is 
trivial if 𝐺 has no edges or 𝑡 ≥ 𝑛. Hence, we assume that 𝐺 has at least two vertices, 𝑡 < 𝑛, and 𝑘 ≥ 1.

We use the algorithm of Chen, Kanj, and Xia [5] to find in 1.2738𝑘 ⋅ 𝑛(1) time a vertex cover 𝑆 of 𝐺 of size at most 𝑘. If the 
algorithm fails to find such a set, then we stop and return the answer that 𝐺 has no vertex cover of size at most 𝑘. From now on, we 
assume that 𝑆 is given and 𝐼 = 𝑉 (𝐺) ⧵ 𝑆 . If |𝐼| ≤ 2𝑘2, then |𝑉 (𝐺)| ≤ 2𝑘2 + 𝑘 and we solve the problem in 2(𝑘2) ⋅ 𝑘(1) time using 
Theorem 1. So we can assume that |𝐼| > 2𝑘2.

We compute the partition of {𝐿1, … , 𝐿𝑝} of 𝐼 into classes of false twins, that is, two vertices 𝑢 and 𝑣 are in the same set 𝐿𝑖 if 
and only if they have exactly the same neighbors in 𝑆 . Since |𝑆| ≤ 𝑘, we have that 𝑝 ≤ 2𝑘. Observe also that the partition can be 
constructed in linear time (see [26]). As it is common for the parameterization by the vertex cover number, we exploit the property 
that two vertices 𝑢, 𝑣 ∈ 𝐿𝑖 for some 𝑖 ∈ {1, … , 𝑝} that are distinct from 𝑠 are indistinguishable. In particular, given a broadcasting 
protocol (𝑇 , {𝐶(𝑣) ∣ 𝑣 ∈ 𝑉 (𝑇 )}), we can exchange 𝑢 and 𝑣, that is, replace the former 𝑢 by 𝑣 and former 𝑣 by 𝑢 in 𝑇 and the ordered 
sets, and this would keep the number of rounds the same.

By Lemma 5, at most 2𝑘2 vertices of 𝐼 can receive the message in the first 2𝑘 rounds and we have that |𝐼| > 2𝑘2. Hence, if 𝑡 ≤ 2𝑘, 
we conclude that (𝐺, 𝑠, 𝑡) is a no-instance. From now on we can assume that 𝑡 > 2𝑘.

By Lemma 4, there is an optimal broadcasting protocol such that all the vertices of 𝑆 receive the message in the first 2𝑘 − 1
rounds. Combining this with Lemma 5, we obtain that there is an optimal broadcasting protocol such that the set of vertices 𝑋 that 
receive the message in the first 2𝑘 rounds satisfies the properties (i) 𝑆 ⊆𝑋 and (ii) for 𝑌 =𝑋 ∩ 𝐼 , |𝑌 | ≤ 2𝑘2.

We guess 𝑌 using the fact that the vertices of the same set 𝐿𝑖 are indistinguishable. We consider all possibilities to choose 
𝑝 nonnegative integers 𝓁1, … , 𝓁𝑝 such that (a) 𝓁𝑖 ≤ |𝐿𝑖| for each 𝑖 ∈ {1, … , 𝑝}, (b) if 𝑠 ∈ 𝐿𝑖 for some 𝑖 ∈ {1, … , 𝑝}, then 𝓁𝑖 ≥ 1, 
and (c) 𝓁1 +⋯ + 𝓁𝑝 ≤ 2𝑘2. Notice that because 𝑝 ≤ 2𝑘, there are 2(𝑘3) possibilities to choose 𝓁1, … , 𝓁𝑝. Given 𝓁1, … , 𝓁𝑝, for each 
𝑖 ∈ {1, … , 𝑝}, we can select 𝓁𝑖 vertices from 𝐿𝑖 in such a way that if 𝑠 ∈ 𝐿𝑖, then 𝑠 is selected, and the other vertices are taken 
arbitrarily, and then denote the set of selected vertices by 𝑌𝑖. We have that if there is an optimal broadcasting protocol such that the 
set of vertices 𝑋 that receive the message in the first 2𝑘 rounds satisfying (i) and (ii), then there is an optimal broadcasting protocol 
such that the set of vertices 𝑋 that receive the message in the first 2𝑘 rounds is 𝑆 ∪ (𝑌1 ∪⋯ ∪ 𝑌𝑝). We verify whether the choice of 𝑋
is feasible, that is, the vertices of 𝑋 can get messages in 2𝑘 rounds, using Theorem 1. For this, we check whether 𝐺[𝑋] is connected 
and if this holds, then run the algorithm from the theorem for 𝐺[𝑋], 𝑠, and 𝑡 = 2𝑘. We discard the choice of 𝑋 if either 𝐺[𝑋] is 
disconnected or the algorithm reports that the considered instance is a no-instance. Observe that the running time of the algorithm 
is 2(𝑘2) in this case.

