
2

Shortest Cycles with Monotone Submodular Costs

FEDOR V. FOMIN , PETR A. GOLOVACH , and TUUKKA KORHONEN , Department of

Informatics, University of Bergen, Norway

DANIEL LOKSH TANO V , Department of Computer Science, University of California, Santa Barbara,

USA

GIANNOS STAMOULIS , LIRMM, University of Montpellier, CNRS, France

We introduce the following submodular generalization of the Shortest Cycle problem. For a nonnegative

monotone submodular cost function f defined on the edges (or the vertices) of an undirected graph G, we

seek for a cycle C in G of minimum cost OPT = f (C). We give an algorithm that given an n-vertex graph G,

parameter ε > 0 , and the function f represented by an oracle, in time n O (log 1 /ε) finds a cycle C in G with

f (C) ≤ (1 + ε) · OPT . This is in sharp contrast with the non-approximability of the closely related Monotone

Submodular Shortest (s, t)-Path problem, which requires exponentially many queries to the oracle for

finding an n 2 /3 −ε -approximation Goel et al. [7], FOCS 2009. We complement our algorithm with a matching

lower bound. We show that for every ε > 0 , obtaining a (1 + ε)-approximation requires at least n Ω(log 1 /ε)

queries to the oracle.

When the function f is integer-valued, our algorithm yields that a cycle of cost OPT can be found in time

n O (log OPT) . In particular, for OPT = n O (1) this gives a quasipolynomial-time algorithm computing a cycle

of minimum submodular cost. Interestingly, while a quasipolynomial-time algorithm often serves as a good

indication that a polynomial time complexity could be achieved, we show a lower bound that n O (log n) queries

are required even when OPT = O (n).
We also consider special cases of monotone submodular functions, corresponding to the number of different

color classes needed to cover a cycle in an edge-colored multigraph G. For special cases of the correspond-

ing minimization problem, we obtain fixed-parameter tractable algorithms and polynomial-time algorithms,

when restricted to certain classes of inputs.

CCS Concepts: • Mathematics of computing → Graph algorithms ;

Additional Key Words and Phrases: Submodular functions, shortest cycle, polynomial-time approximation

schemes

The results of this paper appeared in the Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 2023) .

The research leading to these results has received funding from the Research Council of Norway via the project BWCA

(grant no. 314528). Giannos Stamoulis acknowledges support by the ANR project ESIGMA (ANR-17-CE23-0010) and the

French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

Authors’ addresses: F. V. Fomin, P. A. Golovach, and T. Korhonen, Department of Informatics, University of Bergen, PB 7803,

Bergen, 5020, Norway; e-mails: fedor.fomin@uib.no, petr.golovach@uib.no, tuukka.korhonen@uib.no; D. Lokshtanov, De-

partment of Computer Science, University of California, 2104 Harold Frank Hall, Santa Barbara, California, 93106-5110,

USA; e-mail: daniello@ucsb.edu; G. Stamoulis, LIRMM, Univ Montpellier, CNRS, 161 rue Ada,34392 Montpellier cedex 5,

France; e-mail: giannos.stamoulis@lirmm.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2023/11-ART2 $15.00

https://doi.org/10.1145/3626824

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

https://orcid.org/0000-0003-1955-4612
https://orcid.org/0000-0002-2619-2990
https://orcid.org/0000-0003-0861-6515
https://orcid.org/0000-0002-3166-9212
https://orcid.org/0000-0002-4175-7793
mailto:permissions@acm.org
https://doi.org/10.1145/3626824
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626824&domain=pdf&date_stamp=2023-11-13

2:2 F. V. Fomin et al.

ACM Reference format:

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, Daniel Lokshtanov, and Giannos Stamoulis. 2023. Short-

est Cycles with Monotone Submodular Costs. ACM Trans. Algor. 20, 1, Article 2 (November 2023), 16 pages.

https://doi.org/10.1145/3626824

1

S

p

c

a

p

o

[

m

e

r

g

g

n

m

q

b

m

t

p

f

w

a

q

e

A

 INTRODUCTION

ubmodular function minimization is a fundamental problem in combinatorial optimization. This

roblem is solvable in (strongly) polynomial time [2 , 9 , 10 , 12 , 16]. However, the problem be-

omes intractable even with straightforward additional cardinality constraints [8 , 17]. A significant

mount of research on submodular optimization is on generalizing the classical computer science

roblems by replacing simpler objective functions with general submodular functions. Examples

f submodular minimizations over combinatorial constraints include load balancing, balanced cut

 17], vertex cover [7 , 11 , 18], shortest path, perfect matching, spanning tree [7] or min-cut [15].

However, it seems that for almost every natural graph problem in P (shortest (s, t)-path,

atching, spanning tree, or minimum (s, t)-cut) its submodular generalization becomes hard. Let

f : 2 E (G) → R ≥0 be a monotone submodular cost function defined by a value-giving oracle on the

dges of an undirected graph G with m edges and n vertices. The following computational tasks

equire exponentially many queries to the value oracle:

• Finding an O (n

2 /3 −ε)-approximation of the minimum cost of an (s, t)-path (Submodular

Shortest (s, t)-Path) [7];

• Finding an O (n

1 −ε)-approximation of the minimum cost of a perfect matching (Submodu-

lar Perfect Matching) [7];

• Finding an O (n

1 −ε)-approximation of the minimum cost of a spanning tree (Submodular

Minimum Spanning Tree) [7];

• Finding an O (n

1 /3 −ε)-approximation of the minimum cost of an (s, t)-cut (Submodular

Minimum (s, t)-Cut) [15].

We discover an interesting anomaly, a classical problem in P, whose monotone submodular

eneralization strongly deviates from this common pattern. This is the problem of computing the

irth, that is, the length of a shortest cycle, of an undirected graph. In sharp contrast to all these

on-approximability results, we show that the problem of finding a cycle in a graph with minimum

onotone submodular cost admits a polynomial-time approximation scheme (PTAS) and a

uasipolynomial-time algorithm when the values of the submodular function are polynomially-

ounded integers. More precisely, for a graph G and a function f : 2 V (G) → R ≥0 , we define OPT =

in { f (C) : C ⊆ V (G) induces a cycle of G }. Our first main result is the following theorem.

Theorem 1. There is an algorithm that given an n-vertex graph G, parameter ε > 0 , and a mono-

one submodular function f : 2 V (G) → R ≥0 represented by an oracle, finds a cycle C in G with

f (C) ≤ (1 + ε) · OPT in time n

O (log 1 /ε) .

We stated Theorem 1 for a function f defined on the vertices of a graph. An easy reduction by

lacing a new vertex on every edge shows that the same result holds for monotone submodular

unctions defined on the edges of a multigraph, see Corollary 4 .

When the function f is integer-valued, Theorem 1 (by setting ε = 1
w+1 with OPT ≤ w ≤ 2 OPT ,

here w = f (C) for the cycle C returned by the approximation algorithm for ε = 1) implies that

 cycle of cost OPT can be found in time n

O (log OPT) . In particular, when OPT = n

O (1) , it gives a

uasipolynomial-time algorithm computing a cycle of minimum monotone submodular cost. For

xample, this holds when f is a rank function of a matroid.
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

https://doi.org/10.1145/3626824

Shortest Cycles With Monotone Submodular Costs 2:3

s

i

C

a

a

m

n

o

a

t

n

o

b

c

g

m

(

t

C

s

t

a

w

m

(

s

a

i

s

(

n

e
Corollary 1. There is an algorithm that given an n-vertex graph G and an integer monotone

ubmodular function f : 2 V (G) → Z ≥0 represented by an oracle, finds a cycle C in G with f (C) = OPT

n time n

O (log OPT) .

Our second main result is that the running times of the algorithms of Theorem 1 and

orollary 1 are asymptotically tight. Note that it is sufficient to prove Corollary 1 to be tight,

s any improvement to Theorem 1 would also improve Corollary 1 .

Theorem 2. There is no algorithm computing a cycle of cost at most OPT on a given n-vertex graph

nd an integer monotone submodular function f : 2 V (G) → Z ≥0 represented by an oracle, using at

ost д(OPT) · n

o (log OPT) queries to the oracle, for any computable function д.

