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FAST FPT-APPROXIMATION OF BRANCHWIDTH\ast 

FEDOR V. FOMIN\dagger AND TUUKKA KORHONEN\dagger 

Abstract. Branchwidth determines how graphs and, more generally, arbitrary connectivity
(symmetric and submodular) functions can be decomposed into a tree-like structure by specific cuts.
We develop a general framework for designing fixed-parameter tractable 2-approximation algorithms
for branchwidth of connectivity functions. The first ingredient of our framework is combinatorial. We
prove a structural theorem establishing that either a sequence of particular refinement operations
can decrease the width of a branch decomposition or the width of the decomposition is already
within a factor of 2 from the optimum. The second ingredient is an efficient implementation of the
refinement operations for branch decompositions that support efficient dynamic programming. We
present two concrete applications of our general framework. The first is an algorithm that, for a

given n-vertex graph G and integer k, in time 22
\scrO (k)

n2 either constructs a rank decomposition of G
of width at most 2k or concludes that the rankwidth of G is more than k. It also yields a (22k+1 - 1)-
approximation algorithm for cliquewidth within the same time complexity, which in turn improves
to f(k) \cdot n2 the running times of various algorithms on graphs of cliquewidth k. Breaking the ``cubic
barrier"" for rankwidth and cliquewidth was an open problem in the area. The second application is
an algorithm that, for a given n-vertex graph G and integer k, in time 2\scrO (k)n either constructs a
branch decomposition of G of width at most 2k or concludes that the branchwidth of G is more than
k. This improves over the 3-approximation that follows from the recent treewidth 2-approximation
of Korhonen [FOCS 2021].

Key words. branchwidth, rankwidth, cliquewidth, graph algorithms, parameterized algorithms,
approximation algorithms
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1. Introduction. The branchwidth of a connectivity function f (that is, f is
symmetric and submodular and f(\emptyset ) = 0) was introduced by Robertson and Seymour
[41]. Let V be a finite set and f : 2V \rightarrow \BbbZ \geq 0 be a connectivity function on V . A
branch decomposition of f is a pair (T,L), where T is a cubic tree (the degree of each
nonleaf node of T is 3) and L is a bijection mapping V to the leaves of T . (If | V | \leq 1,
then f admits no branch decomposition.) For every edge e of T , the connected com-
ponents of T \setminus \{ e\} , the graph obtained from T by deleting e, induce a partition (X,Y )
of the set of leaves of T . The width of e is f(e) = f(L - 1(X)) = f(L - 1(Y )). The
width of (T,L) is the maximum width of all edges of T . The branchwidth \ttb \ttw (f) of f
is the minimum width of a branch decomposition of f . In this paper, we develop a
framework for designing fixed-parameter tractable (FPT) 2-approximation algorithms
for computing branch decompositions of connectivity functions. We provide a de-
tailed overview of the framework in section 2. Here we discuss some of its concrete
algorithmic consequences.

Rankwidth. Rankwidth was introduced by Oum and Seymour [37]. A rank de-
composition of a graph G is a branch decomposition of the following connectivity
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1086 FEDOR V. FOMIN AND TUUKKA KORHONEN

function f defined on the vertex set V (G). For a graph G and a pair A,B of disjoint
subsets of V (G), let G[A,B] be the bipartite graph induced by edges between A and
B. Let MG[A,B] be the | A| \times | B| 0-1 matrix representing G[A,B]. Then the value
f(A) = f(V (G) \setminus A) = rk(MG[A,V (G) \setminus A]) is the GF(2)-rank of MG[A,V (G) \setminus A].
By making use of our algorithmic framework for connectivity functions, we prove the
following theorem about approximation of rankwidth.

Theorem 1.1. There is an algorithm that, given an n-vertex graph G and an
integer k, in time 22

\scrO (k)

n2 either computes a rank decomposition of G of width at
most 2k or correctly concludes that the rankwidth of G is more than k.

Several algorithms computing rankwidth exactly or approximately are known in
the literature. After a number of improvements, the best running times of algorithms
computing rankwidth are of the form f(k) \cdot n3 [28, 30, 35, 38, 37]. Theorem 1.1
affirmatively answers the open question of Oum [36, Question 3], who asked whether
there exists an algorithm with functions f(k), g(k), and a constant c < 3 that finds a
rank decomposition of width at most f(k) or confirms that the rankwidth of a graph
is larger than k, in time g(k) \cdot nc. Pipelined with the previous work on rankwidth and
cliquewidth, Theorem 1.1 has several important consequences.

Cliquewidth. A common approach in graph algorithms is to decompose a graph
by making use of small separations. Perhaps the most popular measure of graph de-
composition is the treewidth of a graph [17, Chapter 7]. Many NP-hard optimization
problems can be solved efficiently on graphs of bounded treewidth. The seminal result
of Courcelle [10, 11] (see also [1, 6, 12]), combined with the algorithm of Bodlaender
[2], states that every decision problem on graphs expressible in monadic second order
logic (MSO2) is solvable in linear time on graphs of bounded treewidth. However,
the average vertex degree of a graph of treewidth k does not exceed k, limiting the
algorithmic applicability of treewidth to ``sparse"" graph classes. Arguably, the most
successful project of extending the meta-algorithmic results from graphs of bounded
treewidth to ``nonsparse"" graphs is by making use of the cliquewidth of a graph de-
fined by Courcelle, Engelfriet, and Rozenberg [13]. We give the formal definition due
to its technicality in the appendix. Informally, a graph is of cliquewidth at most k if
it can be built from single vertices following a k-expression, which identifies how to
systematically join the already constructed parts of the graph. Moreover, in each con-
structed part, the vertices can be partitioned into at most k types such that vertices of
the same type will be indistinguishable in later steps of the construction. Cliquewidth
generalizes treewidth in the following sense. Every graph G of treewidth at most k has
cliquewidth at most \scrO (2k). On the other hand, for example, the n-vertex complete
graph Kn has treewidth n - 1 but constant cliquewidth [29].

Oum and Seymour proved that for any graph of rankwidth k, its cliquewidth is
between k and 2k+1  - 1 [37]. Moreover, their proof gives an algorithm that in time
2\scrO (k)n2 converts a rank decomposition of width k into a (2k+1 - 1)-expression for the
cliquewidth. By combining the construction of Oum and Seymour with Theorem 1.1,
we derive the following corollary.

Corollary 1.2. There is an algorithm that, given an n-vertex graph G and an
integer k, in time 22

\scrO (k)

n2 either computes a (22k+1 - 1)-expression of G or correctly
concludes that the cliquewidth of G is more than k.

The importance of cliquewidth is due to its algorithmic properties. Courcelle,
Makowsky, and Rotics in [14] identified a variation of MSO2, called MSO1,
and showed how to extend Courcelle's theorem for MSO1 to graphs of bounded
cliquewidth. Informally, MSO1 is the class of MSO2 formulas that allow
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1087

quantification over subsets of vertices, but not of edges. While being less expressive
than MSO2, MSO1 still captures a broad class of optimization problems on graphs,
including vertex cover, dominating set, domatic number for fixed k, k-colorability for
fixed k, partition into cliques for fixed k, clique, independent set, and induced path.
The meta-theorem of Courcelle, Makowsky, and Rotics [14] states that every MSO1-
definable problem on graphs is solvable in time f(k) \cdot (n + m) when a k-expression
is provided with the input. The theorem of Courcelle, Makowsky, and Rotics applies
also to a more general class of problems, like optimization problems searching for sets
of vertices that are optimal concerning some linear evaluation function (for example,
a clique of the maximum weight) or counting [14, 15].

The applicability of the meta-theorem of Courcelle, Makowsky, and Rotics cru-
cially depends on the efficiency of computing the cliquewidth of a graph and con-
structing the corresponding k-expression. The only known way of constructing (an
approximately optimal) k-expression for cliquewidth, as well as for related graph pa-
rameters like NLC-width [44] or Boolean width [8], is by making use of rankwidth.
Combining Corollary 1.2 with the meta-theorem of Courcelle, Makowsky, and Rotics
[14] implies that every MSO1-definable problem is solvable in quadratic f(k) \cdot n2

running time on graphs of cliquewidth at most k. This is the first improvement on
the time complexity of this meta-theorem since the f(k) \cdot n3 algorithm given by Oum
in 2005 [35, 33].

Exact rankwidth. Oum [34] proved that the set of graphs having rankwidth at
most k is characterized by excluded vertex-minors with at most (6k+1 - 1)/5 vertices.
Thus for every k, there are only finitely many graphs, such that a graph G does not
contain any of them as a vertex-minor if and only if the rankwidth of G is at most
k, and this set of graphs is computable by exhaustive enumeration and brute-force
testing of the rankwidth. Courcelle and Oum [16] proved that for every fixed graph H,
the property that H is isomorphic to a vertex-minor of an input graph G is expressible
in a variant of MSO1 that can be checked in time f(k) \cdot (n + m) if a k-expression is
provided. Combined with Corollary 1.2, this implies the following.