Since the vertices of 𝑆 and 𝑌 are getting the message in the first 2𝑘 rounds, then the remaining vertices of 𝑍 = 𝐼 ⧵ 𝑌 vertices 
should receive the message from their neighbors in 𝑆 in the following 𝑡′ = 𝑡 − 2𝑘 rounds. Observe that because each vertex of 𝑆 is 
aware of the message after 2𝑘 rounds in a hypothetical solution, any vertex of 𝑆 can send the message to any neighbor in 𝐼 and the 
vertices of 𝑆 do not send the message to 𝑆 . This means that each vertex 𝑣 ∈𝑍 should be assigned to a vertex of 𝑆 which is sending 
the message to 𝑣 in such a way that for each 𝑢 ∈ 𝑆 , at most 𝑡′ vertices are assigned to 𝑢. Finding such an assignment boils down to 
solving a special case of the 𝑏-MATCHING problem (see, e.g., [25,30]). However, in our case, it is easier to reduce the problem to 
finding a bipartite matching directly. We construct a set of vertices 𝑆′ by replacing each vertex 𝑢 ∈ 𝑆 by 𝑡′ copies. Then we construct 
the auxiliary bipartite graph 𝐻 with the set of vertices 𝑆′ ∪𝑍 such that each vertex 𝑣 ∈𝑍 is adjacent to the copies of 𝑢 ∈ 𝑆 if and 
only if 𝑣 is adjacent to 𝑢 in 𝐺. It is straightforward to see that 𝐻 has a matching saturating every vertex of 𝑍 if and only if there 
is a required assignment of the vertices of 𝑍 to the vertices of 𝑆 . Because 𝐻 has at most 𝑡′𝑛 ≤ 𝑛2 vertices and at most 𝑚 edges, 
9

we can find a matching saturating every vertex of 𝐻 (if exists) in (𝑛𝑚) time by the classical Hopcroft-Karp algorithm [20]. If the 
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algorithm finds a matching, we conclude that (𝐺, 𝑠, 𝑡) is a yes-instance and stop. If the auxiliary matching problem has no solution 
for all choices of 𝓁1, … , 𝓁 and corresponding feasible sets 𝑋, we report that (𝐺, 𝑠, 𝑡) is a no-instance.

To show correctness, we follow the description of the algorithm. We can assume that (𝐺, 𝑠, 𝑡) is an instance of TELEPHONE 
BROADCAST with 𝑘 ≥ 1, 2𝑘2 < 𝑡 < |𝑉 (𝐺)|, |𝑉 (𝐺)| ≥ 2, and |𝐼| > 2𝑘2 for 𝐼 = 𝑉 (𝐺) ⧵𝑆 , because otherwise correctness follows directly 
from the description.

Suppose that (𝐺, 𝑠, 𝑡) is a yes-instance. By Lemmas 4 and 5, 𝐺 and 𝑠 have an optimal broadcasting protocol such that the set of 
vertices 𝑋 that receive the message in the first 2𝑘 rounds satisfies the properties (i) 𝑆 ⊆ 𝑋 and (ii) for 𝑌 = 𝑆 ∩ 𝐼 , |𝑌 | ≤ 2𝑘2. For 
each 𝑖 ∈ {1, … , 𝑝}, let 𝓁𝑖 = 𝐿𝑖 ∩ 𝑌 . We have that 𝓁1, … , 𝓁𝑝 are nonnegative integers such that (a) 𝓁𝑖 ≤ |𝐿𝑖| for each 𝑖 ∈ {1, … , 𝑝}, 
(b) if 𝑠 ∈ 𝐿𝑖 for some 𝑖 ∈ {1, … , 𝑝}, then 𝓁𝑖 ≥ 1, and (c) 𝓁1 +⋯ + 𝓁𝑝 ≤ 2𝑘2. Therefore, we consider the choice of 𝓁1, … , 𝓁𝑝 in one 
of the branches of our algorithm. Because the vertices of each 𝐿𝑖 are indistinguishable, we obtain that for our choice of 𝑌1, … , 𝑌𝑝, 
there is an optimal broadcasting protocol 𝑃 such that the set of vertices 𝑋 that receive the message in the first 2𝑘 rounds is exactly 
𝑋′ = 𝑆 ∪ (𝑌1 ∪⋯ ∪ 𝑌𝑝). In particular, this means that 𝑋′ is feasible. Hence, the choice of 𝓁1, … , 𝓁𝑝 and 𝑋′ is not discarded by the 
algorithm. Then the auxiliary graph 𝐻 has a matching saturating every vertex of 𝑍 = 𝐼 ⧵ 𝑌 and our algorithm returns a correct 
yes-answer.

For the opposite direction, assume that there is a choice of nonnegative integers 𝓁1, … , 𝓁𝑝 satisfying (a)–(c) such that for the 
corresponding choice of 𝑌1, … , 𝑌𝑝, 𝑋 = 𝑆 ∪ (𝑌1, … , 𝑌𝑝) is feasible and 𝐻 has a matching saturating every vertex of 𝑍 . We have that 
there is a broadcasting protocol 𝑃 that ensures that the vertices of 𝑋 receive the message in the first 2𝑘 rounds. We extend the 
protocol by defining that a vertex 𝑣 ∈𝑍 receives the message from the vertex 𝑢 ∈ 𝑆 if 𝑣 is matched to the copy of 𝑢 in 𝐻 . The order 
in which a vertex 𝑢 ∈ 𝑆 sends the message to the vertices of 𝑍 is arbitrary. Because at most 𝑡′ = 𝑡 − 2𝑘 vertices of 𝑍 are assigned to 
every 𝑢 ∈ 𝑆 , we obtain that all the vertices get the message in 𝑡 rounds. Thus, (𝐺, 𝑠, 𝑡) is a yes-instance. This completes the proof of 
correctness.