Corollary 2. There is no algorithm computing a cycle of cost at most (1 + ε) · OPT on a given

-vertex graph and an integer monotone submodular function f : 2 V (G) → Z ≥0 represented by an

racle, using at most t (1 /ε) · n

o (log 1 / ε) queries to the oracle, for any computable function t .

In particular, Theorem 2 rules out fixed-parameter tractability (FPT) parameterized by OPT

nd Corollary 2 rules out efficient polynomial-time approximation schemes (EPTAS) .

The same construction as in Theorem 2 also rules out the improvement of the quasipolynomial

ime in the setting where OPT = O (n).

Theorem 3. There is no algorithm computing a cycle of cost at most OPT = O (n) on a given

-vertex graph and an integer monotone submodular function f : 2 V (G) → Z ≥0 represented by an

racle, using at most n

o (log n) queries to the oracle.

We note that on directed graphs the problem is much harder: The same construction as the one

y Goel et al. [7] for undirected (s, t)-path shows that O (n

2 /3 −ε)-approximation for the minimum

ost directed cycle requires an exponential number of queries to the oracle.

Theorem 1 also yields a PTAS for computing the submodular connectivity of a planar multi-

raph. The connectivity of a connected multigraph is the size of its minimum cut, that is, the mini-

um number of edges whose removal disconnects it. In Monotone Submodular Connectivity

also known as Monotone Submodular Min-Cut), for a connected multigraph G with mono-

one submodular cost function f on E (G), the task is to identify the minimum cost f (C) of a cut

 ⊆ E (G). In a connected planar multigraph G, an edge set of every simple cycle of G is an edge

et of an inclusion minimal edge cut in the dual of G, and vice versa. Thus by Theorem 1 , we have

he following corollary.

Corollary 3. There is an algorithm that given a planar m-edge multigraph G, parameter ε > 0 ,
nd a monotone submodular function f : 2 E (G) → R ≥0 represented by an oracle, finds a cut C in G
ith f (C) ≤ (1 + ε) · OPT in time m

O (log 1 /ε) (where OPT is the minimum cost of a cut).

The same lower bounds of Theorems 2 and 3 apply also to this setting (with n replaced by

), showing that Corollary 3 is optimal, because the graph we use for the lower bound is planar

in particular, it is a dual of a planar multigraph). The best previously known upper bound on

ubmodular connectivity on planar graphs is due to Jegelka and Bilmes [15] who gave an O (
√

n)-
pproximation for this problem.

An interesting variant of submodular connectivity was considered by Ghaffari, Karger, and Pan-

grahi [6]. In the Hedge Connectivity problem, the edge set of a multigraph G is partitioned into

ets called hedges . The graph is k-hedge-connected if it is necessary to remove at least k edge sets

hedges) in order to disconnect G. Ghaffari, Karger, and Panigrahi [6] gave a PTAS of running time

O (log 1 /ε) and a quasipolynomial-time exact algorithm for hedge connectivity. Very recently Jaffke

t al. [14] (see also [13]) complemented this result by showing that the quasi-polynomial running
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:4 F. V. Fomin et al.

Fig. 1. Construction of the multigraph G (k, p).

t

e

f

T

l

f

P

a

b

o

g

o

c

C

t

h

r

t

M

t

e

f

I

f

F

l

q

w

g

fi

T

c

A

ime is optimal up to the Exponential Time Hypothesis (ETH) . Namely, they proved that the

xistence of an algorithm with running time (nk) o (log n/ (log log n) 2) would contradict ETH. The hedge

unction (i.e., the number of hedges covering an edge subset) is a monotone submodular function.

hus, on planar graphs, Corollary 3 extends the PTAS of [6] from hedges to monotone submodu-

ar functions. Similarly, the quasipolynomial algorithm for integer-valued monotone submodular

unctions with OPT = n

O (1) , extends the quasipolynomial exact algorithm of Ghaffari, Karger, and

anigrahi on planar graphs.

While Theorem 2 refutes the existence of a polynomial-time (or even FPT) algorithm computing

 submodular minimum cycle or submodular minimum cut in planar graphs with polynomially

ounded integer-valued functions, the complexity of the hedge variants of these problems remains

pen (here, by hedge minimum cycle we mean the minimum number of hedges covering a cycle). In

raph theory, this problem is also known as the Colored Cycle problem [1]. In this reformulation

f the problem, the edges (or vertices) of the given graph are colored and the task is to select a

ycle containing the minimum number of different colors. Broersma et al. claimed the Colored

ycle problem to be NP-hard, without proof [1 , Corollary 16]. The quasipolynomial algorithm for

his problem that follows by Corollary 1 raises serious concerns about this claim. Note that the

edge minimum (s, t)-cut and hedge minimum (s, t)-path are indeed NP-hard [1 , 19].

Motivated by the question on whether Hedge Minimum Cycle admits a polynomial-time algo-

ithm or our quasipolynomial-time algorithm is optimal, we study the problem in a special case

hat corresponds to a natural problem about families of sets. In particular, we consider the Hedge

inimum Cycle problem on the subdivisions of the graphs used for the lower bound construc-

ion of Theorems 2 and 3 – see Figure 1 . In these graphs, the Hedge Minimum Cycle problem is

quivalent to the following set family problem: For an integer k and universe U , we say that a

amily F of sets over U is k-wide if for any two distinct sets A, B ∈ F it holds that | A ∪ B | > k .
n the Wide Family Hitting problem, we are given a universe U , an integer k , and m k-wide

amilies F 1 , . . . , F m

. The task is to decide if it is possible to select one set S i ∈ F i from each family

 i so that | ⋃ m

i= 1 S i | ≤ k . We denote the input size by N =
∑ m

i= 1

∑

A∈F i |A|. The algorithm of Corol-

ary 1 gives an N

O (log k) time algorithm for Wide family hitting , in particular it can be solved in

uasipolynomial time, and therefore is unlikely to be NP-hard.

While it remains open whether Wide Family Hitting admits a polynomial-time algorithm,

e show two results giving evidence that the special case of hedges is indeed easier than the

eneral case of monotone submodular functions. First, we show that Wide Family Hitting is

xed-parameter tractable when parameterized by k . This is in contrast to the lower bound of

heorem 2 .

Theorem 4. There is a 2 O (k log k) N

O (1) time algorithm for Wide Family Hitting .

We then show that there is a polynomial-time algorithm if | F i | is bounded for every i . This

orresponds to the case when the graph of the construction has bounded degree.
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:5

W

l

b

i

H

2

I

n

i

a

g

b

t

d

w

a

w

g

a

i

t

a

k

i

3

I

s

I

a

F

w

Theorem 5. Let |F i | ≤ d for every i . Then there is a k O (log d) N

O (1) time randomized algorithm for

ide Family Hitting .

The rest of the paper is organized as follows. In Section 2 we give formal definitions and pre-

iminary results. In Section 3 we give the algorithm of Theorem 1 . In Section 4 we show the lower

ounds Theorems 2 and 3 . In Section 5 we prove Theorems 4 and 5 . We then conclude in Section 6 ,

n particular discussing open problems related to Hedge Minimum Cycle and Wide Family

itting .

 PRELIMINARIES

n this section, we introduce basic notation used throughout the paper.

We use standard graph-theoretic terminology and refer to the textbook of Diestel [3] for missing

otions. We consider only finite graphs, and the considered graphs are assumed to be undirected

f it is not explicitly said to be otherwise. For a graph G, we use V (G) and E (G) to denote its vertex

nd edge set, respectively. Throughout the paper we use n = |V (G) | = |G | and m = |E (G) |. For a

raph G and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced

y X . For a vertex v , we denote by N G

(v) the (open) neighborhood of v , i.e., the set of vertices

hat are adjacent to v in G. For X ⊆ V (G), N G

(X) = (
⋃

v ∈X

N G

(v)) \ X . The degree of a vertex v is

 G

(v) = |N G

(v) |. We may omit subscripts if the considered graph is clear from a context.

