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Abstract
Parameterization above (or below) a guarantee is a successful concept in parameterized
algorithms. The idea is that many computational problems admit “natural” guarantees
bringing to algorithmic questions whether a better solution (above the guarantee)
could be obtained efficiently. For example, for every boolean CNF formula on m
clauses, there is an assignment that satisfies at least m/2 clauses. How difficult is
it to decide whether there is an assignment satisfying more than m/2 + k clauses?
Or, if an n-vertex graph has a perfect matching, then its vertex cover is at least n/2.
Is there a vertex cover of size at least n/2 + k for some k ≥ 1 and how difficult
is it to find such a vertex cover? The above guarantee paradigm has led to several
exciting discoveries in the areas of parameterized algorithms and kernelization. We
argue that this paradigm could bring forth fresh perspectives on well-studied problems
in approximation algorithms. Our example is the longest cycle problem. One of the
oldest results in extremal combinatorics is the celebrated Dirac’s theorem from 1952.
Dirac’s theorem provides the following guarantee on the length of the longest cycle:
for every 2-connected n-vertex graphG with minimum degree δ(G) ≤ n/2, the length
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of a longest cycle L is at least 2δ(G). Thus the “essential” part in finding the longest
cycle is in approximating the “offset” k = L −2δ(G). The main result of this paper is
the above-guarantee approximation theorem for k. Informally, the theorem says that
approximating the offset k is not harder than approximating the total length L of a
cycle. In other words, for any (reasonably well-behaved) function f , a polynomial
time algorithm constructing a cycle of length f (L) in an undirected graph with a
cycle of length L , yields a polynomial time algorithm constructing a cycle of length
2δ(G) + �( f (k)).

Keywords Longest path · Longest cycle · Approximation algorithms · Above
guarantee parameterization · Minimum degree · Dirac theorem

1 Introduction

One of the concepts that had a strong impact on the development of parameterized
algorithms and kernelization is the idea of the above guarantee parameterization.
Above guarantee parameterization grounds on the following observation: the natural
parameterization of a maximization/minimization problem by the solution size is not
satisfactory if there is a lower bound for the solution size that is sufficiently large
[25]. To make this discussion concrete, consider the example of the classical NP-
complete problemMax Cut. Observe that in any graph withm edges there is always
a cut containing at least m/2 edges. (Actually, slightly better bounds are known in
the literature [11, 18].) Thus Max Cut is trivially fixed-parameter tractable (FPT)
parameterized by the size of the max-cut. Indeed, the following simple algorithm
shows that the problem is FPT: If k ≤ m/2, then return yes; else m ≤ 2k and any
brute-force algorithmwill do the job. However, the question aboutMax Cut becomes
much more meaningful and interesting, when one seeks a cut above the “guaranteed”
lower bound m/2.

The above guarantee approach was introduced by Mahajan and Raman [45] and
it was successfully applied in the study of several fundamental problems in parame-
terized complexity and kernelization. For illustrative examples, we refer to [2, 4, 14,
25, 27, 32–34, 36, 37, 44], see also the recent survey of Gutin and Mnich [35]. Quite
surprisingly, the theory of the above (or below) guarantee approximation remains
unexplored. (Notable exceptions are the works of Mishra et al. [46] on approximating
the minimum vertex cover beyond the size of a maximum matching and of Bollobás
and Scott on approximating max-cut beyond the m/2 + √

m/8 bound [11].)
In this paper, we bring the philosophy of the above guarantee parameterization into

the realm of approximation algorithms. In particular,

The goal of this paper is to study the approximability of the classical prob-
lems of finding a longest cycle and a longest (s, t)-path in a graph from the
viewpoint of the above guarantee parameterization.

Our results Approximating the length of a longest cycle in a graph enjoys a lengthy
and rich history [6, 7, 20, 21, 28, 29, 49]. There are several fundamental results in
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extremal combinatorics providing lower bounds on the length of a longest cycle in
a graph. The oldest of these bounds is given by Dirac’s Theorem from 1952 [17].
Dirac’s Theorem states that a 2-connected graph G with the minimum vertex degree
δ(G) contains a cycle of length L ≥ min{2δ(G), |V (G)|}. Since every longest cycle
in a graph G with δ(G) < 1

2 |V (G)| (otherwise, G is Hamiltonian and a longest
cycle can be found in polynomial time) always has a “complementary” part of length
2δ(G), the essence of the problem is in computing the “offset” k = L − 2δ(G).
Informally, thefirstmainfinding of our paper is thatDirac’s theorem iswell-compatible
with approximation. We prove that approximating the offset k is essentially not more
difficult than approximating the length L .

More precisely. Recall that f is subadditive if for all x , y it holds that f (x + y) ≤
f (x) + f (y). Our main result is the following theorem.

Theorem 1 Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm finding a cycle of length at least f (L) in
graphs with the longest cycle length L. Then there exists a polynomial time algorithm
that finds a cycle of length at least 2δ(G)+�( f (L −2δ(G))) in a 2-connected graph
G with δ(G) ≤ 1

2 |V (G)| and the longest cycle length L.

The 2-connectivity condition is important. As was noted in [26], deciding whether
a connected graph G contains a cycle of length at least 2δ(G) is NP-complete. The-
orem1 trivially extends to approximating the longest path problem above 2δ(G). For
the longest path, the requirement on 2-connectivity of a graph can be relaxed to con-
nectivity. This can be done by a standard reduction of adding an apex vertex v to the
connected graphG, see e.g. [26]. The minimum vertex degree in the new graph G+v,
which is 2-connected, is equal to δ(G)+1, and G has a path of length at least L if and
only if G + v has a cycle of length at least L + 2. Thus approximation of the longest
cycle (by making use of Theorem1) in G + v, is also the approximation of the longest
path in G.

Related work The first approximation algorithms for longest paths and cycles
followed the development of exact parameterized algorithms. Monien [47] and Bod-
laender [9] gave parameterized algorithms computing a path of length L in times
O(L!2Ln) and O(L!nm) respectively. These algorithms imply also approximation
algorithms constructing in polynomial time a path of length �(log L/ log log L),
where L is the longest path length in graph G. In their celebrated work on color
coding, Alon, Yuster, and, Zwick [1] obtained an algorithm that in time O(5.44Ln)

finds a path/cycle of length L . The algorithm of Alon et al. implies constructing in
polynomial time a path of length �(log L). A significant amount of the consecutive
work targets to improve the base of the exponent cL in the running times of the param-
eterized algorithms for longest paths and cycles [5, 8, 23, 42, 50]. The surveys [22,
43], and [15, Chapter 10] provide an overview of ideas and methods in this research
direction. The exponential dependence in L in the running times of these algorithms
is asymptotically optimal: An algorithm finding a path (or cycle) of length L in time
2o(L)nO(1) would fail the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi,
and Zane [38]. Thus none of the further improvements in the running times of param-
eterized algorithms for longest cycle or path, would lead to a better than �(log L)

approximation bound.
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Björklund and Husfeldt [6] made the first step “beyond color-coding” in approx-
imating the longest path. They gave a polynomial-time algorithm that finds a path
of length �(log L/ log log L)2 in a graph with the longest path length L . Gabow in
[29] enhanced and extended this result to approximating the longest cycle. His algo-
rithm computes a cycle of length 2�(

√
log L/ log log L) in a graph with a cycle of length

L . Gabow and Nie [31] observed that a refinement of Gabow’s algorithm leads to
a polynomial-time algorithm constructing cycles of length 2�(

√
log L). This is better

than (log(L))O(1) but worse than Lε. Pipelining the algorithm of Gabow and Nie with
Theorem1 yields a polynomial time algorithm constructing in a 2-connected graph G
a cycle of length 2δ(G) + �(c

√
log k). For graphs of bounded vertex degrees, better

approximation algorithms are known [13, 21].
The gap between the upper and lower bounds for the longest path approximation is

still big. Karger, Motwani, and Ramkumar [40] proved that the longest path problem
does not belong to APX unless P = NP. They also show that for any ε > 0, it cannot
be approximated within 2log

1−ε n unless NP ⊆ DTIME(2O(log1/ε n)). Bazgan, Santha,
and Tuza [3] extended these lower bounds to cubic Hamiltonian graphs. For directed
graphs the gap between the upper and lower bounds is narrower [7, 30].

Our approximation algorithms are inspired by the recent work Fomin, Golovach,
Sagunov, and Simonov [26] on the parameterized complexity of the longest cycle
beyond Dirac’s bound. Fomin et al. were interested in computing the “offset” beyond
2δ(G) exactly. Their parameterizes algorithm decides whether G contains a cycle of
length at least 2δ(G) + k in time 2O(k)nO(1), and thus in polynomial time computes
a cycle of length 2δ(G) + �(log k). However, the tools developed in [26] are not
sufficient to go beyond �(log k)-bound on the offset. The main combinatorial tools
from [26] are Erdős–Gallai decomposition and Dirac decomposition of graphs. For
the needs of approximation, we have to develop novel (“nested”) variants or prove
additional structural properties of these decompositions.

Dirac’s theorem is one of the central pillars of ExtremalGraphTheory. The excellent
surveys [12] and [10] provide an introduction to this fundamental subarea of graph
theory. Besides [26], the algorithmic applications of Dirac’s theorem from the per-
spective of parameterized complexity were studied by Jansen, Kozma, and Nederlof
in [39].
Paper structure Sect. 2 provides an overview of the techniques employed to achieve
our results. Then, Sect. 3 introduces notations and lists auxiliary results. Section4
guides through the proof of the approximation result for (s, t)-paths, which is the key
ingredient required for Theorem1. Section5 is dedicated to the proof of Theorem1
itself. Finally, we conclude with a summary and some open questions in Sect. 6.

2 Overview of the Proofs

In this section, we provide a high-level strategy of the proof of Theorem1, as well
as key technical ideas needed along the way. The central concept of our work is
an approximation algorithm for the Longest Cycle problem. Formally, such an
algorithm should run in polynomial time for a given graph G and should output a
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cycle of length at least f (L), where L is the length of the longest cycle in G. The
function f here is the approximation guarantee of the algorithm. In ourwork, we allow
it to be arbitrary non-decreasing function f : R+ → R+ that is also subadditive (i.e.,
f (x)+ f (y) ≥ f (x+ y) for arbitrary x, y). We also note that an f (L)-approximation
algorithm forLongest Cycle immediately gives a 1

2 f (2L)-approximation algorithm
for Long (s, t)- Path in 2-connected graphs (by Menger’s theorem, see Lemma2
for details).

Our two main contributions assume that we are given such an f -approximation
algorithm as a black box. In fact, we only require to run this algorithm on an arbitrary
graph as an oracle and receive its output. We do not need to modify or know the
algorithm routine.

While the basis of our algorithm comes from the structural results of Fomin et
al. [26], in the first part of this section we do not provide the details on how it is used.

The first of our contributions is a polynomial-time algorithm that finds a long
(s, t)-path in a given 2-connected graph G with two vertices s, t ∈ V (G). The longest
(s, t)-path in G always has length δ(G − {s, t}) + k for k ≥ 0 by Erdős–Gallai
theorem, and the goal of the algorithm is to find an (s, t)-path of length at least
δ(G − {s, t}) + �( f (k)) in G. To find such a path, this algorithm first recursively
decomposes the graph G in a specific technical way. As a result, it outputs several
triples (Hi , si , ti ) in polynomial time,where Hi is a 2-connectedminor ofG and si , ti ∈
V (Hi ). For each triple, algorithm runs the black box to find a f -approximation of the
longest (si , ti )-path in Hi . In the second round, our algorithm cleverly uses constructed
approximations to construct a path of length at least δ(G − {s, t}) + �( f (k)) in the
initial graph G. This is summarized as the following theorem.

Theorem 2 Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm computing an (s, t)-path of length at
least f (L) in graphs with given two vertices s and t having the longest (s, t)-path
of length L. Then there is a polynomial-time algorithm that outputs an (s, t)-path of
length at least δ(G − {s, t}) + �( f (L − δ(G − {s, t}))) in a 2-connected graph G
with two given vertices s and t having the longest (s, t)-path length L.

The second (and main) contribution of this paper is the polynomial-time algorithm
that approximates the longest cycle in a given 2-connected graphG such that 2δ(G) ≤
|V (G)|. It employs the black-box f -approximation algorithm for Longest Cycle to
find a cycle of length 2δ(G) + �( f (k)), where 2δ(G) + k is the length of the longest
cycle in G. By Dirac’s theorem applied to G, k is always at least 0.

To achieve that, our algorithm first tries to decompose the graph G. However, in
contrast to the first contributed algorithm, here the decomposition process is much
simpler. In fact, the decomposition routine is never applied recursively, as the decom-
position itself needs not to be used: its existence is sufficient to apply another, simple,
procedure.

Similarly to the first contribution, the algorithm then outputs a series of triples
(Hi , si , ti ), where Hi is a 2-connected minor of G and si , ti ∈ V (Hi ). The difference
here is that for each triple the algorithm runs not the initial black-box f -approximation
algorithm, but the algorithm of the first contribution, i.e. the algorithm of Theorem2.
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Thus, the output of each run is an (si , ti )-path of length δ(Hi − {si , ti }) + �( f (ki ))
in Hi , where δ(Hi − {si , ti }) + ki is the length of the longest (si , ti )-path in Hi .