To evaluate the running time, notice that we consider 2(𝑘3) choices of 𝓁1, … , 𝓁𝑝. For each choice, we either discard it in 2(𝑘2)

time or solve the auxiliary matching problem in polynomial time. This implies that the total running time is 2(𝑘3) ⋅ 𝑛(1). This 
completes the proof of Theorem 3.

6. Kernelization for the parameterization by 𝒌 = 𝒏 − 𝒕

In this section, we prove Theorem 4. Recall that we parameterize TELEPHONE BROADCAST by 𝑘 = 𝑛 − 𝑡. Hence, it is convenient for 
us to denote the considered instances as triples (𝐺, 𝑠, 𝑘) throughout the section instead of (𝐺, 𝑠, 𝑛 − 𝑘).

Let (𝐺, 𝑠, 𝑘) be an instance of TELEPHONE BROADCAST. We exhaustively apply the following reduction rules in the order in which 
they are stated. The first rule is straightforward because 𝑏(𝐺, 𝑠) ≤ 𝑛 − 1 and (𝐺, 𝑠, 𝑘) is a yes-instance if 𝑘 ≤ 1. Also if 𝑘 > 𝑛, then 
(𝐺, 𝑠, 𝑘) is a no-instance.

Reduction Rule 6.1. If 𝑘 ≤ 1, then return a trivial yes-instance, e.g., the instance with 𝐺 = ({𝑠}, ∅) and 𝑘 = 0, and stop. If 𝑘 > 𝑛, then 
return a trivial no-instance, e.g., the instance with 𝐺 = ({𝑠, 𝑣}, {𝑠𝑣}) and 𝑘 = 0, and stop.

Observe that after applying Reduction Rule 6.1, 𝑛 ≥ 2, because if 𝑛 = 1, then either 𝑘 ≤ 1 or 𝑘 > 𝑛 and we would stop. Notice that 
if 𝑑𝐺(𝑠) = 1, then the source 𝑠 sends the message to its unique neighbor in the first round. This allows us to delete 𝑠 and define a new 
source using the following rule whose safeness is straightforward.

Reduction Rule 6.2. If 𝑑𝐺(𝑠) = 1, then let 𝑣 be the neighbor of 𝑠, set 𝐺 ∶=𝐺 − 𝑠 and define 𝑠 ∶= 𝑣.

Now we can assume that 𝑑𝐺(𝑠) ≥ 2. By the next rule, we delete certain pendent vertices.

Reduction Rule 6.3. If there is a vertex 𝑣 ∈ 𝑉 (𝐺) such that for the set of vertices of degree one 𝑊 ⊆𝑁𝐺(𝑣), it holds that |𝑊 | ≥
|𝑉 (𝐺) ⧵𝑊 |, then select an arbitrary 𝑤 ∈𝑊 and set 𝐺 ∶=𝐺 −𝑤.

Claim 6.1. Reduction Rule 6.3 is safe.

Proof of Claim 6.1. Let 𝑣 ∈ 𝑉 (𝐺) and assume the set of vertices 𝑊 of degree one in the neighborhood of 𝑣 satisfies the condition 
|𝑊 | ≥ |𝑉 (𝐺) ⧵𝑊 |. Let also 𝑤 ∈𝑊 and 𝐺′ =𝐺 −𝑤. Notice that because 𝑑𝐺(𝑠) ≥ 2, 𝑤 ≠ 𝑠. Since 𝑑𝐺(𝑤) = 1, 𝑤 receives the message 
from 𝑣 and 𝑤 does not send the message anywhere. This implies that 𝑏(𝐺, 𝑠) −1 ≤ 𝑏(𝐺′, 𝑠) ≤ 𝑏(𝐺, 𝑠). To show the claim, it is sufficient 
to prove that 𝑏(𝐺′, 𝑠) = 𝑏(𝐺, 𝑠) − 1.