A path P in G is a subgraph of G with V (P) = { v 0 , . . . , v � } and E (P) = {v i−1 v i | 1 ≤ i ≤ �}. We

rite v 0 v 1 · · ·v � to denote P ; the vertices v 0 and v � are end-vertices of P , the vertices v 1 , . . . , v �−1

re internal , and � is the length of P . For a path P with end-vertices s and t , we say that P is an

(s, t)-path. A cycle is a graph C with V (C) = { v 1 , . . . , v � } for � ≥ 3 and E (C) = {v i−1 v i | 1 ≤ i ≤ �},
here we assume that v 0 = v � . We write C = v 1 · · ·v � to denote a cycle in G.

Definition 1. Given a finite set U , a function f : 2 U → R is submodular if for every X , Y ⊆ U ,

f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y).

We also will use an equivalent formulation of submodularity, that is, for any X ⊆ Y and v � Y ,

f (X ∪ { v}) − f (X) ≥ f (Y ∪ { v}) − f (Y).

Throughout the paper we assume that the considered submodular functions f : 2 U → R are

iven by value-giving oracles returning the value f (X) for every X ⊆ U in unit time. We also

ssume the real RAM computational model for operations with the values of considered functions,

.e., we assume that basic arithmetic operations over real numbers are performed in unit time. In

his paper, we consider functions f defined on subsets of the vertex or edge set of a graph. Slightly

busing notation, we may write f (H) instead of f (V (H)) or f (E (H)) for a subgraph H of G.

A submodular function is monotone if for every X ⊆ Y ⊆ U , f (X) ≤ f (Y). We note that it is well-

nown that a rank function of a matroid is a monotone submodular function with nonnegative

nteger values.

 PTAS FOR SHORTEST CYCLES WITH MONOTONE SUBMODULAR COSTS

n this section, we demonstrate a PTAS for finding a shortest cycle with nonnegative monotone

ubmodular costs. If a connected component of a graph G is a tree, it does not contain any cycle.

n this case, the problem of finding a cycle in this component is meaningless. From now on, we

ssume that all connected components of graphs considered throughout the section contain cycles.

or a graph G and a function f : 2 V (G) → R ≥0 , we define

OPT (G, f) = min { f (C) | C is a cycle of G};
e write OPT instead of OPT (G, f) if G and f are clear from the context.
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:6 F. V. Fomin et al.

ALGORITHM 1 : Cycle (G, v, f)

Input : A graph G with v ∈ V (G) and a function f .
Result : A cycle C v and a tree T f (v).

1 begin

2 set S : = V (G), p (v) : = v , d (v) : = f (v);

3 foreach x ∈ V (G) \ {v} do

4 set p (x) : = ∅ and d (x) : = +∞

5 end

6 while S � ∅ do

7 find x ∈ S s.t. d (x) = min {d (y) : y ∈ S } and set S : = S \ {x };
8 if there is y ∈ N G

(x) \ { p (x) } with d (y) ≤ d (x) then

9 find a cycle C v in G[V (P x) ∪ V (P y)] and output C v ;

10 output T f (v) with the set of vertices {z ∈ V (G) : d (z) < d (x) };
11 quit

12 else

13 foreach y ∈ N G

(x) \ { p (x) } with d (y) > f (P x y) do

14 set d (y) : = f (P x y) and p (y) : = x

15 end

16 end

17 end

18 end

t

w

t

a

V

w

p

v

e

(

p

d

V
i

t

G

i

A

First, we show that the problem admits a factor-2 approximation. Besides an approximate solu-

ion, our algorithm computes a family of induced tree-subgraphs rooted in the vertices of G that

ill be crucial for PTAS.

We would like to stress that the next result is stated for subadditive functions, i.e., functions

f : 2 U → R , for some finite set U , such that for every X , Y ⊆ U , f (X) + f (Y) ≥ f (X ∪ Y). Notice

hat every nonnegative submodular function is also a subadditive function.

Lemma 1. There is an algorithm A that, given a graph G and a monotone subadditive function

f : 2 V (G) → R ≥0 , in time O (n(m + n log n)) finds a cycle C with f (C) ≤ 2 OPT . Furthermore, the

lgorithm returns a family of induced tree-subgraphs T f = {T f (v)} v ∈V (G) in G such that for every v ∈
 (G), (i) v ∈ V (T f (v)) and (ii) for every x ∈ V (T f (v)) and y ∈ N G

(x) \ V (T f (v)), f (Py) ≥ OPT / 2 ,
here P is the unique (v, x) -path in T f (v).

Proof. Our algorithm is based on the classical Dijkstra’s algorithm for finding shortest

aths [4]. Let v ∈ V (G). The algorithm constructs a tree rooted in v by assigning labels p (x) for

ertices x ∈ V (G), where p (x) is the parent of x in the tree; initially p (v) = v and p (x) is empty for

very x ∈ V (G) distinct from v . For x ∈ V (G) with nonempty p (x) , we use P x to denote the unique

v, x) -path defined by these labels. We also assign labels d (x) for x ∈ V (G), where d (x) = f (P x) if
(x) is nonempty. Then the following subroutine computes a cycle C v associated with v and T f (v)
efined by the set of vertices given together with their labels p (x) . �

To analyze the algorithm, denote by q(x) = min { f (P) : P is a (v, x) -path in G} for every x ∈
 (G). Clearly, q(x) ≤ d (x) for x ∈ V (G). For a real number h ≥ f (v), let G h be the subgraph of G
nduced by the set of vertices {x ∈ V (G) : q(x) ≤ h }. Let h

∗ ≥ f (v) be the minimum number such

hat G h ∗ contains a cycle. Notice that such a number exists, because the connected component of

containing v is not a tree. Note also that for every h < h

∗, G h is a tree. The crucial observation

s that the algorithm assigns the labels d (x) = q(x) for x ∈ V (G h) if h < h

∗ and the labels p (x)
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:7

d

a

c

h

h

q

t

c

t

c

O

w

t

T

f

a

C

o

B

a

p

n

p

t

P

t

a

b

t

b

C

t

l

t

efine the induced tree G h . Furthermore, the algorithm stops in line (8), where d (x) = q(x) = h

∗

nd d (y) = q(y) ≤ h

∗. Because xy ∈ E (G) and y � p (x), the graph G[V (P x) ∪ V (P y)] contains a

ycle C v . Because f (P x) = q(x) and f (P y) = q(y), we have that f (C v) ≤ 2 h

∗. Since d (x) = h

∗, we

ave that T f (v) constructed in line (10) is an induced tree in G.

Clearly, v ∈ V (T f (v)) , and condition (i) for T f (v) is fulfilled. By definition, f (C v) ≥ OPT . Hence,

∗ ≥ OPT / 2 . If there are x ∈ V (T f (v)) and y ∈ N G

(v) \ V (T f (v)) such that f (P x y) < OPT / 2 , then

(y) < h

∗ and y should be in T f (v). This implies that (ii) holds.

We run Cycle (G, v, f) for all v ∈ V (G) and construct T f = {T f (v) } v ∈V (G) . To find C , we consider

he cycles C v for v ∈ V (G) and select a cycle C of minimum cost. To show that f (C) ≤ 2 OPT ,

onsider v ∈ V (C). Then C contains a (v, y)-path P = P x y , where x ∈ V (T f (v)) and y is adjacent

o x . Then f (P) ≥ h

∗ for h

∗ defined for this vertex v . Because C is chosen as a cycle of minimum

ost among the cycles C v , v ∈ V (G), and f (C v) ≤ 2 h

∗, f (C) ≤ 2 OPT .

To evaluate the running time, note that Dijkstra’s algorithm can be implemented to run in

(m + n log n) time by the results of Fredman and Tarjan [5]. Using exactly the same approach,

e conclude that for each v ∈ V (G), Cycle (G, v, f) can be implemented to run in O (m + n log n)
ime. Since the algorithm is called for every v ∈ V (G), the total running time is O (n(m + n log n)) .
his concludes the proof.

Let T = {T (v)} v ∈V (G) be a family of induced tree-subgraphs in a graph G such that v ∈ V (T (v))
or every v ∈ V (G). For v ∈ V (G), we define the family of paths

P (v) = {Py : P is a (v, x) -path for x ∈ V (T (v)) and y ∈ N G

(x) \ V (T (v)) }, (1)

nd set P (T) =
⋃

v ∈V (G) P (v). We use the following easy property of these paths.