Corollary 1.3. Deciding whether the rankwidth of a given n-vertex graph is at
most k can be done in time f(k) \cdot n2.

The function f(k) in Corollary 1.3 is huge as it depends on the set of forbidden vertex-
minors as well as checking a generalization of MSO1. Also this approach does not
provide the rank decomposition.

Jeong, Kim, and Oum [30] developed an alternative framework for computing
branch decompositions of finite-dimensional vector spaces over a fixed finite field. As
one of the applications of their method, they gave an FPT algorithm that for an input

graph G and integer k in time 22
O(k2)

n3 either constructs a rank decomposition of
width \leq k or concludes that the rankwidth of G is more than k. The algorithm of
Jeong, Kim, and Oum does not rely on vertex-minors and logic and can be seen as a
(very nontrivial) adaptation to vector spaces of the dynamic programming algorithm
of Bodlaender and Kloks for treewidth [4]. The cubic running time of their algorithm
is due to the application of iterative compression. However, if instead of iterative
compression we combine Theorem 1.1 with the dynamic programming algorithm of
Jeong, Kim, and Oum, we immediately obtain the following corollary.

Corollary 1.4. There is an algorithm that, given an n-vertex graph G and an

integer k, in time 22
O(k2)

n2 either constructs a rank decomposition of width at most
k or correctly concludes that the rankwidth of G is more than k.
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1088 FEDOR V. FOMIN AND TUUKKA KORHONEN

Branchwidth of graphs. As another application of the new algorithmic framework
for connectivity functions, we obtain a 2-approximation algorithm for branchwidth
of graphs. In this case, the connectivity function f is defined on the edge set E(G)
of a graph G. For A \subseteq E(G), f(A) is the number of vertices that are incident
to both A and E(G) \setminus A. The branchwidth of graphs is a ``close relative"" of the
treewidth: For every graph of branchwidth k, its treewidth is between k  - 1 and
3k/2 - 1 [41]. Thus any c-approximation of treewidth is also a 3c/2-approximation
for branchwidth, and vice versa. It appears that in certain situations, branchwidth
could be more convenient to work with than treewidth, for example, when it comes
to some dynamic programming algorithms [9, 19, 21]. The previously best-known ap-
proximation of branchwidth of running time 2\scrO (k)n is a 3-approximation that follows
from the treewidth 2-approximation algorithm of Korhonen [32]. We improve this to
2-approximation.

Theorem 1.5. There is an algorithm that, given an n-vertex graph G and an
integer k, in time 2\scrO (k)n either computes a branch decomposition of G of width at
most 2k or correctly concludes that the branchwidth of G is more than k.

1.1. Previous work. An algorithm of running time \scrO (n8k+12 logn) deciding
whether the branchwidth of a connectivity function is at most k was given by Oum [35].
Oum and Seymour gave a 3-approximation algorithm of running time O(n6\delta logn),
where \delta is the time for each evaluation of an ``interpolation"" of f [37] (see [37] for the
definition of ``interpolation"").

Rankwidth was introduced by Oum and Seymour as a tool for FPT-approximation
of cliquewidth [37]. In particular, they defined rankwidth, showed that rankwidth
and cliquewidth are functionally equivalent parameters, and gave an \scrO (8kn9 logn)
time algorithm for outputting a rank decomposition of width at most 3k + 1 or con-
cluding that the rankwidth is more than k. For unbounded k, Fellows, Rosamond,
Rotics, and Szeider showed that cliquewidth is NP-complete [20], and Oum observed
that rankwidth is NP-complete [35]. Since the algorithm of Oum and Seymour, a
number of FPT exact and approximation algorithms were developed for rankwidth
[16, 28, 30, 35, 38, 37]; see Table 1 for an overview. The running times of all these
algorithms are at least cubic in n. The existence of an FPT-approximation in sub-
cubic time was widely open; see [36, Question 3]. Rankwidth 1 graphs are known as
distance-hereditary graphs [34]. There is a (nontrivial) linear time \scrO (n + m) recog-
nition algorithm for distance-hereditary graphs [18]. To the best of our knowledge,

Table 1
Overview of rankwidth algorithms. Here k is the rankwidth and n is the number of vertices

of an input graph G. Unless otherwise specified, each of the algorithms outputs in \scrO (TIME) a
decomposition of width given in the Approx column. The function h(k) is a huge function whose
bound depends on list of forbidden minors in matroids or vertex-minors in graphs and the length of
the logic formula describing such minors.

Reference Approx TIME Remarks

Oum and Seymour [37] 3k+ 1 8kn9 logn Works for connectivity functions

Oum [35] 3k+ 1 8kn4

Oum [35] 3k - 1 h(k)n3

Courcelle and Oum [16] exact h(k)n3 Does not provide decomposition

Hlinen\'y and Oum [28] exact h(k)n3

Jeong, Kim, and Oum [30] exact 22
O(k2)

n3 Works for spaces over finite fields

This paper 2k 22
\scrO (k)

n2

This paper exact 22
O(k2)

n2 Our approximation + [30]
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1089

already for rankwidth k = 2 no algorithm faster than \scrO (n3) was known. Algorithms
for computing the branchwidth of certain matroids were studied by Hlin\v en\'y [26, 27].

Following the work of Courcelle, Makowsky, and Rotics [14], there is a lot of
literature on developing algorithms (FPT and XP) on graphs of bounded cliquewidth
[24, 25, 31, 39, 43]. The design of algorithms on rank decompositions [7, 22, 23] and
related graph parameters functionally equivalent to rankwidth like NLC-width [44]
and Boolean width [8] is also an active research area in graph algorithms. For each of
these width parameters, the only known way to compute the corresponding expression
or decomposition is through rank decompositions. By Theorem 1.1, the running times
of all FPT algorithms on graphs of k-cliquewidth, k-rankwidth, k-Boolean width, or
k-NLC width improve from f(k) \cdot n3 to f(k) \cdot n2.

The branchwidth of a planar graph is computable in polynomial time, but in gen-
eral the problem is NP-hard [42]. Bodlaender and Thilikos in developed an algorithm
computing the branchwidth of a graph in time 2\scrO (k3)n [5].

As we already mentioned, the branchwidth of graphs is an invariant similar to
treewidth and within a constant factor of treewidth. By the seminal algorithm of
Bodlaender [2], deciding whether the treewidth of a graph is at most k can be done in
time 2\scrO (k3)n. There are several linear time FPT algorithms with single-exponential
dependence in k that reach a constant approximation ratio [3, 32]. Korhonen obtained
an algorithm that in time 2\scrO (k)n computes a tree decomposition of width at most
2k + 1 or concludes that the treewidth of the graph is more than k [32]. When
it comes to branchwidth, the result of Korhonen is incomparable with Theorem 1.5.
Theorem 1.5 implies a 3-approximation for treewidth, which is worse than Korhonen's
algorithm, while Korhonen's algorithm yields a 3-approximation for branchwidth,
which is worse than Theorem 1.5.

Organization of the paper. We overview our framework for designing FPT 2-
approximation algorithms for computing branch decomposition in section 2, outlining
the main novel techniques. Section 3 contains definitions and simple facts about
branch decompositions and connectivity functions. In section 4 we develop the com-
binatorial tools of our framework which will be used in the next sections. Section 5 is
devoted to the algorithmic part of our framework. Section 6 implements our frame-
work for rankwidth, and section 7 for branchwidth of graphs.

2. Overview of our framework. Our framework for computing branch decom-
positions consists of two parts: the combinatorial and the algorithmic. We give an
overview first of the combinatorial part, then of the algorithmic part, and then we pro-
vide the specific applications for approximating rankwidth and branchwidth of graphs.

2.1. Combinatorial framework. Combinatorial results about how and when a
branch decomposition can be improved form the core of our framework. For a branch
decomposition (T,L) of a connectivity function f , we want to decide whether (T,L)
could be refined into a ``better"" branch decomposition (T \prime ,L\prime ). By better, we mean
the following. Let k be the width of (T,L) and h be the number of heavy edges of
T , that is, the edges e where f(e) is the width of (T,L). Then (T \prime ,L\prime ) is better than
(T,L) if the width of (T \prime ,L\prime ) is at most k and the number of edges of width k in T \prime 

is less than h.
Our central combinatorial insight is that if the width of (T,L) is more than 2\ttb \ttw (f),

then for any heavy edge e, there is a partition of V into three sets (C1,C2,C3) with
some particular properties, such that the quadruple (e,C1,C2,C3) can be used to
refine (T,L) into a better branch decomposition. We start first with explaining how
edge e and tripartition (C1,C2,C3) is used to refine (T,L).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1090 FEDOR V. FOMIN AND TUUKKA KORHONEN

Let (T,L) be a branch decomposition of a connectivity function f : 2V \rightarrow \BbbZ \geq 0.
Let uv be an edge of T and (C1,C2,C3) be a tripartition of V (one of the sets Ci

could be empty). We denote by (T,L\upharpoonright Ci
) the partial branch decomposition that has

the same tree T as (T,L), but the mapping L\upharpoonright Ci
is a restriction of mapping L to

Ci. (We say that a partial branch decomposition is a branch decomposition where the
labeling function L is only required to be an injection.)