Consider an optimal broadcasting protocol (𝑇 , {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) for 𝐺. Because the vertices of 𝑊 are adjacent to 𝑣 and have 
degree one, the vertices of 𝑊 are children of 𝑣 in 𝑇 . Since each vertex 𝑥 ∈ 𝑊 has no children in 𝑇 , we can assume without 
loss of generality that the vertices of 𝑊 are the last vertices in 𝐶(𝑣) and, furthermore, 𝑤 is the last vertex in this ordered set. 
Then the vertices of 𝑉 (𝐺) ⧵𝑊 get the message in at most |𝑉 (𝐺)| − |𝑊 | − 1 rounds. Because |𝑉 (𝐺) ⧵𝑊 | ≤ |𝑊 |, we obtain that 
𝑤 gets the message in the last round. Moreover, 𝑤 is a unique vertex that gets the message in the last round. This implies that 
(𝑇 ′, {𝐶 ′(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 ′)}), where 𝑇 ′ = 𝑇 −𝑤, 𝐶 ′(𝑥) = 𝐶(𝑥) for 𝑥 ∈ 𝑉 (𝑇 ′) ⧵ {𝑣} and 𝐶 ′(𝑣) = 𝐶(𝑣) ⧵ {𝑤}, is a broadcasting protocol for 
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𝐺′ that ensures that every vertex gets the message in 𝑏(𝐺, 𝑠) − 1 rounds. Thus 𝑏(𝐺′, 𝑠) = 𝑏(𝐺, 𝑠) − 1. □
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To state the following rule, we introduce an auxiliary notation. For a vertex 𝑣 of a graph 𝐻 , we define 𝜌𝐻 (𝑣) =max{dist𝐻 (𝑣, 𝑢) ∣
𝑢 ∈ 𝑉 (𝐻)}.

Reduction Rule 6.4. If 𝐺 has a bridge 𝑒 = 𝑢𝑣 such that 𝐺 − 𝑒 has two connected components 𝐺1 and 𝐺2, where 𝑠, 𝑢 ∈ 𝑉 (𝐺1), 
𝑣 ∈ 𝑉 (𝐺2), 𝑑𝐺(𝑢) = 2, and |𝑉 (𝐺1)| < dist𝐺1

(𝑠, 𝑢) + 𝜌𝐺2
(𝑣), then set 𝐺 ∶=𝐺∕𝑒.

Claim 6.2. Reduction Rule 6.4 is safe.

Proof of Claim 6.2. Let 𝑒 = 𝑢𝑣 be a bridge of 𝐺 such that 𝐺 − 𝑒 has two connected components 𝐺1 and 𝐺2, where 𝑠, 𝑢 ∈ 𝑉 (𝐺1), 
𝑣 ∈ 𝑉 (𝐺2), and |𝑉 (𝐺1)| < dist𝐺1

(𝑠, 𝑢) + 𝜌𝐺2
(𝑣). Let also 𝐺′ =𝐺∕𝑒. Because to reach the vertices of 𝐺2, 𝑢 should send the message to 

𝑣, we have that 𝑏(𝐺, 𝑠) − 1 ≤ 𝑏(𝐺′, 𝑠) ≤ 𝑏(𝐺, 𝑠). To prove the claim, we show that 𝑏(𝐺′, 𝑠) = 𝑏(𝐺, 𝑠) − 1.

Let (𝑇 , {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) be an optimum broadcasting protocol for 𝐺. Because 𝑒 is a bridge, 𝑣 is a child of 𝑢 in 𝑇 . Also for every 
𝑥 ∈ 𝑉 (𝐺2), 𝐶(𝑥) contains only vertices of 𝐺2. Because 𝑢 is a unique vertex in 𝑉 (𝐺1) which sends the message outside 𝑉 (𝐺1) and 
does it only once, we have that every vertex of 𝑉 (𝐺1) receives the message in at most |𝑉 (𝐺1)| rounds. On the other side, we can 
observe that 𝑉 (𝐺2) has a vertex that gets the message only in at least dist𝐺1

(𝑠, 𝑢) + 𝜌𝐺2
(𝑣) rounds. Therefore, the vertices that receive 

the message in the last round are in 𝐺2. We define the protocol (𝑇 ′, {𝐶 ′(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 ′)}) for 𝐺′ as follows. We set 𝑇 ′ = 𝑇 ∕𝑒, and for 
every 𝑥 ∈ 𝑉 (𝑇 ) ⧵ {𝑢, 𝑣}, we define 𝐶 ′(𝑥) = 𝐶(𝑥). Let 𝑤 be the vertex obtained from 𝑢 and 𝑣 by the contraction of 𝑒. To construct 
𝐶 ′(𝑤), note that 𝐶(𝑢) = {𝑣}, because 𝑑𝐺(𝑢) = 2. We define 𝐶 ′(𝑤) = 𝐶(𝑣). Observe that by the protocol for 𝐺′, each vertex 𝑥 ∈ 𝑉 (𝐺2)
gets the message in one round earlier than in the protocol for 𝐺. We conclude that each vertex of 𝐺 receives the message in at most 
𝑏(𝐺, 𝑠) − 1 rounds. This means that 𝑏(𝐺′, 𝑠) = 𝑏(𝐺, 𝑠) − 1. □

From now on, we can assume that Reduction Rules 6.1–6.4 are not applicable. We run the standard breadth-first search (BFS) 
algorithm on 𝐺 from 𝑠 (see, e.g., [7] for the description). The algorithm produces a spanning tree 𝐵 of 𝐺 of shortest paths and the 
partition of 𝑉 (𝐺) into BFS-levels 𝐿0, … , 𝐿𝑟, where 𝐿𝑖 is the set of vertices at distance 𝑖 from 𝑠 for every 𝑖 ∈ {1, … , 𝑟}.

We apply the following rule whose safeness immediately follows from Observation 1 and Lemma 1.