Finally, from each approximation our algorithm constructs a cycle of length at least
2δ(G)+�( f (ki )). It is guaranteed that ki = �(k) for at least one i , so the longest of
all constructed cycles is of length at least 2δ(G) + �( f (k)). The following theorem
is in order.

Theorem 1 Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm finding a cycle of length at least f (L) in
graphs with the longest cycle length L. Then there exists a polynomial time algorithm
that finds a cycle of length at least 2δ(G)+�( f (L −2δ(G))) in a 2-connected graph
G with δ(G) ≤ 1

2 |V (G)| and the longest cycle length L.

Onemay note that Theorem2 actually follows from Theorem1 (again, byMenger’s
theorem, see Lemma2). However, as described above, the algorithm in Theorem1
employs the algorithm of Theorem2, so we have to prove the latter before the former.

In the remaining part of this section, we provide more detailed proof overviews
of both theorems, in particular we explain how the algorithms employ the structural
results of [26]. In both proofs, we complement these results by showing useful prop-
erties of specific graph decompositions. For clarity, we start with Theorem1, as its
proof is less involved.

2.1 Approximating Long Cycles

The basis of our algorithm is the structural result due to Fomin et al. [26]. In that
work, the authors show the following: There is an algorithm that, given a cycle in a 2-
connected graph, either finds a longer cycle or finds thatG is of a “particular structure”.
This algorithm can be applied to any cycle of length less than (2 + σ1) · δ(G) (to be
specific, we use σ1 = 1

24 , see Lemma14 for details).
To see how this stuctural result is important, recall that we aim to find a cycle of

length at least 2δ(G) + �( f (k)) in a 2-connected graph G with the longest cycle
length 2δ(G) + k. Our algorithm simply starts with some cycle in G and applies the
result of [26] to enlarge it exhaustively. It stops when either a cycle is of length at least
(2 + σ1) · δ(G), or the particular structure of G is found.

The crucial observation here is that if a long cycle is found, we can trivially find a
good approximation. If σ1 · δ(G) is, e.g., less than σ1/10 · f (k), then 10δ(G) < f (k).
If we just apply the blackbox f -approximation algorithm for the Longest Cycle
problem, we get a cycle of length at least f (2δ(G)+k) ≥ f (k) ≥ 2δ(G)+4/5 · f (k).
Hence, by taking the longest of the cycles of length (2 + σ1) · f (k) and of length
f (2δ(G) + k) we always achieve a good approximation guarantee on k.
The most important part of the algorithm is employed when the “particular struc-

ture” outcome is received from the structural lemma applied on G and the current
cycle C . Here we need to be specific about this structure, and the outcome can be of
two types. The first outcome is a bounded vertex cover of the graph. This vertex cover
is of size at most δ(G) + 2(k′ + 1), where k′ ≥ 0 is such that |V (C)| = 2δ(G) + k′.
Such vertex cover is a guarantee that C is not much shorter than the longest cycle

123



2682 Algorithmica (2024) 86:2676–2713

in G: the length of the longest cycle is bounded by twice the vertex cover size, so
k ≤ 4(k′ + 1). Hence, k′ = �(k) and C is a sufficient approximation.

The second, and last, structural outcome is the Dirac decomposition, defined in
[26]. Basically, this decomposition is obtained by finding a small separator of G (that
consists of just two subpaths P1, P2 of the cycleC), and the parts of this decomposition
are the connected components of G after the separation. The main result on Dirac
decomposition proved in [26] is that there always exists a longest cycle that contains
an edge in at least one of these parts.

While the definition and properties of Dirac decomposition may seem quite
involved, our algorithm does not even require the Dirac decomposition of G to be
found. In fact, we show a new nice property of Dirac decomposition. It guarantees that
if a Dirac decomposition for G exists, then there also exists a 2-vertex separator {u, v}
of G that also divides the longest cycle in G in almost even parts. Our contribution is
formulated in the following lemma.

Lemma 1 Let G be a 2-connected graph and P1, P2 induce a Dirac decomposition
for a cycle C of length at most 2δ(G) + κ in G such that 2κ ≤ δ(G). If there exists a
cycle of length at least 2δ(G) + k in G, then there exist u, v ∈ V (G) such that

• G − {u, v} is not connected, and
• there is an (u, v)-path of length at least δ(G) + (k − 2)/4 in G.

Our algorithm employs Lemma 1 in the following way. Since there areO(|V (G)|2)
vertex pairs in G, our algorithms iterates over all vertex pairs. If a pair u, v separates
the graph in at least two parts, then our algorithm finds a long (u, v)-path that contains
vertices in only one of the parts. Formally, it iterates over all connected components in
G − {u, v}. For a fixed connected component H , our algorithm applies the algorithm
of Theorem2 to the graph G[V (H) ∪ {u, v}] + uv (the edge uv is added to ensure
2-connectivity), to find approximation of the longest (u, v)-path. By Lemma1, if u, v

is the required separating pair, then for at least one H the length of the found (u, v)-
path should be δ(G)+�(k). And if such path is found, a sufficiently long (u, v)-path
outside H in G is guaranteed by Erdős–Gallai theorem. Together, these two paths
form the required cycle of length 2δ(G) + �(k).

With that, the proof overview of Theorem1 is finished. The formal proof is present
in Sect. 5.

2.2 Approximating Long (s, t)-Paths

While the algorithm of Theorem1 does not use the underlying Dirac decomposition
explicitly, in the case of finding (s, t)-paths (and to prove Theorem2), we require
deeper usage of the obtained graph decomposition. While the Dirac decomposition of
Fomin et al. was originally used in [26] to find long cycles above 2δ(G), for finding
(s, t)-paths above δ(G − {s, t}) the authors introduced the Erdős–Gallai decomposi-
tion.

In the formal proof of Theorem2 in Sect. 4, we give a complete definition of Erdős–
Gallai decomposition. In this overview, we aim to avoid most technical details in order
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to provide an intuition of the structure of the decomposition and how our algorithm
employs it.

Much similarly to Dirac decomposition, the Erdős–Gallai decomposition is
obtained through the routine that, given a graph G and an (s, t)-path inside it,
either enlarges the path or reports that two subpaths P1 (that starts with s) and
P2 (that starts with t) of the given path induce (when deleted) an Erdős–Gallai
decomposition in G. This routine can be applied to an (s, t)-path until it reaches
(1 + σ2) · δ(G − {s, t}) in length (specifically, σ2 = 1

4 , see Lemma7; in this
overview we also skip the case of a Hamiltonian (s, t)-path for brevity). Note that,
in contrast to the cycle enlargement routine of the Dirac decomposition, here the
bounded vertex cover outcome is not possible. Similarly to the algorithm of the
previous subsection, the only non-trivial part of the algorithm is dealing with the
Erdős–Gallai decomposition outcome. In the other case, a single run of the black-box
f -approximation algorithm for Longest Cycle provides the desired approximation
immediately.

The main property of this decomposition due to [26] is as follows: If an (s, t)-path
of length at least δ(G−{s, t})+ k exists in G, then there necessarily exists the path of
length at least δ(G − {s, t}) + k that goes through one of the connected components
in the decomposition. Moreover, for each of the connected components Gi there is
exactly one pair of distinct entrypoints si , ti : if an (s, t)-path in G goes through Gi , it
should necessary enter Gi in si (or ti ) once and leave Gi in ti (or si ) exactly once as
well.

Additionally to that, we have that the degree of each Gi is not much different from
G: δ(Gi−{si , ti }) ≥ δ(G−{s, t})−2 holds true. And this constant difference is always
compensated by paths from s and t to si and ti : if we succeed to find an (si , ti )-path of
length at least δ(Gi −{si , ti })+ ki inside Gi , we can always complete it with any pair
of disjoint paths from {s, t} to {si , ti } into an (s, t)-path of length δ(G − {s, t}) + ki
in G. Should this pair be longer than the trivial lower bound of 2, it grants additional
length above δ(G − {s, t}) + ki .

The previous paragraph suggests the following approach for our approximation
algorithm: for each Gi , si , ti , our algorithm applies itself recursively to find an (si , ti )-
path of length δ(Gi −{si , ti }+�( f (ki )), where ki comes from the longest (si , ti )-path
length in Gi . Since the other part of additional length comes from two disjoint paths
between {s, t}, and {si , ti }, we would like to employ the black-box f -approximation
algorithm to find the f -approximation of this pair of paths.

Unfortunately, finding suchpair of paths reduces only tofinding a long cycle through
a given pair of vertices (it is enough to glue s with t and si with ti in G, and ask to
find the long cycle through the resulting pair of vertices). In their work Fomin et al.
have shown that the problem of finding such a cycle of length at least k can be done in
2O(k) ·nO(1) time. However, this is of little use to us, as k is only bounded byO(δ(G)),
but we require polynomial time. Simultaneously, we do not know of any way to force
the black-box algorithm to find an f -approximation for a cycle through the given pair
of vertices.

These arguments bring us away from the idea of a recursive approximation algo-
rithm. Instead, our approximation algorithm will apply the black-box algorithm to a
single “complete-picture” graph that is obtained according to the structure brought
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Fig. 1 A schematic example of a nested Erdős–Gallai decomposition (left) and the corresponding recursion
tree (right). Red straight paths inside Gi denote the pair of paths inducing an Erdős–Gallai decomposition
in Gi . Bold (si , ti )-paths are sufficient approximations of the longest (si , ti )-paths in Gi . Dashed contours
correspond to Gi with constant δ(Gi − {si , ti }), which is one of a few technical cases in the proof (Color
figure online)

by the Erdős–Gallai decomposition. However, the recursion here remains in the
sense that we apply the path-enlarging routine to each component of the decompo-
sition. This brings us to the idea of the recursive decomposition, which we define
as the nested Erdős–Gallai decomposition in Sect. 4. This decomposition can be
seen as a tree, where the root is the initial triple (G, s, t), the children of a node
represent the triples (Gi , si , ti ) given by the Erdős–Gallai decomposition, and the
leaves of this decomposition are the graphs Gi where sufficient approximations of
long (si , ti )-paths are found (by taking the longest of (1 + σ2) · δ(G − {si , ti })-
long path from the enlarging routine and the approximation obtained from the
blackbox algorithm). A schematic picture of this novel decomposition is present in
Fig. 1.

In Sect. 4, we show that a long path found inside a leaf (Gi , si , ti ) of the decom-
position can be contracted into a single edge si ti . Moreover, if (G j , s j , t j ) is a child
of a (Gi , si , ti ) in the decomposition, and the longest pair of paths from {si , ti } to
{s j , t j } is just a pair of edges (so it does not grant any additional length as described
before), we contract these edges. The crucial in our proof is the claim that after such a
contraction, if an (s, t)-path of length δ(G − {s, t}) + k exists in the initial graph, an
(s, t)-path of length at least �(k) exists in the graph obtained with described contrac-
tions. After doing all the contractions, the algorithm applies the black-box algorithm to
the transformed graph, and finds an (s, t)-path of length f (�(k)) (which is �( f (k))
by subadditivity) inside it.

The final part of our algorithm (and the proof of Theorem2) is the routine that
transforms this (s, t)-path inside the contracted graph G into a path of length δ(G −
{s, t})+�( f (k)) in the initial graphG. In this part, we prove that it is always possible
to transform an (s, t)-path of length r in the contracted graph into a path of length�(r)
that goes through at least one edge corresponding to a leaf of the nested Erdős–Gallai
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decomposition (hence, to a good approximation of (si , ti )-path inside Gi ). Finally,
we observe that reversing the contractions in G transforms this path into the required
approximation.

This finishes the overview of the proof of Theorem2. Section4 contains it fully,
with all technical details and formal proofs.

3 Preliminaries

In this section, we define notation used throughout the paper and provide some auxil-
iary results.We use [n] to denote the set of positive integers {1, . . . , n}. We remind that
a function f : D → R is subadditive if f (x+ y) ≤ f (x)+ f (y) for all x, y ∈ D ⊆ R.
We denote the set of all nonnegative real numbers by R+.

Recall that our main theorems are stated for arbitrary nondecreasing subadditive
functions f : R+ → R, such that an algorithmachieveng the respective approximation
exists. Throughout the proofs we will additionally assume that f (x) ≤ x for every
x ∈ R+. For any integer x ≥ 3, this is already implied by the statement, since a
consistent approximation algorithm cannot output an (s, t)-path (respectively, cycle)
of length greater than x in a graph where the longest (s, t)-path (respectively, cycle)
has length x . However, for a general function f (·) this does not necessarily hold on the
wholeR+. If this is the case, for clarity of the proofswe redefine f (x) := min{x, f (x)}
for every x ∈ R+. Clearly, f remains subadditive and non-decreasing, while also
imposing exactly the same guarantee on the approximation algorithm.
Graphs.Weconsider only finite simple undirected graphs and use the standard notation
(see, e.g, the book ofDiestel [16]).We use V [G] and E(G) to denote the sets of vertices
and edges, respectively, of a graph G. Throughout the paper, we use n andm to denote
the number of vertices and the number of edges of a considered graph if it does not
create confusion. For a set X ⊆ V (G), G[X ] is used to denote the subgraph of G
induced by X and we write G − X to denote the subgraph of G induced by V (G) \ X .
For a single-vertex set {v}, we write G − v instead of G − {v}. For a vertex v, NG(v)

denotes the (open) neighborhood of v, that is, the set of the neighbors of v in G.
For a set set X ⊆ V (G), NG(X) = ( ⋃

v∈X NG(v)
)\X . The degree of a vertex v is

degG(v) = |NG(v)|. We denote by δ(G) = minv∈V (G) degG(v) the minimum degree
of G. We may omit the subscript in the above notation if the considered graph is
clear from the context. We remind that the edge contraction operation for uv ∈ E(G)

replaces u and v by a single vertex wuv that is adjacent to every vertex of NG({u, v}).
A set of vertices X ⊆ V (G) is vertex cover if every edge ofG has at least one endpoint
in X .