The refinement (T,L\prime ) of (T,L) with (uv,C1,C2,C3) is obtained by first taking the
partial branch decompositions (Ti,Li) = (T,L\upharpoonright Ci

) for each i \in \{ 1,2,3\} . Let uivi be
the copy of the edge uv in Ti. The partial branch decompositions (T1,L1), (T2,L2),
and (T3,L3) are combined into a new partial branch decomposition by inserting a
new node wi on each edge uivi, and then connecting the nodes w1, w2, and w3 to a
new center node t. Finally, the obtained partial branch decomposition is transformed
into a branch decomposition by iteratively pruning leaves that are not labeled and
suppressing degree-2 nodes. See Figure 1.

How do the widths of edges change after the refinement? First, note that if Ci

is nonempty, then there will be an edge twi \in E(T \prime ) corresponding to a bipartition
(Ci,Ci) in the refinement; see Figure 2. (For X \subseteq V , we use X to denote V \setminus X.)
Thus the width of the refinement will be at least f(Ci). Let (W,W ) be the bipartition
corresponding to the edge uv in T . Then in the refinement there will be edges uiwi

and viwi corresponding to bipartitions (Ci \cap W,Ci \cap W ) and (Ci \cap W,Ci \cap W ) for
each i, provided that they are nonempty. Therefore, the width of the refinement will

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a

b

g

u2 v2

c

e

f

↓

u3 v3

d

h

t

w1

w2 w3

ga

b

c

e

f

d

h

Fig. 1. An example of the refinement operation. A branch decomposition (T,L) on a set V =
\{ a, b, c, d, e, f, g, h\} (top). For a tripartition (C1 = \{ a, b, g\} ,C2 = \{ c, e, f\} ,C3 = \{ d,h\} ), we have the
partial branch decompositions (T1,L1) = (T,L\upharpoonright \{ a,b,g\} ), (T2,L2) = (T,L\upharpoonright \{ c,e,f\} ), and (T3,L3) =
(T,L\upharpoonright \{ d,h\} ) (middle), and the refinement of (T,L) with (uv,C1,C2,C3) (bottom).
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<latexit sha1_base64="yChr3UyLmMWMuCc8plzh0fR14Cg=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CRbBVZmRoi6L3bisYB/QGYZMmmlDM5khyQh1KP6KGxeKuPU/3Pk3ZtoutPVA4HDOucnNCVPOlHacb2tldW19Y7O0Vd7e2d3btw8O2yrJJKEtkvBEdkOsKGeCtjTTnHZTSXEcctoJR43C7zxQqVgi7vU4pX6MB4JFjGBtpMA+bgSuR3CKvMTEilvyziSwK07VmQItE3dOKjBHM7C/vH5CspgKTThWquc6qfZzLDUjnE7KXqZoiskID2jPUIFjqvx8uv0EnRmlj6JEmiM0mqq/J3IcKzWOQ5OMsR6qRa8Q//N6mY6u/ZyJNNNUkNlDUcaRTlBRBeozSYnmY0MwkczsisgQS0y0KaxsSnAXv7xM2hdV97Jau6tV6jfzOkpwAqdwDi5cQR1uoQktIPAIz/AKb9aT9WK9Wx+z6Io1nzmCP7A+fwAmdJUO</latexit>

C1 \ W

<latexit sha1_base64="qICHCF1i1SvdhjxFAX2u1UhQ208=">AAAB/XicbVBLSwMxGMzWV62v9XHzEiyCp7Jbinos9uKxgn1Ad1myabYNzSZLkhXqUvwrXjwo4tX/4c1/Y7bdg7YOBIaZ+ZIvEyaMKu0431ZpbX1jc6u8XdnZ3ds/sA+PukqkEpMOFkzIfogUYZSTjqaakX4iCYpDRnrhpJX7vQciFRX8Xk8T4sdoxGlEMdJGCuyTVlD3MEqgJ0wsvyXrzQK76tScOeAqcQtSBQXagf3lDQVOY8I1Zkipgesk2s+Q1BQzMqt4qSIJwhM0IgNDOYqJ8rP59jN4bpQhjIQ0h2s4V39PZChWahqHJhkjPVbLXi7+5w1SHV37GeVJqgnHi4eilEEtYF4FHFJJsGZTQxCW1OwK8RhJhLUprGJKcJe/vEq69Zp7WWvcNarNm6KOMjgFZ+ACuOAKNMEtaIMOwOARPINX8GY9WS/Wu/WxiJasYuYY/IH1+QMoCZUP</latexit>

C2 \ W

<latexit sha1_base64="v6TYHumtIwPVMedCfcEhaPisPuc=">AAAB/XicbVA7T8MwGHTKq5RXeGwsFhUSU5VABYwVXRiLRB9SE0WO67RWHTuyHaQSVfwVFgYQYuV/sPFvcNoM0HKSpdPdffbnCxNGlXacb6u0srq2vlHerGxt7+zu2fsHHSVSiUkbCyZkL0SKMMpJW1PNSC+RBMUhI91w3Mz97gORigp+rycJ8WM05DSiGGkjBfZRM7jwMEqgJ0wsvyXrTgO76tScGeAycQtSBQVagf3lDQROY8I1Zkipvusk2s+Q1BQzMq14qSIJwmM0JH1DOYqJ8rPZ9lN4apQBjIQ0h2s4U39PZChWahKHJhkjPVKLXi7+5/VTHV37GeVJqgnH84eilEEtYF4FHFBJsGYTQxCW1OwK8QhJhLUprGJKcBe/vEw65zX3sla/q1cbN0UdZXAMTsAZcMEVaIBb0AJtgMEjeAav4M16sl6sd+tjHi1Zxcwh+APr8wcpnpUQ</latexit>

C3 \ W
<latexit sha1_base64="FJ+arsZTJzLlH+4gh0pF6Y/9+fo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMdiLx4rWFtIQ9lst+3STTbsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aFSqGW8xJZXuhNRwKWLeQoGSdxLNaRRK3g7HjZnffuLaCBU/4CThQUSHsRgIRtFKfqN32WU0IVl72itX3Ko7B1klXk4qkKPZK391+4qlEY+RSWqM77kJBhnVKJjk01I3NTyhbEyH3Lc0phE3QTY/eUrOrNInA6VtxUjm6u+JjEbGTKLQdkYUR2bZm4n/eX6Kg5sgE3GSIo/ZYtEglQQVmf1P+kJzhnJiCWVa2FsJG1FNGdqUSjYEb/nlVfJ4UfWuqrX7WqV+m8dRhBM4hXPw4BrqcAdNaAEDBc/wCm8OOi/Ou/OxaC04+cwx/IHz+QOD95DF</latexit>

C3 \ W

<latexit sha1_base64="/iHO24iGK5u4z42k6MNwmiHVsLM=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHYi8cK9gPaUDbbTbt0kw27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltG5VqxltMSaW7ATVcipi3UKDk3URzGgWSd4JJY+53nrg2QsWPOE24H9FRLELBKFqp1xhU+4wmJOvMBqWyW3EXIOvEy0kZcjQHpa/+ULE04jEySY3peW6CfkY1Cib5rNhPDU8om9AR71ka04gbP1ucPCOXVhmSUGlbMZKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NbPRJykyGO2XBSmkqAi8//JUGjOUE4toUwLeythY6opQ5tS0Ybgrb68TtrVinddqT3UyvW7PI4CnMMFXIEHN1CHe2hCCxgoeIZXeHPQeXHenY9l64aTz5zBHzifP4JrkMQ=</latexit>

C2 \ W

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t<latexit sha1_base64="DIxkBDWqkjIDiDEVQ0MeN68FP9M=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpeSgVcZVGtu3Z2DrBKvIDUo0BxUv/rDiCUSlWWCGtPz3Nj6KdWWM4GzSj8xGFM2oSPsZVRRicZP57fOyFmmDEkY6ayUJXP190RKpTFTGWSdktqxWfZy8T+vl9jwxk+5ihOLii0WhYkgNiL542TINTIrphmhTPPsVsLGVFNms3jyELzll1dJ+6LuXdUvHy5rjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AD8hjbo=</latexit>u1