Reduction Rule 6.5. Compute 𝑏(𝐵, 𝑠) and if 𝑏(𝐵, 𝑠) ≤ 𝑛 − 𝑘, then return a trivial yes-instance and stop.

Then we apply the final rule.

Reduction Rule 6.6. If there is 𝑣 ∈ 𝐿𝑖 for some 𝑖 ∈ {0, … , 𝑟 − 1} such that for 𝑋 =𝑁𝐺(𝑣) ∩ 𝐿𝑖+1 and for the (𝑠, 𝑣)-path 𝑃 in 𝐵, it 
holds that (i) |𝑋| ≥ 2𝑘 +1 and (ii) the total number of vertices in nontrivial, i.e., having at least two vertices, connected components 
of 𝐺 − 𝑉 (𝑃 ) containing vertices of 𝑋 is at least 4𝑘 − 2, then return a trivial yes-instance and stop.

Claim 6.3. Reduction Rule 6.6 is safe.

Proof of Claim 6.3. Let 𝑣 ∈ 𝐿𝑖 for some 𝑖 ∈ {0, … , 𝑟 − 1} and let 𝑃 be the (𝑠, 𝑣)-path in 𝐵. Denote by 𝐺1, … , 𝐺𝓁 the nontrivial 
connected components of 𝐺 − 𝑉 (𝑃 ) such that each of them contains at least one vertex of 𝑋 = 𝑁𝐺(𝑣) ∩ 𝐿𝑖+1. We assume that 
|𝑉 (𝐺1)| ≥ ⋯ ≥ |𝑉 (𝐺𝓁)| ≥ 2. Suppose that |𝑉 (𝐺1)| +⋯ + |𝑉 (𝐺𝓁)| ≥ 4𝑘 − 2. To show that the rule is safe, we have to prove that 
𝑏(𝐺, 𝑠) ≤ 𝑛 − 𝑘. By Observation 2, it suffices to show that there is a tree subgraph 𝑇 of 𝐺 containing 𝑠 with 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑇 )| − 𝑘. We 
consider two cases.

Assume first that 𝑉 (𝐺1) ≥ 𝑘 +1. Let 𝑢 ∈ 𝑉 (𝐺1) ∩𝑋. We find a tree subgraph 𝐹 in 𝐺1 with exactly 𝑘 +1 vertices such that 𝑢 ∈ 𝑉 (𝐹 ). 
Then to construct the tree 𝑇 , we take 𝑃 and 𝐹 and make 𝑣 adjacent to 𝑢. Because |𝑋| ≥ 2𝑘 +1, there are 𝑘 distinct vertices 𝑢1, … , 𝑢𝑘 ∈
𝑋 ⧵𝑉 (𝐹 ). We include them in 𝑇 by making them adjacent to 𝑣. We define the broadcasting protocol (𝑇 , {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) as follows. 
For each 𝑥 ∈ 𝑉 (𝑃 ) ⧵ {𝑣}, 𝑥 has a unique child composing 𝐶(𝑥). We define 𝐶(𝑣) = (𝑢, 𝑢1, … , 𝑢𝑘) and for each 𝑥 ∈ 𝑉 (𝐹 ), 𝐶(𝑥) is an 
arbitrary ordering of the children of 𝑥 in 𝐹 . Because 𝑉 (𝐹 ) = 𝑘 + 1, we have that 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )| + |𝑉 (𝐹 )| − 1 ≤ |𝑉 (𝑇 )| − 𝑘.

Suppose now that 𝑘 ≥ |𝑉 (𝐺1)| ≥⋯ ≥ |𝑉 (𝐺𝓁)|. Let 𝑇𝑖 be a spanning tree of 𝐺𝑖 and let 𝑢𝑖 ∈ 𝑉 (𝑇𝑖) ∩𝑋 for each 𝑖 ∈ {1, … , 𝓁}. We 
construct 𝑇 from 𝑃 and 𝑇1, … , 𝑇𝓁 by making 𝑣 adjacent to 𝑢1, … , 𝑢𝓁 . We define the broadcasting protocol (𝑇 , {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) as 
follows. For each 𝑥 ∈ 𝑉 (𝑃 ) ⧵ {𝑣}, 𝑥 has a unique child composing 𝐶(𝑥). We define 𝐶(𝑣) = (𝑢1, … , 𝑢𝓁) and for each 𝑖 ∈ {1, … , 𝓁} and 
𝑥 ∈ 𝑉 (𝑇𝑖), 𝐶(𝑥) is an arbitrary ordering of the children of 𝑥 in 𝑇𝑖. Observe that

𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )|− 1 +max{|𝑉 (𝑇𝑖)|+ 𝑖− 1 ∣ 𝑖 ∈ {1,… ,𝓁}}.