A path P in a graph G is a subgraph of G whose set of vertices can be written
as {v0, . . . , vk} where E(P) = {vi−1vi | i ∈ [k]}. We may write a path P as the
sequence of its vertices v0, . . . , vk . The vertices v0 and vk are called endpoints of P
and other vertices are internal. For a path P with endpoints s and t , we say that P
is an (s, t)-path. Two paths P1 and P2 are (vertex-)disjoint if they have no common
vertex and internally disjoint if no internal vertex of either of the paths is a vertex
of the other path. A cycle C in G is a subgraph of G with V (C) = {v1, . . . vk} and
E(C) = {vi−1vi | i ∈ [k]}, where k ≥ 3 and it is assumed that v0 = vk . The length
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of a path (a cycle, respectively) is the number of its edges. For two internally disjoint
paths P1 = v0, . . . , vk and P2 = u0, . . . , vs sharing exactly one endpoint vk = u0, we
write P1P2 to denote their concatenation, that is, the path v0, . . . , vk, u1, . . . , us . If
P1 and P2 share both endpoints and at least one of them has internal vertices, we write
P1P2 to denote the cycle composed by the paths. A path P (a cycle C , respectively)
is Hamiltonian if V (P) = V (G) (V (C) = V (G), respectively).

Recall that G is connected if for every two vertices s and t , G contains an (s, t)-
path. A (connected) component of G is an inclusion maximal connected induced
subgraph. A connected graph G with at least three vertices is 2-connected if for every
v ∈ V (G), G − v is connected. A vertex v of a connected graph G with at least two
vertices is a cut-vertex if G − v is disconnected. A block of a connected graph G is an
inclusion maximal induced subgraph without cut-vertices. Note that if G has at least
two vertices, then each block is either isomorphic to K2 or a 2-connected graph. For a
block B of G, a vertex v ∈ V (B) that is not a cut-vertex of G is called inner. Blocks
in a connected graph form a tree structure (viewing each block as a vertex of the forest
and two blocks are adjacent if they share a cut-vertex). The blocks corresponding to
the leaves of the block-tee, are called leaf-blocks. For s, t ∈ V (G), S ⊆ V (G)\{s, t}
is an (s, t)-separator if G − S has no (s, t)-path; we also say that S separates s from
t . We also say that S separates two sets of vertices A and B if S separates each vertex
of A from every vertex of B.

The following useful observation follows immediately fromMenger’s theorem (see,
e.g., [16, 41]).

Lemma 2 For any 2-connected graph G with a cycle of length L, there is a path of
length at least L/2 between any pair of vertices in G. Moreover, given a cycle C
and two distinct vertices s and t, an (s, t)-path of length at least |V (C)|/2 can be
constructed in polynomial time.

We observe that given an approximation algorithm for a longest cycle, we can use
it as a black box to approximate a longest path between any two vertices.

Lemma 3 Let A be a polynomial-time algorithm that finds a cycle of length at least
f (L) in a graph with the longest cycle length L. Then there is a polynomial-time
algorithm using A as a subroutine that, given a graph G and two distinct vertices s
and t, finds an (s, t)-path of length at least 1

2 f (2L), where L is the length of a longest
(s, t)-path in G.

Proof Let G be a graph and let s, t ∈ V (G) be distinct vertices. We assume without
loss of generality that G is connected. Let P be a longest (s, t)-path in G and let
L be its length. If st is a bridge of G, then G has a unique (s, t)-path and and its
length is one. In this case, our algorithm returns this path that trivially can be found
in polynomial time. Assume that this is not the case. Then st /∈ E(P) and L ≥ 2.

We construct two copies G1 and G2 of G. Denote by s1 and s2 the copies of s in
G1 and G2, respectively. Similarly, let t1 and t2 be the copies of t , and denote by P1
and P2 the copes of P in G1 and G2, respectively. Next, we construct the graph G ′ by
unifying s1 and s2, and t1 and t2 (if st ∈ E(G), the edges s1t1 and s2t2 are unified as
well). Denote by s′ the vertex of G ′ obtained from s1 and s2, and let t ′ be the vertex
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obtained from t1 and t2. Note that P1 and P2 are internally disjoint (s′, t ′)-paths in
G ′. In particular, this implies that s′ and t ′ are vertices of the same block B of G ′,
and P1 and P2 are paths in B. Therefore, B contains the cycle C = P1P2 of length
2L . We obtain that the longest cycle length in B is at least 2L . We call A on B and
this algorithm outputs a cycle C of length at least f (2L). Note that B is distinct from
K2, i.e., is 2-connected. By Lemma 2, B has an (s′, t ′)-path P ′ of length at least
1
2 |V (C)| ≥ 1

2 f (2L) that can be constructed in polynomial time. Notice that {s′, t ′}
separates V (G1) \ {s1, t1} from V (G2)\{s2, t2}. Hence, P ′ is either an (s1, t1)-path in
G1 or (s2, t2)-path inG2. Assume that P ′ is a path inG1 (the other case is symmetric).
Since G1 is a copy of G, the copy of P ′ in G is an (s, t)-path of length at least 12 f (2L)

as required by the lemma.
Since G ′ can be constructed in polynomial time and the unique block B of G ′

containing s′ and t ′ can be found in polynomial (linear) time (see, e.g., [41]), the
overall running time is polynomial. 
�

We will use as a subroutine an algorithm finding two disjoint paths between two
pairs of vertices of total length at least k, where k is the given parameter. For us,
constant values of k suffice, though in fact there exists an FPT algorithm for this
problem parameterized by the total length. It follows as an easy corollary from the
following result of [26] about Long (s, t)- Cycle, the problem of finding a cycle of
length at least k through the given two vertices s and t .

Theorem 3 (Theorem 4 in [26]) There exists an FPT algorithm for Long (s, t)-
Cycle parameterized by k.

For completeness, we show the corollary next.

Corollary 1 There is an FPT algorithm that, given a graph G with two pairs of vertices
{s, t} and {s′, t ′}, and a parameter k, finds two disjoint paths between {s, t} and {s′, t ′}
in G of total length at least k, or correctly determines that such paths do not exist.

Proof Construct a new graph H that consists of the graph G together with two addi-
tional vertices u and v. The vertex u has exactly two neighbors in H , s and t , and
the neighbors of v are s′ and t ′. Now run the algorithm for Long (s, t)-Cyclewith
the parameter k + 4 to find a cycle in H going through the vertices u and v. If such
a cycle is found, then removing the vertices u and v from it yields a pair of disjoint
paths between {s, t} and {s′, t ′} in G of total length at least k. In the other direction,
if there is a pair of desired disjoint paths in G, then together with the vertives u and v

they constitute a cycle of length at least k + 4 in H . 
�
Finally, it is convenient to use the following corollary,whichgeneralizes the theorem

of Erdős and Gallai [19, Theorem 1.16].

Corollary 2 (Corollary 3 in [26]) Let G be a 2-connected graph and let s, t be a pair of
distinct vertices in G. For any B ⊆ V (G) there exists a path of length at least δ(G−B)

between s and t in G. Moreover, there is a polynomial time algorithm constructing a
path of such length.
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4 Approximating (s, t)-Path

In this section we provide the formal proof of Theorem 2, stating that any guarantee
for approximating the longest cycle in a 2-connected graph can be transferred to
approximating the longest (s, t)-path above minimum degree. For the convenience of
the reader, we recall the precise statement next.

Theorem 2 Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm computing an (s, t)-path of length at
least f (L) in graphs with given two vertices s and t having the longest (s, t)-path
of length L. Then there is a polynomial-time algorithm that outputs an (s, t)-path of
length at least δ(G − {s, t}) + �( f (L − δ(G − {s, t}))) in a 2-connected graph G
with two given vertices s and t having the longest (s, t)-path length L.

In order to obtain this result, we first recall the concept of Erdős–Gallai decom-
position introduced in [26] together with a few of its helpful properties established
there. Then we introduce the recursive generalization of this concept, called nested
Erdős–Gallai decomposition, and show how to obtain with its help the compression
of the graph such that a long (s, t)-path in the compressed graph can be lifted to an
(s, t)-path in the original graph with a large offset.

4.1 Erdos–Gallai decomposition

This subsection encompasses the properties of anErdős–Gallai decomposition, defined
next. The definition itself and most of the technical results presented here are due
to [26]. Some of the results from [26] need to be modified in order to be used for our
purposes, we supply such results with full proofs. Note that the statements in [26] hold
in the more general case where there is also a low-degree vertex subset in the graph,
here while recalling the results we automatically simplify the statements. Next, we
recall the definition of an Erdős–Gallai decomposition.

Definition 1 (Erdős–Gallai decomposition and Erdős–Gallai component, Definition 2
in [26]) Let P be a path in a 2-connected graph G. We say that two disjoint paths P1
and P2 in G induce an Erdős–Gallai decomposition for P in G if

• Path P is of the form P = P1P ′P2,where the inner path P ′ has at least δ(G−{s, t})
edges.

• There are at least two connected components in G − V (P1 ∪ P2), and for every
connected component H holds |V (H)| ≥ 3 and one of the following.

(R1) H is 2-connected and the maximum size of a matching in G between V (H)

and V (P1) is one, and between V (H) and V (P2) is also one;
(R2) H is not 2-connected, exactly one vertex of P1 has neighbors in H , that is

|NG(V (H)) ∩ V (P1)| = 1, and no inner vertex from a leaf-block of H has a
neighbor in P2;

(R3) The same as (R2), but with P1 and P2 interchanged. That is, H is not 2-
connected, |NG(V (H)) ∩ V (P2)| = 1, and no inner vertex from a leaf-block
of H has a neighbor in P1.
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The set of Erdős–Gallai components for an Erdős–Gallai decomposition
is defined as follows. First, for each component H of type (R1), H is an Erdős–

Gallai component of the Erdős–Gallai decomposition. Second, for each H of type
(R2), or of type (R3), all its leaf-blocks are also Erdős–Gallai components of the
Erdős–Gallai decomposition.

As long as an Erdős–Gallai decomposition is available, Erdős–Gallai components
allow to bound the structure of optimal solutions in a number of ways. First, Fomin et
al. [26] observe that the longest (s, t)-path necessarily visits an Erdős–Gallai compo-
nent.

Lemma 4 (Lemma 7 in [26]) Let G be a graph and P1, P2 induce an Erdős–Gallai
decomposition for an (s, t)-path P in G. Then there is a longest (s, t)-path in G that
enters an Erdős–Gallai component.

Next, since an Erdős–Gallai component has a very restrictive connection to the
rest of the graph, it follows that any (s, t)-path has only one chance of entering the
component.

Lemma 5 (Lemma 5 in [26]) Let G be a 2-connected graph and P be an (s, t)-path
in G. Let paths P1, P2 induce an Erdős–Gallai decomposition for P in G. Let M be
an Erdős–Gallai component. Then for every (s, t)-path P ′ in G, if P ′ enters M, then
all vertices of V (M) ∩ V (P ′) appear consecutively in P ′.

For the purposes of recursion it is convenient to enclose an Erdős–Gallai component
together with some of its immediate connections, so that this slightly larger subgraph
behaves exactly like an (s, t)-path instance. The subgraph K in the next lemma plays
this role.

Lemma 6 (Lemma 8 in [26]) Let paths P1, P2 induce an Erdős–Gallai decomposition
for an (s, t)-path P in graph G. Let M be an Erdős–Gallai component in G. Then
there is a polynomial time algorithm that outputs a 2-connected subgraph K of G and
two vertices s′, t ′ ∈ V (K ), such for that every (s, t)-path P ′ in G that enters M, the
following hold:

1. V (K ) = (V (M) ∪ {s′, t ′});
2. P ′[V (K )] is an (s′, t ′)-subpath of P ′ and an (s′, t ′)-path in K ;
3. δ(K − {s′, t ′}) ≥ δ(G − {s, t, s′, t ′}).
Most importantly, Erdős–Gallai decompositions capture extremal situations, where

the current (s, t)-path cannot be made longer in a “simple” way. The next lemma
formalizes that intuition, stating that in polynomial time we can find either a long
(s, t)-path, or an Erdős–Gallai decomposition. The lemma is largely an analogue of
Lemma 4 in [26], however our statement here is slightly modified. Next, we recall the
statement from Sect. 2 and provide a proof.