<latexit sha1_base64="OiBCvDjVT8jjQE20LFNznitHEis=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy203bp7ibsbgol9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBLcWNf9dgobm1vbO8Xd0t7+weFR+fikZcJYM2yyUIS6E1CDgitsWm4FdiKNVAYC28HkPvPbU9SGh+rJziL0JR0pPuSM2kya9r1Sv1xxq+4CZJ14OalAjka//NUbhCyWqCwT1Jiu50bWT6i2nAmcl3qxwYiyCR1hN6WKSjR+srh1Ti5SZUCGoU5LWbJQf08kVBozk0HaKakdm1UvE//zurEd3voJV1FsUbHlomEsiA1J9jgZcI3MillKKNM8vZWwMdWU2TSeLARv9eV10rqqetfV2mOtUr/L4yjCGZzDJXhwA3V4gAY0gcEYnuEV3hzpvDjvzseyteDkM6fwB87nD0Cojbs=</latexit>v1

<latexit sha1_base64="atqbJJyrPLLL/nXMnLTfgPU0v1k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bp7ibsTpRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3JjRaQfcBJzX9GhFqFgFDPpqe+V+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8NqfCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPH0Ivjbw=</latexit>w1
<latexit sha1_base64="YGn51RWHkoeUzsMOxWOR0aqPgtQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2FZoQ9lsN+3S3U3YnSil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O4W19Y3NreJ2aWd3b/+gfHjUtlFiGG+xSEbmIaCWS6F5CwVK/hAbTlUgeScY32R+55EbKyJ9j5OY+4oOtQgFo5hJT/1aqV+uuFV3DrJKvJxUIEezX/7qDSKWKK6RSWpt13Nj9KfUoGCSz0q9xPKYsjEd8m5KNVXc+tP5rTNylioDEkYmLY1krv6emFJl7UQFaaeiOLLLXib+53UTDK/8qdBxglyzxaIwkQQjkj1OBsJwhnKSEsqMSG8lbEQNZZjGk4XgLb+8Stq1qndRrd/VK43rPI4inMApnIMHl9CAW2hCCxiM4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gBDtI29</latexit>w2

<latexit sha1_base64="HRDwj6RMlaAy91MykEFR8tGOkGc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KokW9Vj04rGC/YA2lM120i7d3YTdjVJK/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ2V1bX1js7BV3N7Z3dsvHRw2TZRohg0WiUi3A2pQcIUNy63AdqyRykBgKxjdZn7rEbXhkXqw4xh9SQeKh5xRm0lPvYtir1R2K+4MZJl4OSlDjnqv9NXtRyyRqCwT1JiO58bWn1BtORM4LXYTgzFlIzrATkoVlWj8yezWKTlNlT4JI52WsmSm/p6YUGnMWAZpp6R2aBa9TPzP6yQ2vPYnXMWJRcXmi8JEEBuR7HHS5xqZFeOUUKZ5eithQ6ops2k8WQje4svLpHle8S4r1ftquXaTx1GAYziBM/DgCmpwB3VoAIMhPMMrvDnSeXHenY9564qTzxzBHzifP0U5jb4=</latexit>w3

<latexit sha1_base64="hqnjlYG0Hj2vQJpTCRVrvxEOano=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48VrC20oWy2k3bp7ibsbgql9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dgpr6xubW8Xt0s7u3v5B+fDoyUSJZthkkYh0O6AGBVfYtNwKbMcaqQwEtoLRXea3xqgNj9SjncToSzpQPOSM2kwa9y5LvXLFrbpzkFXi5aQCORq98le3H7FEorJMUGM6nhtbf0q15UzgrNRNDMaUjegAOylVVKLxp/NbZ+QsVfokjHRaypK5+ntiSqUxExmknZLaoVn2MvE/r5PY8MafchUnFhVbLAoTQWxEssdJn2tkVkxSQpnm6a2EDammzKbxZCF4yy+vkqeLqndVrT3UKvXbPI4inMApnIMH11CHe2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBDso29</latexit>v3
<latexit sha1_base64="XBdZ+n5F/+gYE4L8cz1Y7HpCtME=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Ae0oWy2k3bp7ibsboRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O4W19Y3NreJ2aWd3b/+gfHjUMlGiGTZZJCLdCahBwRU2LbcCO7FGKgOB7WB8l/ntJ9SGR+rRTmL0JR0qHnJGbSYl/ctSv1xxq+4cZJV4OalAjka//NUbRCyRqCwT1Jiu58bWn1JtORM4K/USgzFlYzrEbkoVlWj86fzWGTlLlQEJI52WsmSu/p6YUmnMRAZpp6R2ZJa9TPzP6yY2vPGnXMWJRcUWi8JEEBuR7HEy4BqZFZOUUKZ5eithI6ops2k8WQje8surpHVR9a6qtYdapX6bx1GEEziFc/DgGupwDw1oAoMRPMMrvDnSeXHenY9Fa8HJZ47hD5zPH0Irjbw=</latexit>u3

<latexit sha1_base64="fwNnSgubyLlqNAMIBgN9oKxqvos=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2A9oQ9lsJ+3S3U3Y3Qil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dgobm1vbO8Xd0t7+weFR+fikbaJEM2yxSES6G1CDgitsWW4FdmONVAYCO8HkLvM7T6gNj9SjncboSzpSPOSM2kxKBrXSoFxxq+4CZJ14OalAjuag/NUfRiyRqCwT1Jie58bWn1FtORM4L/UTgzFlEzrCXkoVlWj82eLWOblIlSEJI52WsmSh/p6YUWnMVAZpp6R2bFa9TPzP6yU2vPFnXMWJRcWWi8JEEBuR7HEy5BqZFdOUUKZ5eithY6ops2k8WQje6svrpF2relfV+kO90rjN4yjCGZzDJXhwDQ24hya0gMEYnuEV3hzpvDjvzseyteDkM6fwB87nD0Cmjbs=</latexit>u2

<latexit sha1_base64="V6fAUfvT4bCSSOS4asvlQj3TYH0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2FpoQ9lsN+3S3U3YnRRK6V/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dgobm1vbO8Xd0t7+weFR+fikbaPEMN5ikYxMJ6CWS6F5CwVK3okNpyqQ/CkY32X+04QbKyL9iNOY+4oOtQgFo5hJk36t1C9X3Kq7AFknXk4qkKPZL3/1BhFLFNfIJLW267kx+jNqUDDJ56VeYnlM2ZgOeTelmipu/dni1jm5SJUBCSOTlkayUH9PzKiydqqCtFNRHNlVLxP/87oJhjf+TOg4Qa7ZclGYSIIRyR4nA2E4QzlNCWVGpLcSNqKGMkzjyULwVl9eJ+1a1buq1h/qlcZtHkcRzuAcLsGDa2jAPTShBQxG8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwBCLY28</latexit>v2

Fig. 2. Changes of the width in a ``neighborhood"" of uv.

be at least max(f(Ci\cap W ), f(Ci\cap W )). Our first result is that if f(uv) > 2\ttb \ttw (f), then
there exists a refinement that ``locally improves"" the branch decomposition around
the edge uv in the sense that the widths of all of the aforementioned edges of the
refinement are smaller than the width of the edge uv in T .

Theorem 2.1. Let f : 2V \rightarrow \BbbZ \geq 0 be a connectivity function. If W \subseteq V is a set
with f(W ) > 2\ttb \ttw (f), then there exists a tripartition (C1,C2,C3) of V so that for each
i\in \{ 1,2,3\} it holds that f(Ci) < f(W )/2, f(Ci \cap W ) < f(W ), and f(Ci \cap W ) < f(W ).

Theorem 2.1 will be proved in section 4 by considering a branch decomposition
T \ast of width \ttb \ttw (f) and showing that we can either take a bipartition (C1,C1,\emptyset ) of V
corresponding to an edge of T \ast or take a tripartition (C1,C2,C3) of V corresponding
to an internal node of T \ast .

We call any tripartition (C1,C2,C3) satisfying the conclusion of Theorem 2.1 for
a set W a W -improvement, signifying that the refinement operation with this tripar-
tition and the edge uv corresponding to (W,W ) improves the branch decomposition
around the edge uv. However, we cannot guarantee that the new decomposition T \prime 

would be better than T . The reason is that W -improvement can increase the widths
of edges deeper in (Ti,Li). It is a nontrivial statement that the existence of a W -
improvement on a heavy edge implies the existence of a refinement that is better than
(T,L). The following theorem states this more formally.

Theorem 2.2. Let f : 2V \rightarrow \BbbZ \geq 0 be a connectivity function and (T,L) be a branch
decomposition of f of width k, having h \geq 1 edges of width k. Let uv be an edge of
(T,L) corresponding to a partition (W,W ) and having width f(uv) = k. If there
exists a W -improvement, then there exists a W -improvement (C1,C2,C3) such that
the refinement of (T,L) with (uv,C1,C2,C3) has width at most k and fewer than h
edges of width k.