Since |𝑉 (𝑇𝑖)| ≤ 𝑘 for 𝑖 ∈ {1, … , 𝑘}, 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )| + 𝑘 + 𝓁 − 2. If 𝓁 ≥ 2𝑘, then |𝑉 (𝐺1)| +⋯ + |𝑉 (𝐺𝓁)| ≥ 2𝓁 and |𝑉 (𝑇 )| = |𝑉 (𝑃 )| +
|𝑉 (𝐺1)| +⋯ + |𝑉 (𝐺𝓁)| ≥ |𝑉 (𝑃 )| +𝓁+2𝑘. Hence, |𝑉 (𝑇 )| − 𝑏(𝑇 , 𝑠) ≥ 𝑘. If 𝓁 ≤ 2𝑘, then 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )| +3𝑘 −2 and |𝑉 (𝑇 )| − 𝑏(𝑇 , 𝑠) ≥
(4𝑘 − 2) − (3𝑘 − 2) ≥ 𝑘. This completes the proof. □

The crucial property of the instance obtained by applying Reduction Rules 6.1–6.6 is given in the following lemma.
11

Lemma 6. Suppose that Reduction Rules 6.1–6.6 are not applicable to (𝐺, 𝑠, 𝑘). Then |𝑉 (𝐺)| ≤ 18𝑘 − 12.
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Proof. Recall that 𝐵 is a BFS-tree rooted in 𝑠 and 𝑏(𝐵, 𝑠) > 𝑛 − 𝑘 because of Reduction Rule 6.5. Recall also that 𝐿0, … , 𝐿𝑟 are the 
BFS-levels. For a vertex 𝑣 ∈ 𝑉 (𝐵), we use 𝐵𝑣 to denote the subtree of 𝐵 induced by the descendants of 𝑣 in 𝐵 including 𝑣 itself. 
If |𝑉 (𝐺)| ≤ 𝑘, then the claim holds. Assume that |𝑉 (𝐺)| ≥ 𝑘 + 1. Because |𝑉 (𝐵)| = |𝑉 (𝐺)| ≥ 𝑘 + 1, there is 𝑣 ∈ 𝑉 (𝐵) such that 
|𝑉 (𝐵𝑣)| ≥ 𝑘 + 1 but |𝑉 (𝐵𝑢)| ≤ 𝑘 for every child 𝑢 of 𝑣 in 𝐵. Let 𝑃 be the (𝑠, 𝑣)-path in 𝐵. We define 𝑌 = 𝑉 (𝐺) ⧵ (𝑉 (𝑃 ) ∪ 𝑉 (𝐵𝑣)). 
Clearly, |𝑉 (𝐺)| = |𝑉 (𝐵)| = |𝑌 | + |𝑉 (𝑃 )| + |𝑉 (𝐵𝑣)| − 1. To prove the lemma, we show upper bounds for |𝑌 |, |𝑉 (𝑃 )|, and |𝑉 (𝐵𝑣)|. 
First, we show a bound for the size of 𝑌 .

Claim 6.4. |𝑌 | ≤ 𝑘 − 1.

Proof of Claim 6.4. For the sake of contradiction, assume that |𝑌 | ≥ 𝑘. Let 𝑃 = 𝑣1⋯ 𝑣𝑝, where 𝑠 = 𝑣1 and 𝑣 = 𝑣𝑝. We consider the 
following broadcasting protocol (𝐵, {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝐵)}) for 𝐵. For every 𝑖 ∈ {1, … , 𝑝 −1}, we construct 𝐶(𝑣𝑖) by making 𝑣𝑖+1 the first 
element of the ordered set and then append the other children of 𝑣𝑖 in 𝐵 in arbitrary order. For 𝑥 ∈ 𝑉 (𝐵) ⧵ {𝑣1, … , 𝑣𝑝−1}, 𝐶(𝑥) is 
an arbitrary ordering of the children of 𝑥. Notice that the vertices of 𝑃 are getting the message in the first |𝑉 (𝑃 )| − 1 rounds. Then 
because |𝑌 | ≥ 𝑘 and each vertex 𝑦 ∈ 𝑌 is reachable in 𝐵 − 𝑉 (𝐵𝑣) from 𝑉 (𝑃 ) ⧵ {𝑣} by a (𝑣𝑖, 𝑦)-path for some 𝑖 ∈ {1, … , 𝑝}, at least 𝑘
vertices of 𝑌 should receive the message in the first |𝑉 (𝑃 )| + 𝑘 − 1 rounds. Similarly, because |𝑉 (𝐵𝑣)| ≥ 𝑘 + 1, at least 𝑘 vertices of 
𝐵𝑣 − 𝑣 should receive the message in the first |𝑉 (𝑃 )| + 𝑘 −1 rounds. Hence, at least |𝑉 (𝑃 )| + 2𝑘 vertices of 𝐵 get the message in the 
first |𝑉 (𝑃 )| +𝑘 −1 rounds. This implies that the total number of rounds for the protocol (𝐵, {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝐵)}) is at most |𝑉 (𝐵)| −𝑘. 
This contradicts the assumption that Reduction Rule 6.5 is not applicable and proves the claim. □

Next, we use Claim 6.4 to upper bound the number of vertices of 𝑃 .

Claim 6.5. |𝑉 (𝑃 )| ≤ 4𝑘 − 2.