Lemma 7 Let G be a 2-connected graph such that δ(G − {s, t}) ≥ 16. There is a
polynomial time algorithm that
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• either outputs an (s, t)-path P of length at leastmin{ 54δ(G−{s, t})−3, |V (G)|−
1},

• or outputs an (s, t)-path P with paths P1, P2 that induce an Erdős–Gallai decom-
position for P in G. Additionally, there is no (s, t)-path in G that enters at least
two Erdős–Gallai components of this Erdős–Gallai decomposition.

Proof InvokeLemma4of [26] onG, s, t with B := {s, t} and k := δ(G−{s, t})/4�−
2. Note that the condition 4k + 8 ≤ δ(G − {s, t}) required by that lemma is satisfied.
Now, we either get an (s, t)-path of length δ(G − {s, t}) + k, or an (s, t)-path P with
V (P) ∪ {s, t} = V (G), or the required Erdős–Gallai decomposition with the paths
P , P1, P2. Clearly δ(G − {s, t}) + k > 5

4δ(G − {s, t}) − 3, so if a path of length
δ(G−{s, t})+k is found, we are done. If an (s, t)-path P has V (P)∪{s, t} = V (G),
then it is a hamiltonian path in G, so we are done in the second case as well.

If we obtain an Erdős–Gallai decomposition, then we additionally need to check
whether there exists an (s, t)-path that goes through at least two Erdős–Gallai com-
ponents of the Erdős–Gallai decomposition induced by P1 and P2 in G. To this end,
iterate over all ordered pairs of Erdős–Gallai components in the Erdős–Gallai decom-
position. For each pair, apply Lemma6 to each of the two Erdős–Gallai components
and obtain two triples (K1, s1, t1) and (K2, s2, t2). There is an (s, t)-path entering
both Erdős–Gallai components in the order given by the pair if and only if there
exist three disjoint paths between the pairs (s, a1), (b1, a2), (b2, t), where (ai , bi ) is
a permutation of (si , ti ) for each i ∈ [2].

When the permutations are fixed, such paths, if they exist, can be found in poly-
nomial time using the famous algorithm of Robertson and Seymour for k-Disjoint
Paths [48]. Since δ(Ki − {si , ti }) ≥ δ(G − {s, t}) − 2 for each i ∈ [2], these three
paths together with two (si , ti )-paths inside Ki combine into an (s, t)-path of length
at least 2δ(G − {s, t}) − 4 > 5

4δ(G − {s, t}) − 3, so the algorithm outputs this path
and stops. If the disjoint path triple was not found on any of the steps, then there is
indeed no (s, t)-path entering at least two Erdős–Gallai components. 
�

Finally, to deal with (s, t)-paths that do not enter any Erdős–Gallai component, one
can observe the following. Intuitively, such a path should be far from optimal, as going
through an Erdős–Gallai component would immediately give at least δ(G − {s, t}) −
O(1) additional edges of the path. The final lemma of this subsection establishes how
precisely the length of a path avoiding Erdős–Gallai components can be “boosted”
in this fashion. To obtain this result, we first need a technical lemma from [26] that
yields long paths inside separable components.

Lemma 8 (Lemma 6 in [26]) Let H be a connected graph with at least one cut-vertex.
Let I be the set of inner vertices of all leaf-blocks of H. Let S ⊆ V (H)\I separate at
least one vertex in V (H) \ I from I in H. For any vertex v that is not an inner vertex
of a leaf-block of H, there is a cut-vertex c of a leaf-block of H and a (c, v)-path of
length at least 1

2 (δ(H) − |S|) in H. This path can be constructed in polynomial time.

Now we move to (s, t)-paths that avoid Erdős–Gallai components. The following
Lemma9 has been already stated in Sect. 2, here we recall the statement and provide
a proof.
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Lemma 9 Let P be an (s, t)-path of length at most δ(G−{s, t})+ k and let two paths
P1, P2 induce a Erdős–Gallai decomposition for P in G. There is a polynomial time
algorithm that, given an (s, t)-path of length at least 4k + 5 in G that does not enter
any Erdős–Gallai component, outputs a path of length at least min{δ(G − {s, t}) +
k − 1, 3

2δ(G − {s, t}) − 5
2k − 1} in G.

Proof For clarity, we denote δ := δ(G − {s, t}). Let Q be the given (s, t)-path in G.
Denote by S the set of the first k vertices on Q and by T the set of the last k vertices
on Q. Let s′ be the first vertex on Q that is not in S and t ′ be the last vertex on Q that
is not in T . Since Q consists of more than 2k vertices, s′, t ′ /∈ S ∪ T . The length of
the (s, s′)-subpath of Q and the length of the (t ′, t)-subpath of Q are equal to k.

The total length of P1 and P2 is atmost k, hence |V (P1)∪V (P2)| ≤ k+2. The length
of the (s′, t ′)-subpath of Q is at least 2k+5 > 2|V (P1)∪V (P2)|. Hence, this subpath
contains at least one edge of G that is not incident to vertices in |V (P1) ∪ V (P2)|.
Denote the endpoints of this edge by u and v. Since Q does not enter any Erdős–Gallai
component, this edge is an edge of a non-leaf-block of some separable connected
component H of G − V (P1 ∪ P2). The component H corresponds to either (R2) or
(R3) in the definition of Erdős–Gallai decomposition. Without loss of generality, we
assume that H corresponds to (R2).

We now consider two cases depending on the structure of H − (S ∪ T ). If S ∪ T
separates u or v from all cut vertices of the leaf-blocks in H , then we have a set of
size 2k in H that satisfies the condition of Lemma 8. Take a vertex w in H that has a
neighbour in V (P2) in G. By Lemma8, a (w, c)-path of length at least

1

2
δ(H) − 2k ≥ 1

2
δ(G − V (P1 ∪ P2)) − 2k ≥ 1

2
δ(G − {s, t}) − 5

2
k − 1

exists in H for some cut vertex c of some leaf-block L of H . In this leaf-block, we
have a vertex z with a neighbour in V (P1). By Corollary 2, we have a (c, z)-path of
length at least δ(L − c) ≥ δ(G − {s, t}) − 2 inside L . Combine the two paths and
obtain a (z, w)-path of length at least 3

2δ(G − {s, t}) − 5
2k − 3 inside H . Finally,

prepend to this path a prefix of P1 connecting s with the neighbour of z, and append
to this path a suffix of P2 connecting the neighbour of w with t . The length increases
by at least two as s �= z and w �= t . The obtained path is an (s, t)-path of length at
least 3

2δ(G − {s, t}) − 5
2k − 1.

The second case is when from v we can reach a cut vertex c of some leaf-block
L in H while avoiding vertices in S ∪ T . Note that V (Q) ∩ V (L − c) = ∅ by the
properties of Erdős–Gallai decomposition. Then choose w as an arbitrary vertex in
L−cwith a neighbour in V (P1). Now construct a (v, s)-path Q′ in the following way.
First, follow an arbitrary (v, c)-path in H − (S∪T ). Then continue with a (c, w)-path
of length at least δ(L − c) ≥ δ(G −{s, t})− 2 inside L − c that exists by Corollary 2.
Note that this path has no common vertices with Q. Finish Q′ by going from w to the
neighbour of w in P1 and follow P1 backwards down to s.

Let x be the last vertex before c on Q′ that belongs to V (Q). Let y be the first vertex
afterw on Q′ that belongs to V (Q). Both x, y are defined correctly since v, s ∈ V (Q).
Consider the (x, y)-subpath of Q′. It strictly contains the (c, w)-path inside L , so its
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length is at least δ(G −{s, t})− 1. Also, the length of the (s, x)-subpath of Q and the
length of the (x, t)-subpath of Q is at least k as x /∈ S ∪ T .

We now construct a long (s, t)-path in G. If y is contained in the (s, x)-subpath of
Q, then the (s, t)-path is constructed in the following way: follow P1 from s to y, then
follow Q′ backwards from y down to x , and finish by following Q from x to t . The
length of this path is at least δ(G − {s, t}) − 1 + k. If y belongs to the (x, t)-subpath
of Q, start by taking the (s, x)-subpath of Q, then follow Q′ from x to y and finish
by following P2 from y to t . This path also has length at least k + δ(G − {s, t}) − 1.
The proof is complete. 
�

4.2 Proof of Theorem 2

To deal with the recursive structure of the solution, we introduce the following nested
generalization of an Erdős–Gallai decomposition. Intuitively, it captures how the
structural observations of the previous subsection allow to recursively construct Erdős–
Gallai decompositions with the aim of finding a long (s, t)-path. For an illustration of
a nested Erdős–Gallai decomposition, see Fig. 1. We recall the formal definition from
Sect. 2.

Definition 2 (Nested Erdős–Gallai decomposition) A sequence of triples (G1, s1, t1),
(G2, s2, t2), …, (G�, s�, t�) is called a nested Erdős–Gallai decomposition for G and
two vertices s, t ∈ V (G) if

• (G1, s1, t1) = (G, s, t);
• for each i ∈ [�], either

– δ(Gi − {si , ti }) < 16, or
– Lemma7 applied to Gi , si , ti gives a path Pi of length at least min{ 54δ(Gi −

{si , ti }) − 3, |V (Gi )| − 1} in Gi , or
– Lemma7 applied to Gi , si , ti gives a path Pi and two paths Pi,1, Pi,2 that

induce an Erdős–Gallai decomposition for Pi inGi , and for each Erdős–Gallai
component M of this decomposition there is j > i such that (G j , s j , t j ) is
the result of Lemma6 applied to M in Gi . In this case, we say that Gi is
decomposed.

• for each i ∈ {2, . . . , �}, there is e(i) < i such that (Gi , si , ti ) is a result of Lemma6
applied to some Erdős–Gallai component of the Erdős–Gallai decomposition of
Ge(i) for Pe(i).

The proof of Theorem 2 is performed in two steps: first, we show how to obtain a
nested Erdős–Gallai decomposition for a given graph G, and then we use the nested
Erdős–Gallai decomposition to recursively construct a good approximation to the
longest (s, t)-path. The first part is achieved simply by applying Lemma 7 recursively
on each Erdős–Gallai component until components are no longer decomposable. The
main hurdle is the second part, on which we focus for the rest of the section. For
completeness, first we show that a nested Erdős–Gallai decomposition can always be
constructed in polynomial time.
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Lemma 10 There is a polynomial time algorithm that, given a 2-connected graph G
and its two vertices s and t, outputs a nested Erdős–Gallai decomposition for G, s, t .

Proof The algorithm proceeds recursively, starting with the triple (G1, s1, t1) =
(G, s, t). For the given triple (Gi , si , ti ), if δ(Gi − {si , ti }) < 16, the algorithm
stops. Otherwise, invoke the algorithm of Lemma7 on (Gi , si , ti ). If this returns a
path Pi of length at least 5

4δ(Gi −{si , ti })−3, the algorithm stops. On the other hand,
if an Erdős–Gallai decomposition is returned, for each Erdős–Gallai component M
run the algorithm of Lemma Lemma6 on M to obtain a triple (G j , s j , t j ), where j
is the lowest free index among the triples produced so far. Run the main algorithm
recursively on each of the triples generated on this step.

By definition, the algorithm above produces a nested Erdős–Gallai decomposition.
To show that the running time is polynomial, first observe that running the algorithm
without the subsequent recursive calls is clearly polynomial. Assume this running time
is bounded by αnc for some constant α > 0 and c ≥ 1, where n = |V (G)\{s, t}| and
(G, s, t) is the current instance. We show by induction on the depth of the resulting
nested Erdős–Gallai decomposition that the running time of the recursive algorithm is
at most αnc+1. If the instance does not spawn any recursive calls, this trivially holds.
Otherwise, assume � new instances (G j1, s j1 , t j1), …, (G j� , s j� , t j� ) are produced,
denote ni = |V (G ji \{s ji , t ji }|. Note that � ≥ 2 since there are always at least 2
components in an Erdős–Gallai decomposition. By induction, the running time is

bounded by α ·
(
nc + ∑�

i=1 n
c+1
i

)
. We now bound

∑�
i=1 n

c+1
i , observe first that

∑�
i=1 ni ≤ n, as all the sets V (G ji \{s ji , t ji } are disjoint and do not contain s or t . We

use the following numerical observation proven in [26].

Claim 1 (Proposition 3 in [26]) Let a1, a2, . . . , aq be a sequence of q ≥ 2 positive
integers with

∑q
i=1 ai = n. Let x > 1 be an integer. Then

∑q
i=1 a

x
i ≤ (n − 1)x + 1 ≤

nx − nx−1.

By Claim 1, we can bound the running time by

α ·
(

nc +
�∑

i=1

nc+1
i

)

≤ α ·
(
nc + nc+1 − nc

)
= αnc+1,

completing the proof. 
�
Clearly, it follows that the size of a nested Erdős–Gallai decomposition returned by

Lemma 10 is also polynomial. Observe also that the construction algorithm invokes
Lemma7 for all sufficiently large Gi , thus in what follows we assume that the corre-
sponding paths Pi are already computed.