The combination of Theorems 2.1 and 2.2 shows that when we consider a heavy
edge uv, we either prove that k = f(uv) \leq 2\ttb \ttw (f) (if there is no W -improvement,
then f(uv) \leq 2\ttb \ttw (f)), or that there exists a W -improvement that could be used to
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1092 FEDOR V. FOMIN AND TUUKKA KORHONEN

globally improve (T,L) by reducing the number of edges of width k. We refer to a W -
improvement (C1,C2,C3) whose existence is guaranteed by Theorem 2.2 as a global T -
improvement . We stated Theorem 2.2 in a nonconstructive manner, but its proof gives
a constructive way of finding a global T -improvement. In particular, we show that a
global T -improvement can be found by selecting a W -improvement which optimizes
four explicit criteria over all W -improvements. More precisely, let (C1,C2,C3) be a
W -improvement. The first three conditions that (C1,C2,C3) optimizes are

(i) max\{ f(C1), f(C2), f(C3)\} is minimized;
(ii) subject to (i), the number of nonempty sets Ci in (C1,C2,C3) is minimized;

and
(iii) subject to (i) and (ii), f(C1) + f(C2) + f(C3) is minimized.

(In section 4 we refer to a W -improvements satisfying (i)--(iii) as a minimum W -
improvement.)

To state the fourth property we need the following definition. Let r = uv \in E(T )
be the edge of T corresponding to the partition (W,W ). By slightly abusing the
notation, let us view r as the root of T . Then for every node w of T , we define
Tr[w] as the set of leaves of the subtree of T rooted in w. We say that a tripartition
(C1,C2,C3) intersects a node w \in V (T ) if Tr[w] contains elements from at least two
different sets Ci. Now the fourth condition is

(iv) subject to (i), (ii), and (iii), (C1,C2,C3) intersects the minimum number of
nodes of T .

The main result of section 4 will be to show that any W -improvement satisfying
(i)--(iv) is a global T -improvement. The properties (i)--(iv) are very useful from an
algorithmic perspective: For several functions f , W -improvements with properties
(i)--(iv) can be computed by making use of dynamic programming over a branch
decomposition of f .

The combinatorial characterization of improving refinements brings us to the fol-
lowing generic algorithm for 2-approximating branchwidth. The algorithm repeatedly
takes a heavy edge uv corresponding to a partition (W,W ). Then it checks if there
exists a W -improvement and, if not, concludes that (T,L) is a 2-approximation and
returns (T,L). If a W -improvement exists, the algorithm refines (T,L) using a global
T -improvement. In the next subsection we outline how to implement this generic
algorithm efficiently for branch decompositions that support efficient dynamic pro-
gramming for finding global T -improvements.

2.2. Algorithmic framework. In order to efficiently apply refinement oper-
ations to improve a branch decomposition, we need to find global T -improvements
efficiently. For this, the main idea is that finding a global T -improvement corre-
sponds to a partitioning problem, with the goal of finding a tripartition (C1,C2,C3)
of V satisfying the conditions of Theorem 2.1 and (i)--(iv). Such types of problems
can be solved efficiently on branch decompositions that support dynamic program-
ming, like rank decompositions or branch decompositions of graphs. The application
of a sequence of at most n refinement operations guarantees that the width of the
resulting decomposition would decrease by at least one. Thus starting with a branch
decomposition of width k and repeatedly using dynamic programming to find a global
T -improvement in f(k) \cdot n time would result in a total time complexity of f(k) \cdot k \cdot n2

to reduce the width down to 2\ttb \ttw (f). Of course, this is not sufficient to obtain our
applications. Let us recall that we target a linear time algorithm for the branchwidth
of graphs. For rankwidth, where we aim for a quadratic running time, we also have
to implement iterative compression, resulting in cubic running time.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1093

The algorithmic ingredient of our general framework strongly uses the combina-
torial properties of global T -improvements: It appears that refinements with global
T -improvements ``interplay well"" with dynamic programming. This allows us to im-
plement a sequence of refinement operations that reduces the width from k to k - 1 in
a total of t(k) \cdot 2\scrO (k)n time, where t(k) is a function representing the time complexity
of dynamic programming on a single node of the branch decomposition. This part is
inspired by the amortization techniques from [32].

We exploit the fact that when we refine a branch decomposition (T,L) on an edge
uv, only some connected subtree of T around uv changes. We call the nodes in this
connected subtree the edit set of the refinement operation. In particular, we show that
a refinement operation can be implemented by removing its edit set R and inserting a
connected subtree of | R| new nodes in its place. Then we define a potential function
\phi of a branch decomposition so that \phi (T,L) is initially bounded by 2\scrO (k)n, where k
is the width of (T,L). We show that when refining with a global T -improvement, a
refinement operation with edit set R decreases \phi (T,L) by at least | R| , and therefore
the total sum of | R| across a series of refinement operations is bounded by 2\scrO (k)n.

We exploit the bound on the sizes of edit sets by only recomputing the dynamic
programming tables of the nodes in the edit set and reusing the rest. We formalize the
notion of performing dynamic programming operations in time t(k) with a definition
of a ``refinement data structure"" in section 5.2. This leads to the following theorem.

Theorem 2.3. Let f be a connectivity function for which there exists a refinement
data structure with time complexity t(k). There is an algorithm that, given a branch
decomposition (T,L) of f of width k, in time t(k) \cdot 2\scrO (k)n either outputs a branch
decomposition of f of width at most k - 1 or correctly concludes that k\leq 2\ttb \ttw (f).

2.3. Applications.
Rankwidth. We show that for rank decompositions, the refinement data structure

from Theorem 2.3 can be implemented in t(k) = 22
\scrO (k)

time, yielding a 22
\scrO (k)

n time
implementation of the algorithm in Theorem 2.3 for rankwidth. To obtain Theo-
rem 1.1, we then apply this algorithm with the technique of iterative compression of
Reed, Smith, and Vetta [40]; see also [17, Chapter 4]. In particular, by iteratively ob-
taining a rank decomposition of G of width \leq 2\ttr \ttw (G) + 1 from a rank decomposition
of G \setminus \{ v\} of width \leq 2\ttr \ttw (G \setminus \{ v\} ), and then applying Theorem 2.3 to decrease the
width or to prove that it is already within a factor of 2 from the optimum.

A crucial detail of this iterative compression and the implementation of Theo-
rem 2.3 for rankwidth is that we always maintain an augmented rank decomposition,
i.e., a rank decomposition that for each edge corresponding to a partition (A,B) of
V (G) stores representatives of the twin classes of the bipartite graph G[A,B]. In
particular, the implementation of Theorem 2.3 for rank decompositions requires an
augmented rank decomposition as an input and outputs an augmented rank decom-
position. The augmentation is required for implementing dynamic programming on
rank decompositions, and the reason for maintaining the augmentation throughout
the iterative compression is that we are not aware of any f(k) \cdot n time algorithms for
making a given rank decomposition augmented. Instead, in every step of the itera-
tive compression we use a 2\scrO (k)n time algorithm for obtaining an augmented rank
decomposition of G from an augmented rank decomposition of G \setminus \{ v\} .

Branchwidth of graphs. We show that for branch decompositions of graphs, the
refinement data structure from Theorem 2.3 can be implemented in t(k) = 2\scrO (k)

time, thus yielding a 2\scrO (k)n time implementation of the algorithm for branchwidth
of graphs. By using a 2-approximation algorithm for treewidth with time complexity
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1094 FEDOR V. FOMIN AND TUUKKA KORHONEN

2\scrO (k)n [32] and converting the tree decomposition into a branch decomposition [41],
we can assume that we initially have a branch decomposition of width at most 3k,
where k is the branchwidth. We then obtain Theorem 1.5 by k applications of the
algorithm of Theorem 2.3. We note that this algorithm can be made more self-
contained, to only depend on the compression technique of Bodlaender [2] instead of
treewidth algorithms, by applying the compression technique of Bodlaender in the
same manner as it is applied in [3, 32].

3. Preliminaries. We denote the set of vertices of a graph G by V (G) and
the set of edges by E(G). For a vertex v of a graph G, we denote by NG(v) the
neighborhood of v in G, and for a vertex set X, we let NG(X) =

\bigcup 
v\in X NG(v) \setminus X.

We drop the subscript G when it is clear from the context. For a graph G and a
set X \subseteq V (G), we denote by G[X] the subgraph induced by X. Let v be a degree-2
vertex in G, with neighbors N(v) = \{ u,w\} . The suppression of v deletes the vertex v
and edges incident to it and inserts the edge uw if it does not exist.

For a graph G and a pair A,B of disjoint subsets of V (G), G[A,B] is the bipartite
graph induced by edges between A and B and labeled with the bipartition (A,B).
The notation MG[A,B] denotes the | A| \times | B| 0-1 matrix representing G[A,B]. All
matrices in this paper are 0-1 matrices, and the GF(2) rank of matrix M is denoted
by rk(M).