Proof of Claim 6.5. The proof is by contradiction. Assume that |𝑉 (𝑃 )| ≥ 4𝑘 −1. Note that 𝑣 ∈𝐿𝑝 for 𝑝 ≥ 4𝑘 −2 and 𝑟 ≥ 𝑝 +1 ≥ 4𝑘 −1. 
By Claim 6.4, |𝑌 | ≤ 𝑘 − 1. Notice that 𝑑𝐺(𝑠) ≥ 2, because Reduction Rule 6.2 is not applicable. By the pigeonhole principle, there is 
𝑞 ≤ 3𝑘 − 3 such that |𝐿𝑞−1| = |𝐿𝑞| = |𝐿𝑞+1| = 1, that is, 𝐿𝑞−1 = {𝑣𝑞−1}, 𝐿𝑞 = {𝑣𝑞}, and 𝐿𝑞+1 = {𝑣𝑞+1}. This implies that 𝑑𝐺(𝑣𝑞) = 2
and 𝑣𝑞𝑣𝑞+1 is a bridge of 𝐺. Consider the connected components 𝐺1 and 𝐺2 of 𝐺 − 𝑣𝑞𝑣𝑞+1 and assume that 𝑠, 𝑣𝑞 ∈ 𝑉 (𝐺1) and 
𝑣𝑞+1 ∈ 𝑉 (𝐺2). We have that |𝑉 (𝐺1)| ≤ 𝑞 + 1 + |𝑌 | ≤ 4𝑘 − 3. It also holds that dist𝐺1

(𝑠, 𝑣𝑞) = 𝑞 and 𝜌𝐺2
(𝑣𝑞+1) = 𝑟 − 𝑞 − 1. Hence, 

dist𝐺1
(𝑠, 𝑣𝑞) + 𝜌𝐺2

(𝑣𝑞+1) = 𝑟 − 1 ≥ 4𝑘 − 2. Thus, |𝑉 (𝐺1)| ≤ 4𝑘 − 3 < dist𝐺1
(𝑠, 𝑣𝑞) + 𝜌𝐺2

(𝑣𝑞+1) but this implies that Reduction Rule 6.4

would be applicable for the bridge 𝑣𝑞𝑣𝑞−1. This gives a contradiction that proves the claim. □

Finally, we upper bound the size of 𝐵𝑣.

Claim 6.6. |𝑉 (𝐵𝑣)| ≤ 13𝑘 − 9.

Proof. Assume that 𝑣 ∈𝐿𝑝 for some 𝑝 ∈ {1, … , 𝑟} and denote by 𝑍 ⊆𝑋 =𝑁𝐺(𝑣) ∩𝐿𝑝+1 the set of vertices having of degree one. We 
consider two cases depending on the size of 𝑋.

Suppose that |𝑋| ≥ 2𝑘 + 1. Because of Reduction Rule 6.6, the total number of vertices in nontrivial, i.e., having at least two 
vertices, connected components of 𝐺 − 𝑉 (𝑃 ) containing vertices of 𝑋 is at most 4𝑘 − 3. Hence, 𝐵𝑣 −𝑍 has at most 4𝑘 − 2 vertices. 
Because |𝑌 | ≤ 𝑘 −1 and |𝑉 (𝑃 )| ≤ 4𝑘 −2 by Claims 6.4 and 6.5, respectively, 𝐵−𝑍 has at most (𝑘 −1) +(4𝑘 −2) +(4𝑘 −2) −1 = 9𝑘 −6
vertices, that is, |𝑉 (𝐺) ⧵𝑍| ≤ 9𝑘 − 6. Because Reduction Rule 6.3 is not applicable, we have that |𝑍| ≤ |𝑉 (𝐺) ⧵𝑍| − 1 ≤ 9𝑘 − 7. We 
obtain that |𝑉 (𝐵𝑣)| = |𝑉 (𝐵𝑣) ⧵𝑍| + |𝑍| ≤ 13𝑘 − 9.

Assume now that |𝑋| ≤ 2𝑘. Suppose that 𝑇1, … , 𝑇𝓁 are the subtrees of 𝐵𝑣 rooted in the children 𝑢1, … , 𝑢𝓁 of 𝑣, respectively, 
such that |𝑉 (𝑇𝑖)| ≥ 2 for each 𝑖 ∈ {1, … , 𝓁}. Notice that 𝓁 ≤ |𝑋| ≤ 2𝑘 and |𝑉 (𝑇𝑖)| ≤ 𝑘 because of the choice of 𝑣. We claim that 
|𝑉 (𝑇1)| +⋯ + |𝑉 (𝑇𝓁)| ≤ 4𝑘 − 2.

The proof is by contradiction. Let |𝑉 (𝑇1)| +⋯ + |𝑉 (𝑇𝑞)| ≥ 4𝑘 −1. Consider the tree 𝑇 constructed from 𝑃 and 𝑇1, … , 𝑇𝓁 by making 
𝑣 adjacent to 𝑢1, … , 𝑢𝓁 . We show that 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑇 )| − 𝑘. For this, we define the broadcasting protocol (𝑇 , {𝐶(𝑥) ∣ 𝑥 ∈ 𝑉 (𝑇 )}) as 
follows. For each 𝑥 ∈ 𝑉 (𝑃 ) ⧵ {𝑣}, 𝑥 has a unique child composing 𝐶(𝑥). We define 𝐶(𝑣) = (𝑢1, … , 𝑢𝓁) and for each 𝑖 ∈ {1, … , 𝓁} and 
𝑥 ∈ 𝑉 (𝑇𝑖), 𝐶(𝑥) is an arbitrary ordering of the children of 𝑥 in 𝑇𝑖. We have that

𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )|− 1 +max{|𝑉 (𝑇𝑖)|+ 𝑖− 1 ∣ 𝑖 ∈ {1,… ,𝓁}}.