Now we focus on using a constructed nested Erdős–Gallai decomposition
for approximating the longest (s, t)-path. First of all, we present the algorithm
long_nested_st_path that, given a nested Erdős–Gallai decomposition of G,
computes a long (s, t)-path by going over the decomposition. The pseudocode of
long_nested_st_path is present in Algorithm3. Intuitively, first the algorithm
computes a compression H of the graph G that respects the nested Erdős–Gallai
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decomposition: components that are not decomposed are replaced by single edges, and
edges that are “unavoidable” to visit a component are contracted. The computation of
this compression is encapsulated in the nested_compress function presented in
Algorithm1.As a subroutine, this function uses thetwo_long_disjoint_paths
algorithm given by Corollary1, that finds two disjoint paths of at least the given length
between the given pairs of vertices.

Next, the blackbox approximation algorithm long_st_path_approx is used
to compute an (s, t)-path Q in H . The function nested_decompress recon-
structs then this path in the original graph G, see Algorithm2 for the pseudocode.
Later we argue (Lemma11) that any (s, t)-path in H of length r yields in this
way an (s, t)-path in G of length at least δ(G − {s, t}) + r/8 − 3. Finally, either
the length of Q in H was large enough and the reconstructed path provides the
desired approximation, or a long path can be found inside one of the components
in a “simple” way, and then connected arbitrarily to {s, t}. Specifically, in this
component it suffices to either take an approximation of the longest path com-
puted by long_st_path_approx, or a long Erdős–Gallai path returned by
the algorithm from Corollary2, long_eg_st_path. Thus, in the final few lines
long_nested_st_path checks whether any of these paths is longer than the
reconstructed path Q. The path from inside the component is extended to an {s, t}-path
in G by using the algorithm two_long_disjoint_paths, given by Corollary1,
with the parameter 0.

nested_compress((G1, s1, t1), (G2, s2, t2), . . . , (G�, s�, t�))
Input: a nested Erdős–Gallai decomposition for G, s and t .
Output: the compressed graph H .

1.1 H ←− G;
1.2 foreach i ∈ {2, . . . , �} do
1.3 j ←− e(i);
1.4 di ←− |{s j , t j } \ {si , ti }|;
1.5 if two_long_disjoint_paths (Gi , {s j , t j }, {si , ti }, di + 1) is No then
1.6 contract all edges of a maximum matching between {s j , t j } and {si , ti } in H ;
1.7 end
1.8 if Gi is not decomposed then
1.9 remove all vertices in V (Gi ) \ {si , ti } from H ;

1.10 add edge si ti to H and mark it with Gi ;
1.11 end
1.12 end
1.13 return H ;

Algorithm 1: The algorithm compressing a given graph G with a given nested
Erdős–Gallai decomposition.

Now, our goal is to show that the path that the long_nested_st_path algo-
rithm constructs serves indeed as the desired approximation of the longest (s, t)-path
in G. For the rest of this section, let G1, . . . ,G� be the given nested Erdős–Gallai
decomposition for G, s, t . An important piece of intuition about nested Erdős–Gallai
decomposition is that, as we go deeper into the nested Erdős–Gallai components, the
minimum degree of the component δ(Gi\{si , ti }) decreases, but we gain more and
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nested_decompress((G1, s1, t1), (G2, s2, t2), . . . , (G�, s�, t�), H , Q)
Input: a nested Erdős–Gallai decomposition for G, s and t , the compressed graph H and an

(s, t)-path Q in H of length r .
Output: an (s, t)-path of length at least δ(G − {s, t}) + r/8 − 3 in G.

2.1 foreach i ∈ {2, . . . , �} such that di > 0 and Q enters Gi do
2.2 j ←− e(i);
2.3 if an edge between {s j , t j } and {si , ti } was contracted in H then
2.4 replace si and/or ti in Q with the respective contracted edges;
2.5 else
2.6 S1, S2 ←− two_long_disjoint_paths(G, {s j , t j }, {si , ti }, di + 1);
2.7 replace the two subpaths of Q going from {s j , t j } to {si , ti } with S1 and S2 if the length of

Q increases;
2.8 end
2.9 end

2.10 h ←− largest h ∈ [�] such that Q enters Gh ;
2.11 if Gh is not decomposed then
2.12 replace sh th in Q with Ph ;
2.13 else
2.14 k′ ←− (|E(Q) ∩ E(Gh)| − 5)/8�;
2.15 if |E(Ph)| ≥ δ(Gh − {sh , th}) + k′ then
2.16 R ←− Ph ;
2.17 else
2.18 R ←− result of Lemma9 applied to Gh , Ph and the (sh , th)-subpath of Q;
2.19 end
2.20 if (sh , th)-subpath of Q is shorter than R then
2.21 replace the (sh , th)-subpath of Q with R;
2.22 end
2.23 end
2.24 return Q;

Algorithm 2: The algorithm decompressing a path in H into a long path in G.

long_nested_st_path((G1, s1, t1), (G2, s2, t2), . . . , (G�, s�, t�))
Input: a nested Erdős–Gallai decomposition for G, s and t .
Output: an (s, t)-path of length at least δ(G − {s, t}) + f (k)/32 − 3 in G where

k = L − δ(G − {s, t}) for the longest (s, t)-path length L in G.
3.1 H ←− nested_compress((G1, s1, t1), (G2, s2, t2), . . . , (G�, s�, t�));
3.2 Q ←− long_st_path_approx(H , s, t);
3.3 Q ←− nested_decompress((G1, s1, t1), (G2, s2, t2), . . . , (G�, s�, t�), H , Q);
3.4 foreach i ∈ [�] do
3.5 Pi ←− the longest of

{long_st_path_approx(Gi , si , ti ),long_eg_st_path(Gi , si , ti )};
3.6 Q ←− the longest of {Q,two_long_disjoint_paths(G, {s, t}, {si , ti }, 0) ∪ Pi };
3.7 end
3.8 return Q;

Algorithm 3: The algorithm finding a long (s, t)-path in a 2-connected graph
with a given nested Erdős–Gallai decomposition.

more edges that we collect while going from {s, t} to {si , ti }. We introduce values
that help us measure this difference between the nested components: for each i ∈ [�],
denote di = |{se(i), te(i)}\{si , ti }|. In particular, by Lemma6 we know that for any
i ∈ [�], δ(Gi ) ≥ δ(Ge(i)) − di . On the other hand, any pair of disjoint paths that con-
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nects {se(i), te(i)} to {si , ti } contains at least di edges. This leads to the following simple
observation about extending an (s j , t j )-path in a component G j to an (s, t)-path in G.

Claim 2 For each j ∈ [�], let G j1 , . . . ,G jc be such that jc = j and j1 = 1 and
e( ji+1) = ji for each i ∈ [c − 1]. Let P be an (s j , t j )-path in G j . Then P combined
with any pair of disjoint paths connecting {s, t} to {s j , t j } yields an (s, t)-path in G
of length at least |E(P)| + ∑

i∈[c−1] d ji+1 .

However, there might also exist longer paths connecting nested components Ge(i)

and Gi . When we construct the compressed graph H in Algorithm1, we distinguish
between two cases. Either any pair of such paths has total length di , meaning that
the only option is to use the edges of a matching between {se(i), te(i)} and {si , ti }. In
that case we simply contract these edges as we know that there is no choice on how
to reach Gi from Ge(i). Or, there is a pair of disjoint paths of total length at least
di + 1. This situation is beneficial to us in a different way: since we can find such a
pair of paths in polynomial time, we can traverse at least di + 1 edges going from
Ge(i) to Gi , while we only lose at most di in the minimum degree. This dichotomy
on the structure of the “slice” between two nested components is the main leverage
that allows us to lift the length of an (s, t)-path in H to an offset above the minimum
degree in G. We formally show this crucial property of the compressed graph H and
the nested_decompress routine in the next lemma.

Lemma 11 The nested_decompress routine transforms an (s, t)-path Q in H of
length r into an (s, t)-path in G of length at least δ(G − {s, t}) + r/8 − 3.

Proof Observe that in the tree of the nested Erdős–Gallai decomposition, the path Q
visits a rooted subpath of componentsGi . That is, there are indices j1, j2, . . . , jc ∈ [�]
such that j1 = 1 and e( ji+1) = ji for each i ∈ [c − 1]. This holds since in a Erdős–
Gallai decomposition on each level, Q visits at most one Erdős–Gallai component by
Lemma7. Here we say that Q visits a component Gi if Q contains an edge of Gi that
was not contracted in H , and for non-decomposed components Gi this means that Q
contains the edge si ti in H .

By Lemma6, δ(G ji+1) ≥ δ(G ji ) − d ji+1 . Let h ∈ [�] be the largest integer such
that Q enters Gh , h = jc. Denote by p be the number of edges in E(Q)\E(Gh) and
by y the length of the (sh, th)-subpath of Q, then p + q = r .

We now analyze the length of Q after performing the replacement operations in
Lines 2.1– 2.9. Denote by Y the set of all i ∈ [c − 1] such that no contraction was
made in Line 1.6 between {s ji , t ji } and {s ji+1, t ji+1}. For each i ∈ Y with d ji+1 > 0,
performing the replacement operation in Line 2.7 between {s ji , t ji } and {s ji+1, t ji+1}
in Q yields

|E(Q) ∩ E(G ji )\E(G ji+1)| ≥ d ji+1 + 1 ≥ 3d ji+1/2.

Let p′ be the length of Q outside of Gh after all these replacements, from the above
p′ ≥ 3

2

∑
i∈Y d ji+1 . Also, p

′ ≥ p since the replacement only takes place if it makes
the path longer.

Denote by X := [c−1]\Y the set of all i ∈ [c−1] such that a contraction wasmade
in Line 1.6 between {s ji , t ji } and {s ji+1, t ji+1}. For each i ∈ X the algorithm reverses
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the respective edge contractions done in Line 1.6 in Q. This increases the length of
Q by d ji+1 , so after Line 2.9 it holds that |E(Q)\E(Gh)| ≥ p′ + ∑

i∈X d ji+1 .

We now observe that any long (sh, th)-subpath in Gh can be combined with Q to
preserve at least a constant fraction of p in the offset.

Claim 3 After Line 2.9, replacing the (sh, th)-subpath of Q with a path P in Gh of
length δ(Gh − {sh, th}) + k′, where k′ is a nonnegative integer, yields an (s, t)-path
in G of length at least

δ(G − {s, t}) + k′ + p/3.

Proof of Claim 3 The length of the resulting path is at least

|E(Q) \ E(G j )| + |E(P)| ≥ p′ +
∑

i∈X
d ji+1 + δ(Gh − {sh, th}) + k′

≥ p′ +
∑

i∈X
d ji+1 + δ(G − {s, t})

−
∑

i∈[c−1]
d ji+1 + k′ ≥ δ(G − {s, t}) + k′ + p′ −

∑

i∈Y
d ji+1

≥ δ(G − {s, t}) + k′ + p/3.

Note that the last inequality holds since p′ is at least 3
2

∑
i∈Y d ji+1 and also at

least p. The path obtained at this point is an (s, t)-path in G with possibly some
contracted edges, since not all edge contractions were reversed. Reverse all remaining
edge contractions affecting Q and obtain an (s, t)-path inG of at least the same length.

�

For estimating the length of the (sh, th)-subpath, consider two cases depending on
the type of Gh .

Gh is not decomposed. In this case, Q contains the edge shth in H , and in Line 2.12
this edge is replaced with the path Ph . By Claim3, this yields a path of length at least
δ(G − {s, t}) + (r − 1)/3, since the length of Ph is at least δ(Gh − {sh, th}), and
p = r − 1.

Gh is decomposed. By the choice of j , the (sh, th)-subpath of Q does not enter
any Erdős–Gallai component in the Erdős–Gallai decomposition induced by Pj,1 and
Pj,2 in Gh .

By Claim3, an (sh, th)-path of length δ(Gh − {sh, th}) + k′ inside Gh combined
with the outer part of Q obtains an (s, t)-path of length at least δ(G−{s, t})+ p/3+k′
inside G. We now focus on identifying a long enough (sh, th)-path inside Gh .

Let k′ := (q − 5)/8�, so q ≥ 8k′ + 5 ≥ 4k′ + 5. If Ph is longer than δ(Gh −
{sh, th}) + k′, then plugging Ph into Claim3 gives an (s, t)-path of length at least
δ(G−{s, t})+ p/3+k′+1 ≥ δ(G−{s, t})+ p/3+(q−5)/8 > δ(G−{s, t})+r/8−1.
Otherwise, we apply Lemma9 to Gh , Ph and the (sh, th)-subpath of Q to obtain an
(sh, th)-path R in Gh .

If the length of R is at least δ(Gh − {sh, th}) + k′ − 1, Claim3 gives the desired
bound of δ(G − {s, t}) + r/8 − 3. Otherwise, 1

2δ(Gh − {sh, th}) − 5
2k

′ < k′, then
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7k′ > δ(Gh − {sh, th}). It follows that q > δ(Gh − {sh, th}) + q/8 + 5. Hence, by
applying Claim3 to the initial (sh, th)-subpath of Q we get a path of length at least
δ(G − {s, t}) + p/3 + q/8 + 5 > δ(G − {s, t}) + r/8. Since Algorithm2 takes the
longest of R and the original subpath of Q, both cases are covered. 
�

It will also be helpful to observe that in the “slice” between a decomposed com-
ponent and the nested components, at most two edges of any path can be contracted.
Note that this does not follow immediately, as a pair of edges to each of the nested
components is potentially contracted.