A bipartition of a set V is an ordered pair (X,Y ) of disjoint sets such that X \cup Y =
V . A tripartition of a set V is an ordered triple (X,Y,Z) of disjoint sets so that
X \cup Y \cup Z = V . Note that in these definitions a partition can contain empty parts.
We say that a tripartition (X,Y,Z) of V intersects a set A \subseteq V if at least two of
X,Y,Z have a nonempty intersection with A.

Connectivity functions. Let V be a finite set and f : 2V \rightarrow \BbbZ \geq 0 be a function.
The function f is submodular if

f(U \cup W ) + f(U \cap W )\leq f(U) + f(W )(3.1)

for all U,W \subseteq V . For a set W \subseteq V , we denote W = V \setminus W . The function f is
symmetric if for every W \subseteq V , f(W ) = f(W ). Function f is a connectivity function if
(i) f is symmetric, (ii) f is submodular, and (iii) f(\emptyset ) = 0.

We note that here the requirements that f(\emptyset ) = 0 and f takes only nonnegative
values are actually not severe restrictions: For any function f : 2V \rightarrow \BbbZ satisfying (i)
and (ii), we can prove that f(\emptyset )\leq f(A) for any A\subseteq V by letting U = A and W = A in
(3.1), implying that the function f  - f(\emptyset ) satisfies all (i), (ii), (iii) and is nonnegative.

We will need the following two observations about connectivity functions. In the
following, let f : 2V \rightarrow \BbbZ \geq 0 be a connectivity function.

Observation 3.1. For any sequence of subsets A1, . . . ,An \subseteq V , it holds that f(A1\cap 
\cdot \cdot \cdot \cap An) = f(A1 \cup \cdot \cdot \cdot \cup An).

Proof. Note that A1 \cap \cdot \cdot \cdot \cap An = A1 \cup \cdot \cdot \cdot \cup An.

The following inequalities give bounds on a situation when a bipartition (B,B)
partitions a set A.

Observation 3.2. For any A,B \subseteq V , it holds that f(A)\leq f(A \cap B) + f(A \cap B)\leq 
f(A) + 2f(B).

Proof. For the first inequality, we have by submodularity

f(A) = f((A\cap B)\cup (A\cap B))\leq f(A\cap B) + f(A\cap B) - f(\emptyset ).(3.2)
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1095

For the second inequality, we have that

f(A\cap B) + f(A\cap B)\leq 2f(A) + 2f(B) - f(A\cup B) - f(A\cup B) (submodularity)

= 2f(A) + 2f(B) - f(A\cap B) - f(A\cap B) (Observation 3.1)

\leq 2f(A) + 2f(B) - f(A). (from (3.2))

Branch decompositions. A cubic tree is a tree where each node has degree 1 or 3.
A branch decomposition of a connectivity function f : 2V \rightarrow \BbbZ \geq 0 is a pair (T,L), where
T is a cubic tree and L is a bijection mapping V to the leaves of T . If | V | \leq 1, then
f admits no branch decomposition. Usually, by slightly abusing the notation, we will
treat the leaves of the branch decomposition as the elements of V , and thus denote a
branch decomposition by only the tree T instead of the pair (T,L).

Let e = uv \in E(T ) be an edge of a branch decomposition T . We denote by
T [uv]\subseteq V the set of leaves of T that are closer to the node u than to the node v, and
by T [vu]\subseteq V the set of leaves that are closer to v than u. Hence (T [uv], T [vu]) is the
bipartition of V induced by the connected components of the forest T \setminus \{ e\} obtained
from T by deleting e. The width of an edge e = uv of T is f(e) = f(T [uv]) = f(T [vu]),
and the width of a branch decomposition (T,L), denoted by \ttb \ttw (T,L), is the maximum
width of an edge. Finally, the branchwidth of f , denoted by \ttb \ttw (f), is the minimum
width of a branch decomposition of f .

Let r \in E(T ) be an edge of a branch decomposition T . We introduce notation
with the intuition that T is rooted at the edge r. The r-subtree of a node w \in V (T ) is
the subtree of T induced by nodes x\in V (T ) such that w is on the unique x - r path
(including w). For any node w \in V (T ), we denote by Tr[w] \subseteq V the set of leaves in
the r-subtree of w. Note that when r = uv, it holds that Tr[u] = T [uv], Tr[v] = T [vu],
and for any w \in V (T ) it holds that either Tr[w]\subseteq Tr[u] or Tr[w]\subseteq Tr[v]. The r-parent
of a node w \in V (T ) \setminus \{ u, v\} is the node next to w on the unique w  - r path. If p is
the r-parent of w, then w is an r-child of p. Note that every nonleaf node has exactly
two r-children, and every leaf node has no r-children. A set X \subseteq V r-intersects a
node w \in V (T ) if X \cap Tr[w] is nonempty. Similarly, a tripartition (C1,C2,C3) of V
r-intersects a node w \in V (T ) if it intersects the set Tr[w].

4. Combinatorial results. In this section we prove our combinatorial results.
Throughout the section we use the convention that f : 2V \rightarrow \BbbZ \geq 0 is a connectivity
function.

4.1. Refinement operation. The central concept of our results is the refine-
ment operation. Before defining it, we need the definition of a partial branch decom-
position.

Definition 4.1 (partial branch decomposition). A partial branch decomposition
on a set C is a pair (T,L), where T is a cubic tree and L is an injection from C to
the leaves of T .

Let (T,L) be a branch decomposition of f , and let Ci \subseteq V . We denote by (T,L\upharpoonright Ci)
the partial branch decomposition on the set Ci obtained by restricting the mapping
L to only Ci. Now we can define the refinement operation (see also Figure 1).

Definition 4.2 (refinement). Let (T,L) be a branch decomposition, let uv \in E(T )
an edge of T , and let (C1,C2,C3) be a tripartition of V . We define the refinement of
T with (uv,C1,C2,C3) as the following branch decomposition.

For each i \in \{ 1,2,3\} , let (Ti,Li) = (T,L\upharpoonright Ci
), and let uivi be the copy of the

edge uv in Ti. Now, let (T \prime ,L\prime ) be a partial branch decomposition on V obtained by
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1096 FEDOR V. FOMIN AND TUUKKA KORHONEN

first inserting a node wi on the edge uivi of each Ti (i.e., V (Ti)\leftarrow V (Ti) \cup \{ wi\} and
E(Ti) \leftarrow E(Ti) \cup \{ uiwi,wivi\} \setminus \{ uivi\} ), then taking the disjoint union of (T1,L1),
(T2,L2), (T3,L3), and then inserting a node t adjacent to w1, w2, w3, connecting the
disjoint union into a tree. Finally, the refinement is obtained by simplifying (T \prime ,L\prime ) by
iteratively removing degree-1 nodes that are not labeled by L\prime , and suppressing degree-2
nodes.

We observe that if T \prime is a refinement of T with (r,C1,C2,C3), then every edge of T \prime 

corresponds either to a bipartition (Ci,Ci) or to a bipartition (Tr[w]\cap Ci, Tr[w]\cap Ci),
where w \in V (T ). The following states this more formally.

Observation 4.3. Let T be a branch decomposition, let r \in E(T ), and let
(C1,C2,C3) be a tripartition of V . Let T \prime be the refinement of T with (r,C1,C2,C3).
It holds that

\{ \{ T \prime [u\prime v\prime ], T \prime [v\prime u\prime ]\} | uv\prime \in E(T \prime )\} 

=
\bigcup 

i\in \{ 1,2,3\} 

\Bigl( 
\{ \{ Ci,Ci\} \} \cup \{ \{ Tr[w]\cap Ci, Tr[w]\cap Ci\} | w \in V (T )\} 

\Bigr) 
\setminus \{ \{ \emptyset , V \} \} .

Note that as a branch decomposition is a cubic tree, and no two edges correspond
to the same bipartition, i.e., the set \{ \{ T [uv], T [vu]\} | uv \in E(T )\} has cardinality
| E(T )| .

4.2. Improving refinement. Now we provide the formal definitions and results
of our combinatorial framework, postponing the proofs to subsections 4.3 and 4.4.
First we define a W -improvement of a set W \subseteq V .

Definition 4.4 (W -improvement). Let W \subseteq V . A tripartition (C1,C2,C3) of V
is a W -improvement if for every i\in \{ 1,2,3\} ,

\bullet f(Ci) < f(W )/2;
\bullet f(Ci \cap W ) < f(W ); and
\bullet f(Ci \cap W ) < f(W ).

The width of a W -improvement is max\{ f(C1), f(C2), f(C3)\} , the sum-width of a
W -improvement is f(C1) + f(C2) + f(C3), and the arity of a W -improvement is the
number of nonempty parts in the partition.

Let us note that because of the condition f(Ci \cap W ) < f(W ), we have that for every
i \in \{ 1,2,3\} , Ci \not = V . Thus the arity of every W -improvement is always 2 or 3. Also,
W -improvements are symmetric in the sense that the ordering of the sets C1,C2,C3

as well as replacing W by W does not change any properties of a W -improvement.
The following lemma is a restatement of Theorem 2.1.