Lemma 2. Let P (T) be the family of paths constructed for T = {T (v)} v ∈V (G) . Then for every cycle

, there is a path P ∈ P (T) such that P is a segment of C . Furthermore, |P (T) | ≤ nm and the sets

f vertices of the paths of P (T) can be listed in O (n

2 m) time.

Proof. Let P (T) =
⋃

v ∈V (G) P (v), where P (v) is defined as in (1). Consider a vertex v ∈ V (C).
ecause T (v) is an induced tree in G, C contains a path Py, where P is a (v, x) -path P in T (v)
nd y ∈ N G

(x) \ V (T (v)). By definition, Py ∈ P (v). This proves that C contains as a segment a

ath from P (T). Since every vertex y ∈ V (G) \ V (T (v)) has at most d G

(y) neighbors in T (v), the

umber of paths in P (v) does not exceed m. Hence, |P (T) | ≤ nm. To list the set of vertices of the

aths of P (v), we consider every vertex y ∈ V (G) \ V (T (v)) and for each neighbor x in T (v), we

race the unique (x , v) -path with at most n vertices. Therefore, the sets of vertices of the paths of

(T) can be listed in O (n

2 m) time. �

We are ready to prove Theorem 1 , which we restate here.

Theorem 1. There is an algorithm that given an n-vertex graph G, parameter ε > 0 , and a mono-

one submodular function f : 2 V (G) → R ≥0 represented by an oracle, finds a cycle C in G with

f (C) ≤ (1 + ε) · OPT in time n

O (log 1 /ε) .

Proof. The rough idea is that we construct a recursive branching algorithm using Lemmas 1

nd 2 . In particular, the algorithm from Lemma 1 constructs a family of induced trees T f . Then

y Lemma 2 , a solution cycle C should contain some path P ∈ P (T f) as a segment. We branch on

hese paths. However, instead of looking for a cycle containing P , we simply redefine the function

y setting д(X) = f (X ∪ V (P)) − f (P) for each X ⊆ V (G) using the property that for any cycle

 , f (C) ≤ f (V (C) ∪ V (P)) = д(C) + f (P) and f (C) = д(C) + f (P) if V (P) ⊆ V (C). Then we solve

he problem recursively for the new function. Because f (P) ≥ OPT / 2 by Lemma 1 , we require a

ogarithmic in 1 /ε depth of the search tree before we can apply a 2-approximation from Lemma 1

o obtain a factor- (1 + ε) approximation.
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:8 F. V. Fomin et al.

t

s

k

o

f

A

e

v

i

a

t

д

2

(

t

s

T

T

L

A

To describe the algorithm formally, we construct the subroutine Find-Cycle (G, д, k), which

akes as its input G, a monotone submodular function д : 2 V (G) → R ≥0 , and an integer k ≥ 0 . The

ubroutine returns a cycle C of G with д(C) ≤ (1 + 1
2 k

) OPT (G, д). Initially, д : = f . The parameter

 defines the depth of recursion and is initially set to k : =
 log 1 /ε�. To solve the problem for our

riginal instance, we call Find-Cycle (G, f ,
 log 1 /ε�). Recall that we use A to denote the algorithm

rom Lemma 1 .

LGORITHM 2 : Find-Cycle (G, д, k)

Input : A graph G, function д, and k ≥ 0 .

Result : A cycle C of G.

1 begin

2 call A (G, д) to obtain a cycle C and a family of subtrees T д ;
3 if д(C) > 0 and k > 0 then

4 construct P = P (T д);
5 foreach P ∈ P do

6 set д ′ (X) : = д(V (P) ∪ X) − д(P) for X ⊆ V (G) ;

7 call Find-Cycle (G, д ′ , k − 1) to find a cycle C

′ ;
8 if д (C

′) < д (C) then

9 set C : = C

′

10 end

11 end

12 end

13 return C

14 end

To show correctness, note that if д : 2 V (G) → R ≥0 is a monotone submodular function, then

ach function д ′ introduced in line (6) is also a monotone submodular function with nonnegative

alues, that is, the input Find-Cycle (G, д ′ , k − 1) in line (7) is feasible. Further, Find-Cycle (G, д, k)
s finite, because the depth of the recursion is upper bounded by k . Also the subroutine algorithm

lways returns some cycle of G because G is distinct from a forest by our assumption. Hence,

o prove the correctness of Find-Cycle (G, д, k), we have to show that it returns a cycle C with

(C) ≤ (1 + 1
2 k

) OPT (G, д). We show this by induction on k .

If k = 0 , then the algorithm returns the cycle C produced by A (G, д) and, therefore, д(C) ≤
 OPT (G, д) = (1 + 1

2 k
) OPT (G, д). Let k > 0 and assume that Find-Cycle (G, д ′ , k − 1) called in line

7) outputs C

′ with д ′ (C

′) ≤ (1 + 1
2 k−1) OPT (G, д ′).

If д(C) = 0 for the cycle C constructed by A (G, д) in line (2), then the claim is trivial. Assume

hat д(C) > 0 . Let C

∗ be a cycle of G with д(C

∗) = OPT (G, д). By Lemmas 1 and 2 , there is P ∈ P (T д)
uch that P is a segment of C

∗ and д(P) ≥ OPT (G, д)/ 2 . We consider P in the loop in lines (5)–(11).

hen, for the function д ′ considered in line (6),

д ′ (C

∗) = д(C

∗) − д(P) ≤ д(C

∗) −OPT (G, д)/ 2 = OPT (G, д)/ 2 .

herefore,

OPT (G, д ′) ≤ OPT (G, д) − д (P) and OPT (G, д ′) ≤ OPT (G, д)/ 2 . (2)

et C

′ be the cycle produced by Find-Cycle (G, д ′ , k − 1) in line (7). By the inductive assumption

д ′ (C

′) ≤
(
1 + 1

2 k−1

)
OPT (G, д ′).
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:9

T

B

B

m

a

U

o

a

d

i

l

r

w

a

q

h

s

i

o

d

u

i

x

s

2
hen by the definition of д and (2),

д(C

′) ≤д(V (C

′) ∪ V (P)) = д ′ (C

′) + д(P) ≤
(
1 +

1

2 k−1

)
OPT (G, д ′) + д(P)

= (OPT (G, д ′) + д(P)) +
1

2 k−1
OPT (G, д ′)

≤OPT (G, д) +
1

2 k
OPT (G, д) =

(
1 +

1

2 k

)
OPT (G, д).

y the choice of C in lines (8)–(9), the algorithm outputs a cycle C with д (C) ≤ д (C

′) ≤ (1 +
1

2 k
) OPT (G, д). This concludes the correctness proof.

We call Find-Cycle (G, f , k), where k =
 log 1 /ε�, to solve the problem for the original instance.

ecause the algorithm outputs a cycle C with f (C) ≤ (1 + 1
2 k

) OPT (G, f) and k =
 log 1 /ε�, f (C) ≤
(1 + ε) OPT (G, f), that is, we obtain the desired approximation.