Claim 4 Let Q be an (s j , t j )-path inside a decomposed graph G j . Then all edges
E(Q)∩ E(G j ) \⋃

e(i)= j E(Gi ) are unchanged in H except for, possibly, contraction
of the first and the last edge of Q.

Proof of Claim 4 Let i be such that a contraction is made for Gi in Line 1.6 with
e(i) = j and di > 0. There are no two disjoint paths between {s j , t j } and {si , ti } of
total length at least di + 1.

Without loss of generality, we assume that si �= s j , ti �= s j and si �= t j and the
edge s j si is contracted. If si /∈ V (Q), then Q is not affected in H . We assume that
si ∈ V (Q). If si is the second vertex in V (Q), then s j si is the first edge of V (Q) as
required.

Suppose now that si is not the second vertex in Q. Then the (s j , si )-subpath of Q
is of length at least two. If ti does not belong to this subpath, we add the trivial (of
length zero or one) (ti , t j )-path in G j and obtain two disjoint paths between {s j , t j }
and {si , ti } of total length at least 2 + |{ti , t j }| − 1 > di , which is a contradiction.

Hence, ti is present on the (s j , si )-subpath of Q. Then ti �= t j , so di = 2 and
si , ti , s j , t j are all distinct. We have an (s j , ti )-subpath of Q and an (si , t j )-subpath of
Q which are disjoint. If one of them is of length at least two, then we have two disjoint
paths of total length more than di . Hence, s j ti and si t j are the first and the last edge
in Q. The proof of the claim is complete. 
�

Nowwe are ready to prove the main lemma that bounds the length of the (s, t)-path
returned by Algorithm3.

Lemma 12 long_nested_st_path outputs an (s, t)-path in G of length at least
δ(G − {s, t}) + f (k)/32− 3, where k = L − δ(G − {s, t}) and L is the length of the
longest (s, t)-path in G.

Proof Let T be the longest (s, t)-path inG, |E(T )| = L = δ(G−{s, t})+k. Our aim is
to show that either T yields a sufficiently long path in H to use Lemma11, or conclude
that after contractions most of the path stays inside one Erdős–Gallai component, the
deepest component visited. In case of the latter, we show that it suffices to take a long
path inside this component.

We now introduce some notations for T with respect to the nested Erdős–Gallai
decomposition structure, similarly to the proof of Lemma11. Let h ∈ [�] be the
largest integer such that T enters Gh . Let j1, j2, . . . , jc be such that jc = j , j1 = 1
and e( ji+1) = ji for each i ∈ [c − 1]. Denote by Y the set of all i ∈ [c − 1] such
that no contraction was made in Line 1.6 between {s ji , t ji } and {s ji+1 , t ji+1}. Denote
X := [c − 1] \ Y .
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Consider what happens to the path T in the graph H between two consecutive
nested components G ji and G ji+1 . Since T is the longest (s, t)-path in G, edges in
E(T ) ∩ E(G ji )\E(G ji+1) form two disjoint paths between {s ji , t ji } and {s ji+1, t ji+1}
of longest possible total length. If |E(T ) ∩ E(G ji )\E(G ji+1)| = d ji+1 , all edges in
E(T ) ∩ E(G ji )\E(G ji+1) are contracted in H .

Otherwise, |E(T ) ∩ E(G ji )\E(G ji+1)| > d ji+1 . By Claim4, all edges in E(T ) ∩
E(G ji ) \ E(G ji+1) are present in H , except for possibly d ji+1 of them (the first and/or
the last). Also, recall that by properties of nested Erdős–Gallai decomposition, T
does not enter any Gi with e(i) = ji except for G ji+1 . Then the removal of the
internal vertices of non-decomposed components does not affect edges in E(T ) ∩
E(G ji )\E(G ji+1). Hence, at least |E(T )∩ E(G ji )\E(G ji+1)|−d ji+1 of the edges are
present in H in this case, which is at least one third of the edges in E(T ) ∩ E(G ji ) \
E(G ji+1) since d ji+1 ≤ 2.

Let T ′ be the path T with all contractions applied to H . If Gh is not decomposed,
we assume that T ′ contains the edge shth marked with Gh . By the above, we have

|E(T ′)\E(Gh)| ≥
∑

i∈[c−1]
|E(T ) ∩ E(G ji )\E(G ji+1)| − d ji+1

≥ 1

3
(|E(T )\E(Gh)| −

∑

i∈X
d ji+1).

The last inequality holds since for each i ∈ Y with d ji+1 > 0, |E(T ) ∩
E(G ji )\E(G ji+1)| − d ji+1 is at least 1

3 |E(T ) ∩ E(G ji ) \ E(G ji+1)|, and for all
the remaining indices i , |E(T ) ∩ E(G ji )\E(G ji+1)| = d ji+1 . Denote p :=
|E(T ′)\E(Gh)|, and from the above obtain the equivalent

|E(T ) \ E(Gh)| ≤ 3p +
∑

i∈X
d ji+1 . (1)

If p ≥ k/4, then an (s, t)-path of length at least k/4 + 1 is present in H .
In this case, an approximation of the longest (s, t)-path in H in Line 3.2 of
long_nested_st_path gives a path of length at least f (k/4 + 1) ≥ f (k)/4.
By Lemma11, running nested_decompress on this path results in an (s, t)-path
of length at least δ(G−{s, t})+ f (k)/32−3 inG, so in this case the proof is finished.

Otherwise, p < k/4. Denote by Th the (sh, th)-subpath of T . For simplicity, denote
δ := δ(G − {s, t}) and δh := δ(Gh − {sh, th}). We consider two cases.

Gh is decomposed. In this case, Th does not enter any Erdős–Gallai com-
ponent of Gh . By Claim 4, at most two edges of Th can be contracted in H ,
denote the number of such edges by d ′

h . Also, at least one edge is not con-
tracted, so |E(Th)| − d ′

h ≥ |E(Th)|/3. Thus, T ′ is an (s, t)-path of length at least
p + |E(Th)| − d ′

h ≥ 1
3

(|E(T )| − ∑
i∈X d ji+1

)
in H . If

∑
i∈X d ji+1 ≥ δ + k/4 − 3,

then long_nested_st_path outputs an (s, t)-path of length at least δ + k/4− 3
by Claim2, regardless of the length of Ph at Line 3.5.

Otherwise, T ′ is an (s, t)-path in H of length at least 1
3 (3k/4 + 3) = k/4 + 1.

Analogously to the case p ≥ k/4, long_nested_st_path then finds a path of
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length at least f (k)/4, and the path Q returned by nested_decompress is of
length at least δ(G − {s, t}) + f (k)/32 − 3.

Gh is not decomposed. Here, our goal is to show that taking in Gh one of the
(sh, th)-paths computed on Line 3.5 together with an arbitrary connection from {s, t}
to {sh, th} gives a long enough (s, t)-path in G. Let kh := |E(Th)| − δh . Note that by
the choice of T , Th is the longest (sh, th)-path in Gh . We first show the following.

Claim 5 If Gh is not decomposed, then at Line 3.6 the length of Ph is at least δh +
f (kh)/8 − 3.

Proof of Claim 5 First note that if the length of Ph from definition of nested Erdős–
Gallai decomposition is at least |V (Gh)| − 1, then Ph is a hamiltonian (sh, th)-path
in Gh . Then its length is maximum possible and is equal to |E(Th)| = δh + kh ≥
δh + f (kh). Hence, we can assume that the length of Ph given by nested Erdős–Gallai
decomposition is at least 5

4δh − 3.
If f (kh) ≥ 8

7δh , then long_st_path_approx(Gh , sh , th), the blackbox (s, t)-
path approximation algorithm, returns a path of length at least f (δh + kh) ≥ f (kh) ≥
δh + f (kh)/8, so we are done.

Otherwise, f (kh) ≤ 8
7δh . If f (kh) ≤ 24, then it suffices for Ph to have length δh .

In this case long_eg_st_path(Gh , sh , th), the exact (s, t)-path algorithm from
Corollary2, returns a (sh, th)-path of length at least δh .

It only remains to deal with the casewhere f (kh) > 24, and δh ≥ 7
8 f (kh). SinceGh

is not decomposed and δh > 16, by definition of nested Erdős–Gallai decomposition,
Ph is of length at least

5

4
δh − 3 ≥ δh + 1

4
δh − 3 ≥ δh + 1

4
· 7
8
f (kh) − 3 ≥ δh + 1

8
f (kh) − 3.


�

Using (1), we can lower-bound kh by

kh = |E(T )|−|E(T )\E(Gh)|−δh ≥ |E(T )|−3p−
∑

i∈X
d ji+1 −δh = δ+k−3p−

∑

i∈X
d ji+1 −δh .

(2)
On Line 3.6, Ph is transformed into an (s, t)-path in G of length at least |E(Ph)| +∑

i∈X∪Y d ji+1 , by Claim2. By Claim5, this length is at least

δh + f (kh)/8 − 3 +
∑

i∈X∪Y
d ji+1

≥ δ + (δh − δ) + f

(

k + δ − 3p −
∑

i∈X
d ji+1 − δh

)

/8 +
∑

i∈X∪Y
d ji+1 − 3

≥ δ + (δh +
∑

i∈X∪Y
d ji+1 − δ)

︸ ︷︷ ︸
≥0 by Lemma 6

+ f

(

(k − 3p) − (δh +
∑

i∈X
d ji+1 − δ)

)

/8 − 3
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≥ δ + f

(

δh +
∑

i∈X∪Y
d ji+1 − δ

)

+ f

(

(k − 3p) − (δh +
∑

i∈X
d ji+1 − δ)

)

/8 − 3

≥ δ + f (k − 3p)/8 − 3

≥ δ + f (k/4)/8 − 3 ≥ δ + f (k)/32 − 3.

Here for the first inequality we use (2), then the properties of the function f , and the
fact that we are in the case where k > 4p. Observe that for each x ∈ Z+, f (x) ≤ x ,
since we are given an algorithm that finds an (s, t)-path of length f (x) in any graph
with the longest (s, t)-path of length x . With this, we have shown that in each case the
returned (s, t)-path is of desired length, and the proof is complete. 
�

Finally, observe that the running time of Algorithm3 is polynomial in the size of
the given nested Erdős–Gallai decomposition. By Lemma10, its size is polynomial in
size of the input graph G. This concludes the proof of Theorem2.

5 Approximation for Cycles

This section is devoted to the proof of Theorem1 that establishes a way of lifting the
approximation guarantee of the longest cycle in a 2-connected graph G to the offset
above 2δ(G).

Theorem 1 Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm finding a cycle of length at least f (L) in
graphs with the longest cycle length L. Then there exists a polynomial time algorithm
that finds a cycle of length at least 2δ(G)+�( f (L −2δ(G))) in a 2-connected graph
G with δ(G) ≤ 1

2 |V (G)| and the longest cycle length L.

We first recall the concept of a Dirac decomposition and its properties that were
established by Fomin et al. [26]. Further in this section, we prove the novel crucial
property that in a graph admitting a Dirac decomposition, there exists a separating
pair of vertices with a long path between this pair. Finally, we combine these results
together with our approximation for (s, t)-path from the previous section (Theorem2)
to obtain the lifting algorithm in Theorem1.

5.1 Dirac decomposition

This subsection contains the definition andproperties of aDirac decomposition, includ-
ing the algorithmic result that allows to construct a Dirac decomposition from a given
2-connected graph G. We start with the definition of a Dirac decomposition, which
can be seen as an analogue of an Erdős–Gallai decomposition for cycles.

Definition 3 (Dirac decomposition and Dirac component, Definition 5 in [26]) Let G
be a 2-connected graph and let C be a cycle in G of length at least 2δ(G). We say that
two disjoint paths P1 and P2 in G induce a Dirac decomposition for C in G if

• The cycle C is of the form C = P1P ′P2P ′′, where each of the paths P ′ and P ′′
has at least δ(G) − 2 edges.
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• For every connected component H of G −V (P1 ∪ P2) holds |V (H)| ≥ 3 and one
of the following.

(D1) H is 2-connected, the maximum size of a matching in G ′ between V (H) and
V (P1) is one, and between V (H) and V (P2) is also one;

(D2) H is not 2-connected, exactly one vertex of P1 has neighbors in H , that is,
|NG(V (H)) ∩ V (P1)| = 1, and no inner vertex from a leaf-block of H has a
neighbor in P2;

(D3) The same as (D2), but with P1 and P2 interchanged. That is, H is not 2-
connected, |NG(V (H)) ∩ V (P2)| = 1, and no inner vertex from a leaf-block
of H has a neighbor in P1.

• There is exactly one connected component H in G − V (P1 ∪ P2) with V (H) =
V (P ′)\{s′, t ′}, where s′ and t ′ are the endpoints of P ′. Analogously, there is exactly
one connected component H in G − V (P1 ∪ P2) with V (H) = V (P ′′)\{s′′, t ′′}.