Lemma 4.5. If W \subseteq V such that f(W ) > 2\ttb \ttw (f), then there exists a
W -improvement.

We postpone the proof of Lemma 4.5 to subsection 4.3.
If uv is an edge of a branch decomposition T with (T [uv], T [vu]) = (W,W ),

then refining with (uv,C1,C2,C3) where (C1,C2,C3) is a W -improvement ``locally
improves"" the branch decomposition around the edge uv in the sense that the widths of
the new edges corresponding to the edge uv will be of the forms f(Ci\cap W ) < f(W ) and
f(Ci \cap W ) < f(W ). Towards proving that the existence of a W -improvement implies
the existence of a W -improvement that globally improves the branch decomposition,
we define minimum W -improvements.

Definition 4.6 (minimum W -improvement). For W \subseteq V a W -improvement
(C1,C2,C3) is a minimum W -improvement if
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1097

(1) (C1,C2,C3) is of minimum width among all W -improvements;
(2) subject to (1), (C1,C2,C3) is of minimum arity; and
(3) subject to (1) and (2), (C1,C2,C3) is of minimum sum-width.

Let uv = r be an edge of a branch decomposition T . Recall that for any node w
of T it holds that either Tr[w] \subseteq T [uv] or Tr[w] \subseteq T [vu], and recall that by Obser-
vation 4.3, when refining with (uv,C1,C2,C3), the edge corresponding to Tr[w] will
turn into edges corresponding to Tr[w]\cap C1, Tr[w]\cap C2, and Tr[w]\cap C3. The following
lemma shows that when refining with a minimum W -improvement, the width of a
branch decomposition does not increase.

Lemma 4.7. Let W \subseteq V , and let (C1,C2,C3) be a minimum W -improvement.
Then for any set W \prime such that W \prime \subseteq W or W \prime \subseteq W and every i \in \{ 1,2,3\} , it holds
that f(W \prime \cap Ci)\leq f(W \prime ).

We postpone the proof of Lemma 4.7 to subsection 4.4.
Next we define the notion of global T -improvement, which will finally be the type

of improvement that we actually use to perform the refinement operation.

Definition 4.8 (global T -improvement). Let T be a branch decomposition, and
let r = uv \in E(T ) be an edge of T . A T -improvement on r is a tuple (r,C1,C2,C3),
where W = T [uv], and (C1,C2,C3) is a minimum W -improvement. We say that a T -
improvement on r intersects a node w \in V (T ) if (C1,C2,C3) r-intersects it, i.e., the set
Tr[w] intersects at least two sets from \{ C1,C2,C3\} . A T -improvement (r,C1,C2,C3)
is a global T -improvement if it intersects the minimum number of nodes of T among
all T -improvements on r.

The following theorem is our main combinatorial result. In particular, Theo-
rem 2.2 will be a straightforward application of it.

Theorem 4.9. Let T be a branch decomposition, r \in E(T ) an edge of T , and
(r,C1,C2,C3) a global T -improvement. Then for every i \in \{ 1,2,3\} and every node
w \in V (T ), it holds that f(Tr[w] \cap Ci) \leq f(Tr[w]). Moreover, if Tr[w] \cap Ci \not = \emptyset , then
f(Tr[w]\cap Ci) = f(Tr[w]) if and only if Tr[w]\subseteq Ci.

We postpone the proof of Theorem 4.9 to subsection 4.4. Let us prove Theorem 2.2
using Theorem 4.9 and Observation 4.3.

Theorem 2.2. Let f : 2V \rightarrow \BbbZ \geq 0 be a connectivity function and (T,L) be a branch
decomposition of f of width k, having h \geq 1 edges of width k. Let uv be an edge of
(T,L) corresponding to a partition (W,W ) and having width f(uv) = k. If there
exists a W -improvement, then there exists a W -improvement (C1,C2,C3) such that
the refinement of (T,L) with (uv,C1,C2,C3) has width at most k and fewer than h
edges of width k.

Proof. Denote r = uv. Take a global T -improvement (r,C1,C2,C3), which ex-
ists by the existence of a W -improvement. Let T \prime be the refinement of T with
(r,C1,C2,C3). By Observation 4.3, each edge of T \prime corresponds to a bipartition
of the form (Tr[w] \cap Ci, Tr[w]\cap Ci), where w \in V (T ), or of the form (Ci,Ci). Because
(C1,C2,C3) is a W -improvement, all edges of the form (Ci,Ci) have width less than
k/2. By the first part of Theorem 4.9, all edges of the form (Tr[w] \cap Ci, Tr[w]\cap Ci)
have width at most f(Tr[w])\leq k, and therefore the width of T \prime is at most k.

By the second part of Theorem 4.9, if T \prime contains an edge corresponding to a
bipartition (Tr[w] \cap Ci, Tr[w]\cap Ci) with width k, then Tr[w] \cap Ci = Tr[w], and thus
an edge corresponding to the exact same bipartition also exists in T . This gives an
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1098 FEDOR V. FOMIN AND TUUKKA KORHONEN

injective mapping from the edges of T \prime of width k to edges of T of width k. It remains
to observe that by the definition of W -improvement, this mapping maps no edge of
T \prime to the edge uv of T , and thus T \prime contains strictly fewer edges of width k than T .

4.3. Proof of Lemma 4.5. The idea of the proof of Lemma 4.5 is that we take
an optimal branch decomposition T \ast of f , i.e., a branch decomposition T \ast of width
\ttb \ttw (f) < f(W )/2, and argue that either the bipartition corresponding to some edge of
T \ast or the tripartition corresponding to some node of T \ast results in an W -improvement.

We define an orientation of a set C \subseteq V with respect to a set W \subseteq V . This will
be used for orienting the edges of the optimal branch decomposition based on W .

Definition 4.10 (orientation). Let C,W \subseteq V . We say that the set W directly
orients C if f(C \cap W ) < f(C \cap W ) and f(C \cap W ) < f(C \cap W ). The set W inversely
orients C if it directly orients C. The set W disorients C if it neither directly nor
inversely orients C.

Note that the definition of orienting is symmetric with respect to complementing
W , i.e., W (directly, inversely, dis)-orients C if and only if W (directly, inversely, dis)-
orients C. Next we show that if there is an edge of an optimal branch decomposition
that cannot be oriented according to Definition 4.10, then it corresponds to a W -
improvement.

Lemma 4.11. Let C,W \subseteq V . If W disorients C and f(C) < f(W )/2, then
(C,C,\emptyset ) is a W -improvement.

Proof. By possibly interchanging C with C, without loss of generality we can
assume that f(C \cap W ) \leq f(C \cap W ) and f(C \cap W ) \geq f(C \cap W ). Since we have
f(C) = f(C) < f(W )/2, to show that (C,C,\emptyset ) is a W -improvement, it suffices to prove
that f(C \cap W ) < f(W ) and f(C \cap W ) < f(W ). Assume, by way of contradiction,
that f(C \cap W ) \geq f(W ). Then by the submodularity of f , f(C \cup W ) \leq f(C), hence
f(C \cap W ) \leq f(C). Therefore, f(C \cap W ) + f(C \cap W ) \leq 2f(C) < f(W ). But this
contradicts Observation 3.2. The proof of f(C \cap W ) < f(W ) is symmetric.

Now, to prove Lemma 4.5, we take an optimal branch decomposition T \ast of f and
orient each edge uv with (T \ast [uv], T \ast [vu]) = (C,C) towards v if W directly orients
C and towards u if W inversely orients C. If no orientation can be found, then
Lemma 4.11 shows that (C,C,\emptyset ) is a W -improvement and we are done.

Lemma 4.12. No edge of T \ast is oriented towards a leaf.

Proof. Suppose there is an edge of T \ast oriented towards a leaf v \in V . This means
that W directly orients V \setminus \{ v\} , implying that f(W \setminus \{ v\} ) < f(W \cap \{ v\} ) and that
f(W \setminus \{ v\} ) < f(W \cap \{ v\} ). However, one of the sets W \cap \{ v\} or W \cap \{ v\} must be
empty and therefore either f(W \cap \{ v\} ) = 0 or f(W \cap \{ v\} ) = 0, but f cannot take
values less than 0, so we get a contradiction.

Now, by walking in T \ast according to the orientation, we end up finding an internal
node towards which all incident edges are oriented. In particular, the internal node
corresponds to a tripartition (C1,C2,C3) of V , so that f(Ci) < f(W )/2 for all i \in 
\{ 1,2,3\} (as the width of T \ast is < f(W )/2), and W directly orients each Ci. The
following lemma shows that this node indeed gives a W -improvement, and therefore
completes the proof of Lemma 4.5.