To evaluate the running time, note first that we switch to the function д in line (6). We can

ake the following easy observation about such functions. Suppose that f 1 , f 2 , f 3 : 2
V (G) → R ≥0

re functions such that for every X ⊆ V (G), f 2 (X) = f 1 (X ∪ A) − f 1 (A) and f 3 (X) = f 2 (X ∪ B) −
f 2 (B) for some A, B ⊆ V (G). Then

f 3 (X) = f 2 (X ∪ B) − f 2 (B) = (f 1 (X ∪ B ∪ A) − f 1 (A)) − (f 1 (A ∪ B) − f 1 (A))

= f 1 (X ∪ (B ∪ A)) − f 1 (A ∪ B).

sing this observation iteratively, using only the oracle for the input function f , the values of all

ther functions occurring in the algorithm could be computed in O (n) time for each X ⊆ V (G).
Computing C and T д in line (2) can be done in O (n

2 (m + n log n)) time by Lemma 1 taking into

ccount that each value д(X) can be computed in O (n) time. The construction of P (T д) can be

one in O (n

2 m) time by Lemma 2 . The number of paths P considered in the loop in lines (5)–(11)

s at most nm by Lemma 2 . Therefore, the number of recursive calls of Find-Cycle (G, д ′ , k − 1) in

ine (7) is at most nm ≤ n

3 . The depth of the search tree is at most
 log 1 /ε�. Therefore, the total

unning time is n

O (log 1 /ε) . This concludes the proof. �

When the function f is integer-valued, Theorem 1 (by setting ε = 1
w+1 with OPT ≤ w ≤ 2 OPT ,

here w = f (C) for the cycle C returned by the approximation algorithm for ε = 1) implies that

 cycle of cost OPT can be found in time n

O (log OPT) . In particular, when OPT = n

O (1) , we obtain a

uasi-polynomial algorithm computing the cycle of minimum submodular cost. For example, this

olds if f is a rank function of a matroid.

Corollary 1. There is an algorithm that given an n-vertex graph G and an integer monotone

ubmodular function f : 2 V (G) → Z ≥0 represented by an oracle, finds a cycle C in G with f (C) = OPT

n time n

O (log OPT) .

Finally in this section, we observe that our results can be easily translated for the edge version

f the problem, even on multigraphs. For monotone submodular function f : 2 E (G) → R ≥0 , we

efine OPT = min { f (C) : C ⊆ E (G) is a cycle of G} in the same way as for the vertex costs.

Corollary 4. Let G be an m-edge multigraph, ε > 0 , and f : 2 E (G) → R ≥0 a monotone submod-

lar function represented by an oracle. Then a cycle C in G with f (C) ≤ (1 + ε) · OPT can be found

n time m

O (log 1 /ε) .

Proof. We construct a graph G

′ by subdividing each edge of G once, that is, for each edge

y ∈ E (G), we introduce a new vertex v xy , make v xy adjacent to x and y, and delete xy. For a

ubdivision vertex v xy , define e (v xy) = xy. Let W be the set of subdivision vertices. We define д :

V (G

′) → R ≥0 by setting д(X) = f ({e (v) : v ∈ W ∩ X }) for each X ⊆ V (G

′). The definition implies
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:10 F. V. Fomin et al.

t

i

c

a

4

I

f

m

o

a

m

o

O

r

l

C

o

p

k

E

C

F

O

a

f

u

s

s

a

m

A

hat д : 2 V (G

′) → R ≥0 is a monotone submodular function and that an oracle for f can be translated

nto an oracle for д. There is one-to-one correspondence between cycles of G and G

′ , because each

ycle C

′ is obtained from a cycle C of G by subdividing edges and f (C) = д(C

′). Therefore, we can

pply Theorem 1 for G

′ and д. �

 LOWER BOUND

n this section we prove the lower bounds of Theorems 2 and 3 . Both of these lower bounds will

ollow from the same construction, although with different parameters.

We give the lower bounds for the setting where the function f is defined on the edges of a

ultigraph, which then by Corollary 4 translates into a lower bound when the function is defined

n vertices of a graph. In our construction the function f is integer-valued.

Our lower bound is based on the following construction. For positive integers k and p we define

 multigraph G (k, p) with k + 1 vertices and pk + 1 edges (see Figure 1) and a monotone sub-

odular function f : 2 E (G (k,p)) → N so that OPT (G (k, p), f) = 2 k+1 − 1 . Then, for each cycle C
f length k + 1 of G (k, p) we define a monotone submodular function f C

: 2 E (G (k,p)) → N so that

PT (G (k, p), f C

) = 2 k+1 − 2 and f C

differs from f only on the cycle C . Deciding whether an oracle

epresents the function f or one of the functions f C

will then require querying each cycle C of

ength k + 1 and there are p k such cycles in G (k, p).

onstruction of G (k, p). The multigraph G (k, p) has vertex set {v 1 , v 2 , . . . , v k+1 }. For every pair

f consecutive vertices v i , v i+1 , 1 ≤ i ≤ k , there are p parallel edges F i = {e 1 i , . . . , e
p
i } with end-

oints v i and v i+1 . One more edge e k+1 connects v 1 and v k+1 , see Figure 1 . In total, G (k, p) has

 + 1 vertices and m = pk + 1 edges. The multigraph G (k, p) contains p k cycles of length k + 1 .

ach such cycle passes through all the vertices of the multigraph in the order v 1 , v 2 , . . . , v k+1 , v 1 .

onstructions of f and f C

. We define the following function f on the subsets X of E (G (k, p)) .
irst, if X ⊆ E (G (k, p)) contains a cycle, i.e., |X | ≥ k + 1 or there is i so that |X ∩ F i | ≥ 2 , we define

f (X) = 2 k+1 − 1 .

therwise, i.e., X ⊆ E (G (k, p)) does not contain a cycle, we define

f (X) = 2 k+1 − 2 k+1 −|X | ,

nd by definition we have that OPT (G (k, p), f) = 2 k+1 − 1 .

For a cycle C ⊆ E (G (k, p)) of length |C | = k + 1 , the function f C

is defined as f C

(X) = f (X)
or X � C , and f C

(C) = 2 k+1 − 2 . Clearly OPT (G (k, p), f C

) = 2 k+1 − 2 , and this optimum is given

niquely by the cycle C .

It is clear from the definitions that the functions f and f C

are monotone. Next we establish the

ubmodularities of f and f C

. Note that it is sufficient to prove that f C

is submodular, as then the

ubmodularity of f follows by writing f as a restriction of f C

on G (k, p + 1).

Lemma 3. The function f C

is submodular.

Proof. To prove the submodularity of f C

, we show that for every two sets X ⊂ Y ⊂ E (G (k, p))
nd e ∈ E (G (k, p)) \ Y ,

f C

(X ∪ { e}) − f C

(X) ≥ f C

(Y ∪ { e}) − f C

(Y). (3)

Depending on X , Y , and e , we consider different cases.

Case 1: f C

(X ∪ { e}) = 2 k+1 − 1 . Then also f C

(Y ∪ { e}) = 2 k+1 − 1 , and as f C

(X) ≤ f C

(Y) by

onotonicity, (3) follows.
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:11

o

d

t

i

a

l

t

2

o

p

д

o

a

k
a

t

G

a

O

f

O

f

b

r

a

m

Case 2: f C

(Y) = 2 k+1 − 1 . In this case f C

(Y) = f C

(Y ∪ { e}), and (3) follows by the monotonicity

f f C

.

Case 3: f C

(Y ∪ { e}) = 2 k+1 − 1 . If either f C

(X ∪ { e}) = 2 k+1 − 1 or f C

(Y) = 2 k+1 − 1 , then we are

one by the previous cases. Otherwise, |X ∪ { e} | ≤ |Y | ≤ k + 1 , and we consider two subcases.

Subcase 3a: X ∪ {e } = C . Then | X | = k and hence | Y | ≥ k + 1 . In this case because Y � X ∪ { e} ,
f C

(Y) = f C

(Y ∪ { e}) = 2 k+1 − 1 , while f C

(X) ≤ f C

(X ∪ { e}) by the monotonicity of f C

.

Subcase 3b: X ∪ {e } � C . In this case, X ∪ {e } does not contain a cycle, and therefore we have

hat f C

(X ∪ { e}) − f C

(X) = 2 k+1 − 2 k+1 −| X | −1 − (2 k+1 − 2 k+1 −|X |) = 2 k−|X | and |X | ≤ k − 1 . Then,

f Y = C , we have that f C

(Y ∪ { e}) − f C

(Y) = 1 ≤ 2 k−|X | . If Y � C , then Y does not contain a cycle

nd we have that f C

(Y ∪ { e}) − f C

(Y) = 2 k+1 − 1 − (2 k+1 − 2 k+1 −|Y |) < 2 k+1 −|Y | ≤ 2 k−|X | . (For the

ast inequality we use | X | < | Y | .)