The set of Dirac components for a Dirac decomposition
is defined as follows. First, for each component H of type (D1), H is a Dirac

component of the Dirac decomposition. Second, for each leaf-block of each H of
type (D2), or of type (D3), this leaf-block is also a Dirac component of the Dirac
decomposition.

First, we recall an important property of a Dirac decomposition that restricts how
a cycle can pass through a Dirac component.

Lemma 13 (Lemma 17 in [26]) Let G be a 2-connected graph and C be a cycle in
G. Let paths P1, P2 induce a Dirac decomposition for C in G. Let M be a Dirac
component of the Dirac decomposition and P be a path in G such that P contains
at least one vertex in V (P1) ∪ V (P2). If P enters M, then all vertices of M hit by P
appear consecutively on P.

We now restate the result of [26] on the construction of a Dirac decomposition for
a given graph. Note that here we state it in a slightly different form, which is more
convenient in the setting of this paper. The statement is given below and the main
difference is highlighted in bold.

Lemma 14 (Lemma 20 in [26]) Let G be an n-vertex 2-connected graph and k be an
integer such that δ(G) ≥ 12, 0 < k ≤ 1

24δ(G), and

2k + 12 ≤ δ(G) <
n
2
.

Then there is an algorithm that, given a non-hamiltonian cycle C of length less
than 2δ(G) + k in polynomial time finds either

• Longer cycle in G, or
• Vertex cover of G of size at most δ(G) + 2k, or
• Two paths P1, P2 that induce a Dirac decomposition for C in G.
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To clarify this form, note that in the original statement of Lemma 20 in [26], the
upper bound for δ(G−B) is n

2 − |B|+k
2 , where B is a given set of small-degree vertices.

In the proof of Lemma 20 in [26], one can easily note that the only reason for this
bound is the existence of at least one vertex in V (G)\V (C)\B. Since in our work
B is always empty, this is equivalent to V (G) �= V (C), i.e. non-hamiltonicity of C .
Hence, the replacement of this bound with the condition on non-hamiltonicity of C is
legitimate.

We finish this subsection with another important property of Dirac decomposition
stating that there is a long cycle that enters at least oneDirac component.Unfortunately,
this property, Lemma 19 in [26], is stated in a way requiring the offset above 2δ(G)

for this long cycle to be much smaller than δ(G). Here we provide this property in the
form that does not require this and is much more convenient in our setting. Since it
differs significantly from the original statement, we provide a proof of this result that
is based on the proof of Lemma 19 from [26].

Lemma 15 (Modified Lemma 19 from [26]) Let G be a graph and P1, P2 induce a
Dirac decomposition for a cycle C of length at most 2δ(G − B) + κ in G such that
2κ ≤ δ(G). If there exists a cycle of length at least 2δ(G)+k in G that contains at least
one vertex in V (P1)∪V (P2), then there exists a cycle of length at least 2δ(G)+k/2−1
in G that enters a Dirac component.

Proof Suppose that there exists a cycle C ′ of length at least 2δ(G) + k in G that
contains at least one vertex in V (P1) ∪ V (P2). If C ′ already contains an edge of a
Dirac component, we are done. We now assume that C ′ does not contain any edge of
any Dirac component. We show how to use C ′ to construct a cycle of length at least
2δ(G) + k/2− 1 in G that contains an edge of a Dirac component of the given Dirac
decomposition.

Let W be the set of all vertices of G that are vertices of non-leaf-blocks of (D2)-
type or (D3)-type components in the Dirac decomposition.We start with the following
claim.

Claim 6 |W ∩ V (C ′)| > 0.

Proof of Claim 6 This is a counting argument. Note that C ′ cannot contain an edge
with both endpoints inside a Dirac component of G. Since Dirac components of
G are (D1)-type components of the Dirac decomposition and leaf-blocks of (D2)-
type or (D3)-type connected components, each edge of C ′ has an endpoint either in
V (P1) ∪ V (P2), or inside a non-leaf-block of a (D2)-type or a (D3)-type connected
component. The union of the vertex sets of the non-leaf-blocks forms the setW . Hence,
(W ∩ V (C ′)) ∪ V (P1) ∪ V (P2) is a vertex cover of C ′.

Note that a vertex cover of any cycle consists of at least half of its vertices. Then

2|(W ∩ V (C ′)) ∪ V (P1) ∪ V (P2)| ≥ |V (C ′)|.
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By definition of a Dirac decomposition, |V (P1) ∪ V (P2)| ≤ κ − 2. Immediately we
get that

2|W ∩ V (C ′)| ≥ 2δ(G) + k − 2|V (P1) ∪ V (P2)| ≥ 2δ(G) + k − 2(κ − 2) > 0.


�
We now take a vertex w1 ∈ W ∩ V (C ′). The following claim allows constructing

a long chord of C ′ starting in w1.

Claim 7 Let H be a (D2)-type or a (D3)-type component in the Dirac decomposition.
C ′ does not contain any inner vertex of the leaf-blocks of H.

Proof of Claim 7 Suppose that C ′ contains some vertex u ∈ V (H ′) that is an inner
vertex of some leaf-block L of H . As L is a Dirac component of G, C ′ cannot contain
any edge of L , so C ′ should enter L from V (P1) ∪ V (P2) through u and leave it
immediately. By definition of Dirac decompositions, the only option to enter or leave
L is to go through the only vertex in V (P1) (if H is of type (D2)) or in V (P2) (if H
is of type (D3)). As C ′ cannot contain any vertex twice, this is not possible. 
�

Now construct the chord of C ′ starting in w1. Since w1 is a vertex of a separable
component H , there is a cut vertex c1 of a leaf-block L1 of H reachable from w1
inside H . The leaf-block L1 contains also at least one vertex v1 �= c1 that is adjacent
to a vertex in V (P1) (if H is of type (D2)) or to V (P2) (if H is of type (D3)) outside
H . We know that δ(L1 − c1) ≥ δ(G − c1) − 1 ≥ δ(G) − 2, since the only outside
neighbour of vertices in L1 − c1 is a single vertex in V (P1) or V (P2). By Corollary 2,
there exists an (c1, v1)-path inside L1 of length at least δ(G) − 2. Combine this with
a (w1, c1)-path inside H and obtain a (w1, v1)-path inside H .

Note that the constructed (w1, v1)-path can contain vertices from V (C ′) apart from
w1. Let w′

1 ∈ V (C ′) be the vertex from V (C ′) on the (w1, v1)-path farthest from
w1. Note that the (w′

1, v1)-subpath still contains the (c1, v1)-path as a subpath by
Claim 7. Hence, we obtain a (w′

1, v1)-path of length at least δ(G) − 2 inside H that
does not contain any vertex in V (C ′) \ {w′

1}. To obtain a long chord of C ′, it is left
to reach the vertex in V (P1) ∪ V (P2) from v1 outside H , and then follow the cycle
C until a vertex v′

1 of C
′ is reached. This is always possible since V (C) ∩ V (C ′) ⊇

(V (P1)∪V (P2))∩V (C ′) �= ∅.We obtain a chord of length at least δ(G)−1 connecting
w′
1 and v′

1.
The (w′

1, v
′
1)-chord of C ′ splits C ′ into two (w′

1, v
′
1)-arcs, and one of the arcs has

length at least δ(G) + k/2. Combine this arc with the chord and obtain a cycle of
length at least 2δ(G) + k/2 − 1 in G. This cycle contains an edge of a leaf-block of
H , i.e. of a Dirac component. The proof is complete. 
�

5.2 Existence of a Separating Pair

This subsection encapsulates the newcombinatorial result behindDirac decomposition
that is crucial to our proof of Theorem1. It helps us avoid using the Dirac decompo-
sition explicitly in our algorithm, so that we can instead reduce to the algorithm for
approximating (s, t)-paths. The formal statement is recalled next.
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Lemma 1 Let G be a 2-connected graph and P1, P2 induce a Dirac decomposition
for a cycle C of length at most 2δ(G) + κ in G such that 2κ ≤ δ(G). If there exists a
cycle of length at least 2δ(G) + k in G, then there exist u, v ∈ V (G) such that

• G − {u, v} is not connected, and
• there is an (u, v)-path of length at least δ(G) + (k − 2)/4 in G.

Proof Consider the longest cycle C ′ in G. We assume that this cycle is of length at
least 2δ(G) + k and consider four cases.

Case 1.C ′ is completely contained in some connected component H of G−V (P1∪
P2), and H is 2-connected. Then H is a Dirac component of type (D1). Since the
matching size between V (H) and V (Pi ) for each i ∈ {1, 2} is exactly one, by Kőnig’s
theorem all edges between V (H) and V (Pi ) are covered by a single vertex. Denote
this vertex by u for i = 1 and by v for i = 2. Since G is 2-connected, u and v are
distinct. As {u, v} separates H from the rest of the graph and V (C) �⊂ V (H∪P1∪P2),
we have that G − {u, v} is not connected. It is left to show that there exists a long
(u, v)-path in G. Toward this, denote u′ = u if u ∈ V (H), and u′ ∈ NG(u) ∩ V (H)

if u ∈ V (P1). Choose v′ ∈ V (H) similarly, i.e. v′ either equals v or is a neighbour
of v. Since G is 2-connected, there is always a way to choose distinct u′ and v′. By
Lemma2, there is a (u′, v′)-path of length at least δ(G) + k/2 in H , hence there is
also a (u, v)-path of length at least δ(G) + k/2 in G.

Case 2. C ′ is completely contained in a leaf-block of a connected component H
of G − V (P1 ∪ P2). That is, C ′ is contained in a Dirac component of type (D2) or
(D3). The choice of u and v is similar to Case 1. That is, if the Dirac component is
of type (D2), choose u such that u ∈ NG(V (H)) ∩ V (P1) and choose v equal to the
cut vertex of the Dirac component. G − {u, v} is not connected as {u, v} separates
the Dirac component from the rest of H . There is an (u, v)-path of length at least
δ(G) + k/2 + 1 since there exists a (z, v)-path of length at least δ(G) + k/2 by
Lemma2, where z ∈ NG(u) ∩ V (H − v). The choice of u and v for type (D3) is
symmetrical.

Case 3. C ′ is completely contained in a non-leaf-block of a connected component
H of G − V (P1 ∪ P2). In this case, C ′ is not contained in a Dirac component. Denote
the non-leaf-block of H that contains C ′ by K . Without loss of generality, we assume
that H corresponds to (D2), i.e. |NG(V (H)) ∩ V (P1)| = 1. By Menger’s theorem,
there are either two vertices separating V (K ) from V (P1 ∪ P2) in G or three disjoint
paths going from V (K ) to V (P1 ∪ P2). If the former is the case, denote these two
vertices by u and v. Obviously, G − {u, v} is not connected. There are two disjoint
paths going from V (K ) to V (P1 ∪ P2), and one of these paths contains u and the
other contains v. Connect the endpoints of these paths in V (K ) using a path of length
at least δ(G) + k/2 inside V (K ) given by Lemma2. Clearly, the obtained long path
contains an (u, v)-path of length at least δ(G) + k/2 as a subpath.

If the latter is the case, then two of the three paths necessarily end inV (P2). Let these
two paths start respectively from u1 and u2 in V (K ) and end in v1 and v2 in V (P2).
Note that these paths use only edges of H and edges between V (H) and V (P2) in G.
Moreover, none of the paths has an internal vertex in V (K ) or V (P2). By Lemma2,
there is an (u1, u2)-path of length at least δ(G)+k/2 in K . Now construct a cycle inG
by combining the (u1, u2)-path with the (u1, v1)-path, (u2, v2)-path, and the subpath
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ofC that goes between v1 and v2 outside of P2. Since that subpath contains P ′ and P ′′
from the definition of Dirac decomposition as subpaths, the obtained cycle is of length
at least (δ(G) + k/2) + 1 + 1 + 2 · (δ(G) − 2) ≥ 3δ(G) + k/2 − 2 ≥ 2δ(G) + k/2.
This cycle contains an edge of P ′, so it enters a Dirac component, so we can replace
C ′ with this cycle and apply the following case.

Case 4.C ′ has a common vertexwith V (P1∪P2).ByLemma15,we can assume that
C ′ enters a Dirac component K but its length is at least 2δ(G) + k/2− 1. Following
Case 1 and Case 2, we know that there are u, v ∈ V (K ∪ P1 ∪ P2) such that in
G − {u, v} vertices in V (K ) are separated from the rest of the graph. By Lemma13,
vertices in V (K ) appear consecutively on C ′, so vertices and edges of C ′ induce a
path inside K . Since C ′ is not contained in V (K ), at least one of u and v is present
in C ′, so we have two cases depending on |V (C ′) ∩ {u, v}|. If u, v ∈ V (C ′), then
the longest arc of C ′ going between u and v simply yields a path of length at least
(2δ(G) + k/2 − 1)/2 = δ(G) + (k − 2)/4. If exactly one of u and v is present on
C ′, without loss of generality we assume u ∈ V (C ′). Then V (C ′) ⊆ V (K ) ∪ {u},
as C ′ does not pass through v—the only other entry to K . Similarly to Case 1 and
Case 2, we have a vertex v′ ∈ V (K ), which is either equal to v or is a neighbour of v.
Take a shortest path from v′ to V (C ′) inside K . Denote its endpoint by w. Prolong the
path starting in v′ with the longest arc of C ′ that goes between w and u. This yields a
(v′, u)-path, hence a (v, u)-path, of length at least δ(G) + (k − 2)/4 in G. 
�

5.3 Proof of Theorem 1

In this subsection, we combine Theorem2 and the results presented earlier in this
section into the proof of Theorem1.