Since |𝑉 (𝑇𝑖)| ≤ 𝑘 for 𝑖 ∈ {1, … , 𝑘} and 𝓁 ≤ 2𝑘, 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑃 )| + 𝑘 + 𝓁 − 2 ≤ |𝑉 (𝑃 )| + 3𝑘 − 1. Because |𝑉 (𝑇 )| = |𝑉 (𝑃 )| + |𝑉 (𝑇1)| +
⋯ + |𝑉 (𝑇𝑞)| ≥ |𝑉 (𝑃 )| + 4𝑘 − 1, we obtain that 𝑏(𝑇 , 𝑠) ≤ |𝑉 (𝑇 )| − 𝑘. However, 𝑇 is a subgraph of the tree 𝐵 and 𝑠 ∈ 𝑉 (𝑇 ). Then 
by Observation 2, 𝑏(𝐵, 𝑠) ≤ 𝑏(𝑇 , 𝑠) + |𝑉 (𝐵) ⧵ 𝑉 (𝑇 )| ≤ |𝑉 (𝐵)| − 𝑘 = 𝑛 − 𝑘 contradicting that Reduction Rule 6.5 is not applicable. 
This proves that |𝑉 (𝑇1)| +⋯ + |𝑉 (𝑇𝓁)| ≤ 4𝑘 − 2. Because |𝑉 (𝐵𝑣)| = |𝑋| − 𝓁 + |𝑉 (𝑇1)| +⋯ + |𝑉 (𝑇𝓁)| + 1, we obtain that |𝑉 (𝐵𝑣)| ≤
|𝑋| + |𝑉 (𝑇1)| +⋯ + |𝑉 (𝑇𝓁)| ≤ 2𝑘 + 4𝑘 − 2 ≤ 6𝑘 − 2. This completes the proof of the claim. □

Summarizing the upper bounds from Claims 6.4–6.6, we derive that
12

|𝑉 (𝐺)| = |𝑌 |+ |𝑉 (𝑃 )|+ |𝑉 (𝐵𝑣)|− 1 ≤ (𝑘− 1) + (4𝑘− 2) + (13𝑘− 9) = 18𝑘− 12.
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This concludes the proof. □

By Lemma 6, if we do not stop during the exhaustive applications of Reduction Rules 6.1–6.6, then for the obtained instance 
(𝐺, 𝑠, 𝑘), |𝑉 (𝐺)| ≤ 18𝑘 − 12. Hence, to complete the kernelization algorithm, we return (𝐺, 𝑠, 𝑘).

It is straightforward to see that Reduction Rules 6.1–6.6 can be applied in polynomial time. In particular, BFS and finding bridges 
can be done in linear time by classical graph algorithms (see, e.g., the textbook [7]). Thus, the total running time of the kernelization 
algorithm is polynomial. This completes the proof of Theorem 4.

7. Conclusion

In our paper, we initiated the study of TELEPHONE BROADCAST from the parameterized complexity viewpoint. In this section, we 
discuss further directions of research.

We observed that TELEPHONE BROADCAST is trivially FPT when parameterized by 𝑡 and Theorem 1 implies that the problem can 
be solved in 32𝑡 ⋅ 𝑛(1) time. Is it possible to get a better running time for the parameterization by 𝑡?

In Theorem 4, we obtained a polynomial kernel for the parameterization by 𝑘 = 𝑛 − 𝑡, that is, for the parameterization below 
the trivial upper bound for 𝑏(𝐺, 𝑠). This naturally leads to the question about parameterization below some other bounds for this 
parameter. We note that the parameterization of TELEPHONE BROADCAST above the natural lower bound 𝑏(𝐺, 𝑠) ≥ log𝑛 leads to 
a para-NP-complete problem. To see this, observe that for graphs with 𝑛 = 2𝑡 vertices, 𝑏(𝐺, 𝑠) ≤ 𝑡 if and only if 𝐺 has a binomial 
spanning tree rooted in 𝑠, and it is NP-complete to decide whether 𝐺 contains such a spanning tree [27].

In Theorems 2 and 3, we considered structural parameterizations of TELEPHONE BROADCAST by the cyclomatic and vertex cover 
numbers, respectively. It is interesting to consider other structural parameterizations. In particular, is TELEPHONE BROADCAST FPT
when parameterized by the feedback vertex number and treewidth (we refer to [8] for the definitions)? For the parameterization by 
treewidth, the complexity status of TELEPHONE BROADCAST is open even for the case when the treewidth of the input graphs is at 
most two, that is, for series-parallel graphs.
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