Case 4: None of the previous cases holds. In this case X ∪ {e} does not contain a cycle, so we have

hat f C

(X ∪ { e}) − f C

(X) = 2 k−|X | . If Y ∪ { e } = C , then f C

(Y ∪ {e }) − f C

(Y) = 2 k+1 − 2 − (2 k+1 −

k+1 −k) = 0 . If Y ∪ {e } � C , then f C

(Y ∪ { e}) − f C

(Y) = 2 k−|Y | ≤ 2 k−|X | . �

Now each of the functions f C

and the function f could be represented by the oracle, and the

ptimum depends on whether the function represented by the oracle is f or one of the functions

f C

. Therefore, it remains to argue that we cannot distinguish between f or one of f C

in less than

k queries.

Lemma 4. Let д : 2 E (G (k,p)) → N be a function represented by an oracle, with a promise that either

 = f or д = f C

for some cycle C of G (k, p) of length |C | = k + 1 . It requires at least p k queries to the

racle to determine if д = f .

Proof. Suppose the oracle answers the queries always according to the function f , and an

lgorithm terminates after asking less than p k queries. Because G (k, p) has p k cycles of length

 + 1 , there exists some cycle C so that the algorithm has not queried C , and therefore as f and f C

re equivalent on all inputs except C , all the answers are consistent with both f and f C

. Therefore

he algorithm cannot decide correctly whether д = f or д = f C

. �

Next we summarize the lower bound that follows from the constructions of the multigraph

(k, p), the functions f , and f C

, and Lemma 4 .

Lemma 5. For any positive integers p, k , there exists a graph G with kp + k + 2 vertices and

n integer submodular function f : 2 V (G) → N represented by an oracle so that deciding whether

PT (G, f) = 2 k+1 − 2 or OPT (G, f) = 2 k+1 − 1 requires at least p k queries to the oracle.

Proof. We take the multigraph G (k , p) with m = k p + 1 edges and let f : 2 E (G (k,p)) → N be a

unction represented by an oracle. By Lemma 4 , deciding whether OPT (G (k, p), f) = 2 k+1 − 2 or

PT (G (k, p), f) = 2 k+1 − 1 requires p k queries to the oracle in the worst case. This construction is

or a multigraph where the function is on the edges, but by the argument of Corollary 4 the lower

ound also holds for graphs with kp + k + 2 vertices where the function is on the vertices. �

By making use of Lemma 5 , we establish Theorem 2 with the lower bound matching the algo-

ithmic bound of Theorem 1 . We restate the theorem here.

Theorem 2. There is no algorithm computing a cycle of cost at most OPT on a given n-vertex graph

nd an integer monotone submodular function f : 2 V (G) → Z ≥0 represented by an oracle, using at

ost д(OPT) · n

o (log OPT) queries to the oracle, for any computable function д.
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:12 F. V. Fomin et al.

x
q

f

k

w

a

w

q

n

o

e

p

i

e

5

M

a

r

c

t

s

o

t

s

r

F

c

k

n

1

b

A

Proof. We assume without loss of generality that д is non-decreasing and д(x) ≥ x for every

 ∈ R ≥0 . Assume that there is an algorithm that makes at most t (OPT , n) = д(OPT) · n

o (log OPT)

ueries. Now, there exist some large enough N and k ′ so that t (OPT , n) < д(OPT) · n

(log 2 OPT)/16

or all OPT ≥ k ′ and n ≥ N . We apply Lemma 5 with p = д(4 k ′) · N and k =
 log 2 k
′ �. Let n = kp +

 + 2 = k N · д(4 k ′) +
 log 2 k
′ � + 2 . Because д is non-decreasing and д(x) ≥ x for every x ∈ R ≥0 ,

e have that
 log 2 k
′ � ≤ k ′ ≤ д(4 k ′) and it holds that N ≤ n ≤ k N · д(4 k ′) ≤ (д(4 k ′) · N) 2 . We get

 graph with n vertices, where N ≤ n ≤ (д(4 k ′) · N) 2 , and optimum OPT with k ′ ≤ OPT ≤ 4 k ′ in
hich the problem requires at least

(д(4 k ′) · N)
 log 2 k
′ � ≥ д(4 k ′) · (д(4 k ′) · N)
 log 2 k

′ �−1 ≥ д(OPT) · n

(log 2 OPT)/16

ueries to solve. This contradicts the existence of such an algorithm. �

We then establish Theorem 3 .

Theorem 3. There is no algorithm computing a cycle of cost at most OPT = O (n) on a given

-vertex graph and an integer monotone submodular function f : 2 V (G) → Z ≥0 represented by an

racle, using at most n

o (log n) queries to the oracle.

Proof. Assume there is an algorithm that makes at most t (n) = n

o (log n) queries. Now, there

xists a large enough N so that t (n) < n

(log 2 n)/4 for all n ≥ N . However, applying Lemma 5 with

 = N and k =
 log 2 N � gives a graph with n vertices, where N ≤ n ≤ N

2 , and optimum OPT ≤ 4 n,

n which the problem requires at least N

 log 2 N � ≥ n

(log 2 n)/4 queries to solve. This contradicts the

xistence of such an algorithm. �

 THE WIDE FAMILY HITTING PROBLEM

otivated by the question whether Hedge Minimum Cycle admits a polynomial-time algorithm,

nd the fact that our algorithm for monotone submodular functions is optimal already on a very

estricted class of graphs considered in Section 4 , we study the complexity of Hedge Minimum Cy-

le on the subdivisions of G (k, p) (see Figure 1). In this class, Hedge Minimum Cycle is equivalent

o a problem which we call Wide Family Hitting .

For an integer k and a universe U , we say that a family F of sets is k-wide if for any two distinct

ets A, B ∈ F it holds that | A ∪ B | > k . In the Wide Family Hitting problem, the input consists

f an integer k , a universe U , and m k-wide families F 1 , . . . , F m

over the universe U . The task is

o decide if it is possible to select one set from each family, i.e., sets S 1 ∈ F 1 , S 2 ∈ F 2 , . . . , S m

∈ F m
o that | ⋃ m

i= 1 S i | ≤ k . We denote the size of the input by N =
∑ m

i= 1

∑

A∈F i |A|.
To see the relations between Hedge Minimum Cycle and Wide Family Hitting , we first show

eduction from Wide Family Hitting to Hedge Minimum Cycle . Consider m k-wide families

 1 , . . . , F m

over the universe U . We construct the vertex-colored graph G, where the vertices are

olored by the elements of U , as follows:

• construct m + 1 vertices v 0 , . . . , v m

and color them by a special color c � U ;

• for each i ∈ { 1 , . . . , m} , construct | F i | (v i−1 , v i)-paths such that for every S ∈ F i , we have

a path with | S | internal vertices colored by the elements of S ⊆ U ;

• make v 0 and v m

adjacent.

Let also k ′ = k + 1 . It can be seen that G has a cycle C , whose vertices are colored by at most

′ colors, if and only if there are S i ∈ F i for i ∈ { 1 , . . . , m} such that | ⋃ m

i= 1 S i | ≤ k . To prove this,

otice that because F 1 , . . . , F m

are k-wide, any cycle C in G containing vertices of at most k ′ = k +
 colors should contain (v i−1 , v i)-paths for each i ∈ { 1 , . . . , m} . For every i ∈ { 1 , . . . , m} , let S i ∈ F i
e the set of colors of the internal vertices of the (v i−1 , v i)-path in C . If C contains vertices of at
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:13

m
⋃

b

p

a

i

f

t

p

i

t

t

c

s

t

f

A

w

A

s

w

X
w

S

i

ost k ′ = k + 1 colors, then | m

i= 1 S i | ≤ k . For the opposite direction, let S i ∈ F i for i ∈ { 1 , . . . , m}
e such that | ⋃ m

i= 1 S i | ≤ k . Then we construct the cycle C in G by concatenating the (v i−1 , v i)-
aths whose internal vertices are colored by the elements of S i and completing the cycle by the

ddition of the edge v 0 v m

. Clearly, the vertices of C are colored by at most k ′ = k + 1 colors.