Proof of Theorem 1 Assume that we are given a blackbox algorithm that finds a cycle
of length f (L) in a graph with the longest cycle length L . We now describe the desired
approximation algorithm that finds a cycle of length at least 2δ(G) + h(k) based on
the blackbox algorithm, where

h(k) = 1

128
f (k) − 8.

The input to our algorithm is a graph G, let L be the length of the longest cycle in
G and k = L − 2δ. For convenience, denote δ := δ(G). The goal of our algorithm
is to find a cycle of length at least 2δ + h(k) in G. Note that the algorithm does not
estimate h(k) in any way, it merely outputs the longest cycle that was found during its
run. We focuse on showing that this cycle always has length at least 2δ + h(k).

The pseudocode of our algorithm is presented in Algorithm4. The first few lines
of the algrotihm are dedicated to eliminating various corner cases where either the
blackbox approximation suffices directly, or a long Dirac cycle. This will help us
avoid dealing with extreme parameter values later in the analysis.

If 2δ ≥ n, the algorithm will find and output a Hamiltonian cycle in G following
Dirac’s theorem on Line 4.5. For the rest of the analysis, we assume 2δ < n. On
Line 4.1 our algorithm applies the blackbox f (L)-approximation algorithm to G.

123



Algorithmica (2024) 86:2676–2713 2707

If f (L) ≥ 49
24δ, then the resulting cycle is of length at least 2δ + ( f (L) − 2δ) ≥

2δ + 1
49 f (L), which is at least 2δ + h(k). As the algorithm never makes the current

cycle shorter, in this case the output will be automatically valid. We now also assume
that f (L) < 49

24δ.

longest_cycle_above_degree_approx(G)
Input: 2-connected graph G of minimum degree δ

Output: a cycle C of length at least 2δ + h(k), where k = L − 2δ and L is the length of the
longest cycle in G

4.1 C ←− longest_cycle_approx(G);
4.2 if long_dirac_cycle(G,∅, 1)is Yes then
4.3 C ←− the longest of C and the computed cycle of length at least 2δ + 1 in G;
4.4 else
4.5 return the cycle of length 2δ in G;
4.6 end
4.7 if δ ≤ 24 then
4.8 return C ;
4.9 end

4.10 while |V (C)| − 2δ <  1
24 δ� and Lemma14 applied to G and C gives a longer cycle do

4.11 C ←− a longer cycle in G;
4.12 end

4.13 if |V (C)| ≥ 2 1
24 δ� or Lemma14 gives the vertex cover of G then

4.14 return C ;
4.15 end
4.16 foreach u, v ∈ V (G) such that G − {u, v} is not connected do
4.17 Q, R ←− empty paths;
4.18 foreach connected component H in G − {u, v} do
4.19 S ←− longest_st_path_above_degree_approx(G[V (H)∪{u, v}]+uv, u, v);
4.20 Q, R ←− two longest paths among Q, R, S;
4.21 end
4.22 C ←− the longest of C, Q ∪ R;
4.23 end
4.24 return C ;

Algorithm 4: The algorithm finding a cycle of length at least 2δ(G) + h(k) in
a 2-connected graph G.

On Line 4.2 our algorithm applies the FPT algorithm for Long Dirac Cycle to
find a cycle of length at least 2δ+1 inG in polynomial time. If such cycle is found, then
our algorithm keeps the longest of this cycle and previously computed approximation.
If h(k) = 1

128 f (k) − 8 ≤ 1, then this cycle is a required approximation. On the other
hand, if a cycle of length at least 2δ + 1 does not exist in G, then k = L − 2δ = 0, so
a cycle of length 2δ is a valid approximation. Hence, in this case our algorithm just
outputs a cycle of length at least 2δ guaranteed by Dirac’s theorem in this case and
stops.

We now can assume that f (k) ≥ 9 ·128. Since f (L) < 49
24δ, it follows that δ > 24.

Thus, on Line 4.7, if δ ≤ 24, our algorithm just stops as the required approximation
cycle was already encountered by the algorithm.

Now we reach the main case of the algorithm, where we use the structural results
on Dirac decomposition to find a long cycle. Before Line 4.9, the current cycle C has
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length at least 2δ. If the length ofC is less than 2 1
24δ�, then the algorithmof Lemma14

is applied to the graph G and the cycle C with the parameter k′ = |V (C)| − 2δ + 1. If
the outcome is a cycle longer than C , then it replaces C with this cycle. If it still holds
that |V (C)| < 2 1

24δ�, then our algorithm applies Lemma14 to G and C again. This
process repeats until one of the three possible structures are found in G:

• Cycle C of length at least 2 1
24δ�;• Vertex cover of size at most δ + 2(|V (C)| − 2δ + 1);

• Two paths P1, P2 that induce a Dirac decomposition for C .

The first outcome is the desired h(k)-approximation of the offset since |V (C)| ≥
2δ + 1

49 f (L) − 1 ≥ 2δ + h(k) in this case. In the second outcome, since a vertex
cover upper-bounds the length of any cycle, L ≤ 2 · (2 · |V (C)| − 3δ + 2), hence
|V (C)| − 2δ ≥ L−4−2δ

4 , so |V (C)| ≥ 2δ + k
4 − 1. Automatically, C is a valid

approximation in this case aswell. Thus if any of the two situations occur, our algorithm
simply returns the current cycle C .

We move on to the most involved case where the two paths P1, P2 inducing a Dirac
decomposition are found. Our goal now is to use Lemma1 to find a separating pair
of vertices that has a long path between them, and then use the already established
algorithm from Theorem2 to approximate the length of this path.

Hence, before moving further, we need to obtain an approximation algorithm
for finding a long (s, t)-path. For this, we apply Lemma3 to the blackbox f (L)-
approximation algorithm for the longest cycle and obtain an algorithm that finds an
(s, t)-path of length at least 1

2 f (2p) in a graph with the longest (s, t)-path lenght p.
Finally, we apply Theorem2 to the latter algorithm and obtain an algorithm finding an
(s, t)-path of length δ + ( 1

64 f (2k′) − 3) where k′ = p − δ for the longest (s, t)-path
length p.

Since 2(|V (C)| − 2δ) < δ, we can apply Lemma1 to G and C . We obtain that
there exists a pair of vertices u, v ∈ V (G) such that G − {u, v} is not connected and
there is a path of length at least δ + (L − 2δ − 2)/4 between u and v in G. Towards
encountering this pair of vertices, our algorithm iterates over all possible u, v ∈ V (G)

such that G − {u, v} is not connected. Assume that the pair {u, v} is fixed. Then for
each connected component H of G − {u, v}, our algorithm applies the (s, t)-path
approximation algorithm to G[V (H) ∪ {u, v}] + uv to find a long (u, v)-path. Note
that this is a legitimate application of the algorithm since G[V (H) ∪ {u, v}] + uv is
2-connected.

Now, each application of the algorithm yields some (u, v)-path. There are at least
two connected components in G − {u, v}, so at least two (u, v)-paths are produced,
and our algorithm simply combines the longest two paths among them in a cycle. The
length of each path is at least δ−2.Moreover, if {u, v} is the pair given by Lemma1, for
at least one component the longest (u, v)-path has length at least δ + (k − 2)/4. Then
for this connected component H the approximation algorithm finds an (u, v)-path Q
of length at least δ(H − {u, v}) + 1

64 f (2k′) − 3, where

k′ = δ(G) + (k − 2)/4 − δ(H − {u, v}).
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Denote x = (δ(G)− δ(H −{u, v}). Note that x ≤ 2 and can be negative. Then the
length of Q is at least

δ(G) − x + 1

64
f (2(x + (k − 2)/4)) − 3.

If x ≥ 0, then the length of Q is at least

δ(G) − 2 + 1

64
f ((k − 2)/2) − 3.

If x < 0, then, as −x ≥ f (|x |), the length of Q is at least

δ(G) + f (|x |) + 1

64
f (−2|x | + (k − 2)/2) − 3

≥ δ(G) + 1

64
f (64|x |) + 1

64
f (−2|x | + (k − 2)/2) − 3

≥ δ(G) + 1

64
f (62|x | + (k − 2)/2) − 3

≥ δ(G) + 1

64
f ((k − 2)/2) − 3.

In any case, the length of Q is at least

δ + 1

64
f (k/2 − 1) − 5 ≥ δ + 1

128
f (k − 2) − 5

≥ δ + 1

128
f (k) − 1

128
f (2) − 5 ≥ δ + 1

128
f (k) − 6.

Hence, if our algorithm combines the longest two paths given by the pair {u, v}, it
obtains a cycle of length at least 2δ + 1

128 f (k) − 8 = 2δ + h(k). Since the algorithm
outputs the longest cycle among those constructed, the proof is complete. 
�

Finally, we show the corollary of Theorem1 that allows to approximate the longest
path in a graph that is not necessarily 2-connected.

Corollary 3 Let f : R+ → R be a non-decreasing subadditive function. If there exists
a polynomial-time algorithm finding a cycle of length f (L) in a 2-connected graph
with the longest cycle length L, there is a polynomial time algorithm that outputs a path
of length at least 2δ(G)+ f (L−2δ(G))/128−8 in a graph G with δ(G) < 1

2 |V (G)|
and the longest path length L.

Proof of Corollary 3 Take a graph G. We assume that G is connected, otherwise we
apply the same algorithm to each of its connected components.

Add a universal vertex to G and obtain a 2-connected graph G ′. Note that δ(G ′) =
δ(G) + 1 and there is a cycle of length at least c in G ′ if and only if there is a path of
length at least c − 2 in G. Hence, c − 2δ(G ′) = c − 2δ(G) − 2 = p − 2δ(G) for the
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longest cycle length c in G ′ and the longest path length p in G. Moreover, a cycle of
length c in G ′ can be transformed into a path of length at least c − 2 in G.

ApplyTheorem1 toG ′. The obtained cycle is of length at least 2δ(G ′)+ f (k)/128−
8 where k = c − 2δ(G ′) for the longest cycle length c in G ′. Finally, transform this
cycle into a path of length at least 2δ(G) + f (k)/128 − 8 in G. 
�

6 Conclusion

In this article, we have shown a general theorem that allows to leverage all the algo-
rithmic machinery for approximating the length of the longest cycle to approximate
the “offset” of the longest cycle provided by the classical Dirac’s theorem. As far as
one can compute a cycle of length f (L) in a 2-connected graph G with the longest
cycle length L , we can also construct a cycle of length 2δ(G) + �( f (L − 2δ(G))).
In particular, we can use the state-of-the-art approximation algorithm for Longest
Cycle due to Gabow and Nie [30]. They achieve an algorithm finding a cycle of length
f (L) = c

√
log L for some constant c > 1 in a graph with the longest cycle length L .

Note that f is non-decreasing and subadditive (as f is concave on [1,+∞], and any
concave function is subadditive; we also can formally set f (x) = min{x, c√

log x } for
x ≥ 1 and f (x) = x for x < 1 to fit the statement of Theorem1). By substituting this
to Theorem1, we achieve a polynomial-time algorithm that outputs a cycle of length

2δ(G) + 2�(
√

log(L−2δ(G))) in a 2-connected graph G with the longest cycle length
L > 2δ(G).

In the field of parameterized algorithms, there are many results on computing
longest cycles or paths above some guarantees. It is a natural question,whether approx-
imation results similar to ours hold for other types of “offsets”. To give a few concrete
questions, recall that the degeneracy dg(G) of a graph G is the maximum d such that
G has an induced subgraph of minimum degree d. By Erdős and Gallai [19], a graph
of degeneracy d ≥ 2 contains a cycle of length at least d + 1. It was shown by Fomin
et al. in [24] that a cycle of length at least L = dg(G) + k in a 2-connected graph can
be found in 2O(k) · nO(1) time. This immediately yields a polynomial-time algorithm
for computing a cycle of length at least dg(G)+�(log(L − dg(G))). Is there a better
approximation of the longest cycle above the degeneracy?

Another concrete question. Bezáková et al. [4] gave an FPT algorithm that for
s, t ∈ V (G) finds a detour in an undirected graph G. In othere words, they gave an
algorithm that finds an (s, t)-path of length at least L = distG(s, t)+k in 2O(k) ·nO(1)

time. Here distG(s, t) is the distance between s and t . Therefore, in undirected graph
we can find an (s, t)-path of length distG(s, t)+�(log(L−distG(s, t)) in polynomial
time. The existence of any better bound is open. For directed graphs the question of
whether finding a long detour is FPT, is widely open [4]. Nothing is known on the
(in)approximability of long detours in directed graphs.
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