To reduce Hedge Minimum Cycle to Wide Family Hitting on subdivisions of the graphs G
llustrated on Figure 1 , assume that G is of the following form:

• G has m + 1 vertices v 0 , . . . , v m

and v 0 is adjacent to v m

,

• for each i ∈ { 1 , . . . , m} , G has a family of internally vertex-disjoint paths P i between v i−1

and v i such that each path has at least one internal vertex.

Suppose also that c : V (G) → U is a coloring function that colors the vertices of G by colors

rom a set U . For each i ∈ { 1 , . . . , m} , we define F i = { c (P) : P ∈ P i } , that is, F i is the family of

he sets of colors of the paths from P i . If C is a cycle of G, then either (i) C is formed by two

aths P , Q ∈ P i for some i ∈ { 1 , . . . , m} or (ii) C contains the concatenation of m paths P i ∈ P i for

 ∈ { 1 , . . . , m} . If we are looking for a cycle C containing at most k colors, we can use brute force

o check whether there is such a cycle of type (i), because the number of such cycles is quadratic in

he size of G. Suppose that this is not the case and we have (ii). Then each family F i is k-wide, and a

ycle containing vertices of at most k colors exists if and only if there are S i ∈ F i for i ∈ { 1 , . . . , m}
uch that | ⋃ m

i= 1 S i | ≤ k .

We first show that in contrast to the lower bound from Theorem 3 , the Wide Family Hit-

ing problem is fixed-parameter-tractable when parameterized by k . We use the following lemma

or it.

Lemma 6. Let X ⊆ U be a set and F a k-wide family of sets over U . There are at most 2 |X | sets

 ∈ F with |A ∪ X | ≤ k and |A| ≤ |X |.

Proof. Suppose there are sets A, B ∈ F with A ∩ X = B ∩ X , |A ∪ X | ≤ k , | B ∪ X | ≤ k , | A| ≤
| X | , and | B | ≤ | X | . Then we have that

| A ∪ B | = | A| + | B | − | A ∩ B | ≤ | A| + | B | − | A ∩ X | ≤ | A| + | X | − | A ∩ X | = | A ∪ X | ≤ k ,

hich would contradict the fact that F is k-wide. Therefore, all sets A ∈ F with |A ∪ X | ≤ k and

| A| ≤ | X | have a different intersection with X , implying that there are at most 2 |X | of them. �

We will also use the following lemma in both of the algorithms of this section.

Lemma 7. Let X ⊆ U be a set with |X | ≤ k and F a k-wide family of sets over U . For any two sets

, B ∈ F it holds that |X ∪ A| − |X | + |X ∪ B | − |X | > k − | X | .

Proof. Note that |X ∪ A| + |X ∪ B | − |X | ≥ |A ∪ B | > k . �

Now we give our FPT algorithm.

Theorem 4. There is a 2 O (k log k) N

O (1) time algorithm for Wide Family Hitting .

Proof. First, we guess the largest set X = S i selected to the solution. Then we can remove all

ets A from the other families with | A| > | X | or | A ∪ X | > k . Therefore, as | X | ≤ k , by Lemma 6 ,

e can now assume that |F i | ≤ 2 k for each i .
Then, we process the families F i in an order from i = 1 to i = m, accumulating a partial solution

 being the union of the selected sets so far. Suppose that at index i , the family F i contains a set S i
ith S i ⊆ X . Then, we can greedily include S i to the solution. Otherwise, we branch on which set

 i ∈ F i we include to the solution, which increases the size of our partial solution X . As we can

ncrease X at most k times and |F i | ≤ 2 k , this gives a (2 k) k N

O (1) = 2 O (k 2) N

O (1) time algorithm.
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

2:14 F. V. Fomin et al.

t

i

X

l

l

s

W

t

s

i

b

w

f

l

|

p

W

t

i

r

s

s

i

s

N

A

To optimize the algorithm to 2 O (k log k) N

O (1) time, we say that a set A ∈ F i is light with respect

o the partial solution X if |X ∪ A| − |X | ≤ (k − |X |)/ 2 . In particular, a set A is light if including

t to X decreases the remaining budget by at most half, while a set A is heavy if including it to

 decreases the remaining budget by more than a half. By Lemma 7 , F i contains at most one

ight set.

In the branching, we can select a heavy set at most O (log k) times, and otherwise we select a

ight set. As there are 2 k options only when we select a heavy set and only one option when we

elect a light set, the time complexity becomes 2 k (2 k) O (log k) N

O (1) = 2 O (k log k) N

O (1) . �

Then, we give a polynomial-time algorithm when | F i | is bounded.

Theorem 5. Let |F i | ≤ d for every i . Then there is a k O (log d) N

O (1) time randomized algorithm for

ide Family Hitting .

Proof. As in the proof of Theorem 4 , we again process the families F i from i = 1 to i = m, but

his time instead of branching, we decide probabilistically which set to include in the solution.

At step i , let X ⊆ U denote the accumulated partial solution so far (the union of the selected

ets), and let b i = k − |X | be the remaining budget. Again, as in Theorem 4 , we say that set A ∈ F i
s light if |X ∪ A| − |X | ≤ b i / 2 , i.e., including A to the solution takes less than half of the remaining

udget. Otherwise a set A ∈ F i is heavy. By Lemma 7 , there is at most one light set in F i .
First, if there is a set A ∈ F i with A ⊆ X , we can greedily select the set A. Otherwise, if b i = 0

e must return that there is no solution, and if b i ≥ 1 , our algorithm selects a set from F i as

ollows. If there is a light set L ∈ F i , let c i = |X ∪ L| − |X | ≥ 1 be the cost of L. Otherwise, we

et c i = b/ 2 . Note that in both cases c i ≤ b i / 2 . By Lemma 7 , the cost of any heavy set H ∈ F i is

X ∪ H | − |X | > b i − c i . Our algorithm includes the light set L to the solution with probability
b i −c i

b i
(if a light set exists), and any heavy set H with probability

c i
b i d

. Note that as | F i | ≤ d , these

robabilities sum up to a number at most 1.

We claim that the probability that our algorithm finds a solution if one exists is at least

1

2 k
·
(

1

d

)1 +log 2 k

.

e prove this by induction on b. The base case is that the set in F i that belongs to the solution

akes up all of the remaining budget, in particular, that a heavy set H ∈ F i with |X ∪ H | − |X | = b i
s in the solution. In this case, the algorithm is correct as long as it selects H at this step, as the

emaining steps will be deterministic. As c i ≥ 1 / 2 and k ≥ b i ≥ 1 , the probability of correctness is

c i
b i d
≥ 1

2 b i
· 1

d
≥ 1

2 b i

(
1

d

)1 +log 2 b i

≥ 1

2 k
·
(

1

d

)1 +log 2 k

,

o the base case is satisfied.

Otherwise, a set from F i that does not take all of the remaining budget belongs to the correct

olution. Suppose this set is light. Now, by induction, the probability that the algorithm is correct

s

b i − c i
b i

· 1

2 (b i − c i)
·
(

1

d

)1 +log 2 (b i −c i)

=
1

2 b i
·
(

1

d

)1 +log 2 (b i −c i)

≥ 1

2 b i
·
(

1

d

)1 +log 2 b i

≥ 1

2 k
·
(

1

d

)1 +log 2 k

,

o the induction holds.

Then, suppose that the set from F i that belongs to the correct solution is a heavy set H ∈ F i .
ote that in this case the remaining budget is b i − (|X ∪ H | − |X |) < b i − (b i − c i) = c i ≤ b i / 2 . By
CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

Shortest Cycles With Monotone Submodular Costs 2:15

i

a

r

6

W

u

s

n

o

a

a

m

s

p

t

C

r

c

o

i

o

t

M

A

W

t

R

nduction, the algorithm is correct with probability

c i
b i d
· 1

2 (b i − (| X ∪ H | − | X |)) ·
(

1

d

)1 +log 2 (b i −(| X∪ H | −| X |))
≥ c i
b i
· 1

2 c i
·
(

1

d

)2 +log 2 (b i /2)

≥ 1

2 b i
·
(

1

d

)1 +log 2 b i

≥ 1

2 k
·
(

1

d

)1 +log 2 k

.

We have analyzed all cases in the induction, and therefore the algorithm is correct with prob-

bility

1
2 k · (1 /d) 1 +log 2 k , and therefore, repeating it 2 k · d O (log k) = k O (log d) times yields a correct

esult with constant probability. �

 CONCLUSION

e gave an n

O (log 1 /ε) time PTAS for the shortest monotone submodular cycle problem, and showed

nconditional lower bounds establishing that this algorithm is optimal even in a very restricted

etting, in particular even when the function is integer-valued, OPT = O (n), and the graph is pla-

ar and has bounded pathwidth.

We leave several open questions. The main question about minimum cycles is the complexity

f Hedge Minimum Cycle . From what we know, there is no evidence against the existence of

 polynomial-time algorithm. On the other hand, it also could be that our quasipolynomial-time

lgorithm for integer-valued monotone submodular functions is also optimal for Hedge Mini-

um Cycle . This problem seems difficult, and therefore we believe it is worth exploring even

ome special cases of it. In particular, we also ask if the Wide Family Hitting problem admits a

olynomial-time algorithm. While Theorem 4 shows that the special case of Wide Family Hit-

ing is fixed-parameter tractable, it remains a challenging question whether the Hedge Minimum

ycle is fixed-parameter tractable in the general case. Of course, if the problem is in P this would

esolve all these questions.

In the other direction, towards showing the hardness of Hedge Minimum Cycle , we ask a purely

ombinatorial question which is a prerequisite for showing the hardness. We say that a subset S
f the hedges is a minimal partial solution if | S | ≤ k , and there is a pair of vertices s, t so that S
nduces a (s, t)-path, but no subset of S induces an (s, t)-path. We ask if there is a construction

f a graph with hedges where the number of minimal partial solutions is superpolynomial. Note

hat if the number of minimal partial solutions is polynomially bounded, then we can solve Hedge

inimum Cycle in polynomial time by a simple algorithm enumerating them.

CKNOWLEDGMENTS

e would like to thank the anonymous reviewers for their valuable in-depth comments that led

o the improvement of the presentation of the results of this paper.

EFERENCES

[1] Hajo Broersma, Xueliang Li, Gerhard J. Woeginger, and Shenggui Zhang. 2005. Paths and cycles in colored graphs.

Australas. J. Comb. 31 (2005), 299–312. http://ajc.maths.uq.edu.au/pdf/31/ajc _ v31 _ p299.pdf

[2] William H. Cunningham. 1985. On submodular function minimization. Combinatorica 5, 3 (1985), 185–192. DOI: https:

//doi.org/10.1007/BF02579361

[3] Reinhard Diestel. 2017. Graph Theory, 5th Edition . Graduate texts in mathematics, Vol. 173. Springer. DOI: https://doi.

org/10.1007/978- 3- 662- 53622- 3

[4] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1959), 269–271.

DOI: https://doi.org/10.1007/BF01386390
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p299.pdf
https://doi.org/10.1007/BF02579361
https://doi.org/10.1007/BF02579361
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/BF01386390

2:16 F. V. Fomin et al.

[

[

[

[

[

[

[

[

[

[

R

A

[5] Michael L. Fredman and Robert Endre Tarjan. 1984. Fibonacci Heaps and Their Uses in Improved Network Opti-

mization Algorithms. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science (FOCS . IEEE,

338–346. DOI: https://doi.org/10.1109/SFCS.1984.715934

[6] Mohsen Ghaffari, David R. Karger, and Debmalya Panigrahi. 2017. Random contractions and sampling for hypergraph

and hedge connectivity. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) .

SIAM, 1101–1114. DOI: https://doi.org/10.5555/3039686.3039757

[7] Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. 2009. Approximability of combinatorial problems

with multi-agent submodular cost functions. In Proceedings of the 50th Annual IEEE Symposium on Foundations of

Computer Science (FOCS) . IEEE, 755–764. DOI: https://doi.org/10.1109/FOCS.2009.81

[8] Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. 2009. Approximating submodular

functions ever y where. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) . SIAM,

535–544. DOI: https://doi.org/10.1137/1.9781611973068

[9] Martin Grötschel, László Lovász, and Alexander Schrijver. 1981. The ellipsoid method and its consequences in com-

binatorial optimization. Combinatorica 1, 2 (1981), 169–197. DOI: https://doi.org/10.1007/BF02579273

10] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. 2001. A combinatorial strongly polynomial algorithm for mini-

mizing submodular functions. Journal of the ACM (JACM) 48, 4 (2001), 761–777. DOI: https://doi.org/10.1145/502090.

502096

11] Satoru Iwata and Kiyohito Nagano. 2009. Submodular function minimization under covering constraints. In Proceed-

ings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS) . IEEE, 671–680. DOI: https://

doi.org/10.1109/FOCS.2009.31

12] Satoru Iwata and James B. Orlin. 2009. A simple combinatorial algorithm for submodular function minimization. In

Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) . SIAM, 1230–1237. DOI: https://

doi.org/10.5555/1496770.1496903

13] Lars Jaffke, Paloma T. Lima, Tomás Masarík, Marcin Pilipczuk, and Uéverton S. Souza. 2022. A tight quasi-polynomial

bound for Global Label Min-Cut. CoRR abs/2207.07426 (2022). arXiv:2207.07426

14] Lars Jaffke, Paloma T. Lima, Tomás Masarík, Marcin Pilipczuk, and Uéverton S. Souza. 2023. A tight quasi-polynomial

bound for global label min-cut. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA) . SIAM, 290–303. DOI: https://doi.org/10.1137/1.9781611977554.ch12

15] Stefanie Jegelka and Jeff Bilmes. 2016. Graph cuts with interacting edge weights: Examples, approximations, and

algorithms. Mathematical Programming (2016), 1–42. DOI: https://doi.org/10.1007/s10107- 016- 1038- y

16] Alexander Schrijver. 2000. A combinatorial algorithm minimizing submodular functions in strongly polynomial time.

Journal of Combinatorial Theory, Series B 80, 2 (2000), 346–355. DOI: https://doi.org/10.1006/jctb.2000.1989

17] Zoya Svitkina and Lisa Fleischer. 2011. Submodular approximation: Sampling-based algorithms and lower bounds.

SIAM J. Comput. 40, 6 (2011), 1715–1737. DOI: https://doi.org/10.1137/10078335

18] Laurence A. Wolsey. 1982. An analysis of the greedy algorithm for the submodular set covering problem. Combina-

torica 2, 4 (1982), 385–393. DOI: https://doi.org/10.1007/BF02579435

19] Peng Zhang, Jin-Yi Cai, Lin-Qing Tang, and Wen-Bo Zhao. 2011. Approximation and hardness results for label cut and

related problems. Journal of Combinatorial Optimization 21, 2 (2011), 192–208. DOI: https://doi.org/10.1007/s10878-

009- 9222- 0
eceived 12 November 2022; revised 18 September 2023; accepted 24 September 2023

CM Transactions on Algorithms, Vol. 20, No. 1, Article 2. Publication date: November 2023.

https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.5555/3039686.3039757
https://doi.org/10.1109/FOCS.2009.81
https://doi.org/10.1137/1.9781611973068
https://doi.org/10.1007/BF02579273
https://doi.org/10.1145/502090.502096
https://doi.org/10.1145/502090.502096
https://doi.org/10.1109/FOCS.2009.31
https://doi.org/10.1109/FOCS.2009.31
https://doi.org/10.5555/1496770.1496903
https://doi.org/10.5555/1496770.1496903
https://doi.org/10.1137/1.9781611977554.ch12
https://doi.org/10.1007/s10107-016-1038-y
https://doi.org/10.1006/jctb.2000.1989
https://doi.org/10.1137/10078335
https://doi.org/10.1007/BF02579435
https://doi.org/10.1007/s10878-009-9222-0
https://doi.org/10.1007/s10878-009-9222-0

	1 INTRODUCTION
	2 PRELIMINARIES
	3 PTAS FOR SHORTEST CYCLES WITH MONOTONE SUBMODULAR COSTS
	4 LOWER BOUND
	5 THE WIDE FAMILY HITTING PROBLEM
	6 CONCLUSION
	7 ACKNOWLEDGMENTS
	REFERENCESendgraf