Lemma 4.13. Let W \subseteq V , and let (C1,C2,C3) be a tripartition of V such that for
each i \in \{ 1,2,3\} , f(Ci) < f(W )/2 and W directly orients Ci. Then (C1,C2,C3) is a
W -improvement.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1099

Proof. Since W directly orients Ci, we have that f(Ci \cap W ) < f(Ci \cap W ). By
Observation 3.2, f(Ci \cap W ) + f(Ci \cap W ) \leq f(W ) + 2f(Ci). Therefore, we have
f(Ci\cap W )\leq f(W )/2+f(Ci) < f(W ). The proof that f(Ci\cap W ) < f(W ) is similar.

4.4. Proofs of Lemma 4.7 and Theorem 4.9. Let (C1,C2,C3) be a minimum
W -improvement for a set W \subseteq V . The main idea behind the proofs of Lemma 4.7
and Theorem 4.9 is that if f(W \prime \cap C1) \geq f(W \prime ) for some W \prime \subseteq W or W \prime \subseteq W ,
then we prove that (C \prime 

1,C
\prime 
2,C

\prime 
3) = (C1 \cup W \prime ,C2 \setminus W \prime ,C3 \setminus W \prime ) is also a minimum

W -improvement (and symmetrically for C2 and C3). In particular, this will be used
to contradict the minimality of (C1,C2,C3) or the fact that (r,C1,C2,C3) is a global
T -improvement.

The proof is different for minimum W -improvements of arity 2 and of 3. The
following lemma will be used in both cases, in particular, it will be useful for arguing
that a set C \prime 

1 = C1\cup W \prime satisfies the condition f(C \prime 
1\cap W ) < f(W ) of W -improvements.

Lemma 4.14. Let W \subseteq V , and let (C1,C2,C3) be a W -improvement. Suppose
that for some W \prime \subseteq W , f(C1 \cap W \prime )\geq f(W \prime ). Then f((C1 \cup W \prime )\cap W ) < f(W ).

Proof. Because W \prime \subseteq W , we have that

f((C1 \cup W \prime )\cap W ) = f(W \prime \cup (C1 \cap W )).

Then

f(W \prime \cup (C1 \cap W ))\leq f(W \prime ) + f(C1 \cap W ) - f(W \prime \cap (C1 \cap W )) (submodularity)

= f(W \prime ) + f(C1 \cap W ) - f(W \prime \cap C1) (by W \prime \subseteq W )

\leq f(C1 \cap W ) < f(W ),

where the last line follows from the assumption f(C1 \cap W \prime )\geq f(W \prime ) and the definition
of W -improvement.

Note that by the symmetry of W -improvements, Lemma 4.14 holds also when
replacing C1 by C2 or C3, and also for W \prime \subseteq W .

4.4.1. W -improvements of arity 2. The following lemma completes the proof
of Lemma 4.7 for W -improvements of arity 2 (note symmetry). It also sets up the
proof of Theorem 4.9 for W -improvements of arity 2, which will be completed in
subsection 4.4.3.

Lemma 4.15. Let W \prime \subseteq W \subseteq V , and let (C,C,\emptyset ) be a minimum W -improvement.
Then f(C \cap W \prime ) \leq f(W \prime ), and, moreover, if the equality f(C \cap W \prime ) = f(W \prime ) holds,
then (C \cup W \prime ,C \setminus W \prime ,\emptyset ) is also a minimum W -improvement.

Proof. Let (C,C,\emptyset ) be a minimum W -improvement and suppose that for some
W \prime \subseteq W we have f(C \cap W \prime )\geq f(W \prime ). To prove the lemma, we first show that in this
case (C \prime ,C \prime ,\emptyset ) = (C \cup W \prime ,C \setminus W \prime ,\emptyset ) is also a W -improvement.

Let us check that (C \prime ,C \prime ,\emptyset ) satisfies all the conditions of a W -improvement.
First, by f(C \cap W \prime )\geq f(W \prime ) and submodularity of f , we have that

f(C \prime ) = f(C \prime ) = f(C \cup W \prime )\leq f(C) < f(W )/2.(4.1)

Then by W \prime \subseteq W we have that f(C \prime \cap W ) = f(C \cap W ) < f(W ) and that f(C \prime \cap 
W ) = f(C \cap W ) < f(W ). By Lemma 4.14, we have f(C \prime \cap W ) < f(W ). Finally,
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1100 FEDOR V. FOMIN AND TUUKKA KORHONEN

f(C \prime \cap W ) = f(C \prime \cup W ) = f((C \cup W \prime )\cup (C \cup W )) (Obs. 3.1)

\leq f(C \cup W \prime ) + f(C \cup W ) - f((C \cup W \prime )\cap (C \cup W )) (submodularity)

= f(C \cup W \prime ) + f(C \cup W ) - f(C) (W \prime \subseteq W )

\leq f(C) + f(C \cap W ) - f(C) < f(W ). (Obs. 3.1 + (4.1))

This completes the proof that (C \prime ,C \prime ,\emptyset ) is a W -improvement.
Now, if f(C \cap W \prime ) > f(W \prime ), then by the submodularity of f , we would get

f(C \prime ) = f(C \cup W \prime ) < f(C). But this contradicts the minimality of (C,C,\emptyset ). If
f(C \cap W \prime ) = f(W \prime ), then f(C \prime ) \leq f(C). In this case, since (C \prime ,C \prime ,\emptyset ) is a W -
improvement and (C,C,\emptyset ) is a minimum W -improvement, we conclude that (C \prime ,C \prime ,\emptyset )
is also a minimum W -improvement .

Note again that due to symmetry of W -improvements, Lemma 4.15 holds also
when swapping the roles of C and C and for W \prime \subseteq W .

4.4.2. W -improvements of arity 3. For W -improvements of arity 3, we will
heavily exploit the minimality of arity, i.e., the condition on minimum W -improvements
that there should be no W -improvement with smaller or equal width and with smaller
arity. We proceed with a sequence of auxiliary lemmas establishing properties of min-
imum W -improvements of arity 3.

Lemma 4.16. Let (C1,C2,C3) be a minimum W -improvement of arity 3. Then
for every i\in \{ 1,2,3\} , W directly orients Ci.

Proof. If W disorients Ci, then by Lemma 4.11, (Ci,Ci,\emptyset ) is a W -improvement
contradicting the minimality of (C1,C2,C3). On the other hand, W cannot inversely
orient Ci. Indeed, the assumption f(W \cap Ci) > f(W \cap Ci) and f(W \cap Ci) >
f(W \cap Ci) yields that f(W \cap Ci) < f(W ) and f(W \cap Ci) < f(W ) by the fact that
(C1,C2,C3) is a W -improvement. In this case, again, (Ci,Ci,\emptyset ) is a W -improvement
contradicting the minimality of (C1,C2,C3).

Lemma 4.17. Let (C1,C2,C3) be a minimum W -improvement of arity 3. Then
for every i\in \{ 1,2,3\} it holds that f(W \cup Ci) > f(W )/2 and f(W \cup Ci) > f(W )/2.

Proof. By Lemma 4.16, W directly orients Ci. Hence f(W \cap Ci) < f(W \cap Ci).
By Observation 3.2, f(W ) = f(W ) \leq f(W \cap Ci) + f(W \cap Ci). Therefore, we
get f(W \cup Ci) = f(W \cap Ci) > f(W )/2. The proof of f(W \cup Ci) > f(W )/2 is
symmetric.

The following lemma shows that any set Ci in a minimum W -improvement cannot
be easily ``separated,"" in some sense, from any set Ci \cup (W \cap Cj).

Lemma 4.18. Let (C1,C2,C3) be a minimum W -improvement of arity 3. Then
for every set P and i, j \in \{ 1,2,3\} such that Ci \subseteq P \subseteq Ci \cup (W \cap Cj), it holds that
f(P )\geq f(Ci).

Proof. For i = j the lemma is trivial. For i \not = j, without loss of generality, we can
assume that i = 1 and j = 2. Aiming towards a contradiction, let us assume that for
some P with C1 \subseteq P \subseteq C1 \cup (W \cap C2) it holds that f(P ) < f(C1). We claim that
then (C \prime 

1,C
\prime 
2,C

\prime 
3) = (P,C2 \setminus P,C3) is a W -improvement contradicting the minimality

of (C1,C2,C3).
First, by our assumption, f(C \prime 

1) = f(P ) < f(C1) < f(W )/2. To verify that
f(C \prime 

2) = f(C2 \setminus P ) = f(C2 \cap P ) \leq f(C2), first note f(C2 \cup P ) = f(C2 \cup C3) = f(C1).
Then by the submodularity of f ,
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1101

f(C2 \cap P ) + f(C1) = f(C2 \cap P ) + f(C2 \cup P )\leq f(C2) + f(P ).

By our assumption, f(P ) < f(C1). Thus f(C \prime 
2) = f(C2 \cap P ) < f(C2). As C \prime 

3 = C3, we
also have f(C \prime 

3) = f(C3).
It remains to show that f(C \prime 

i \cap W ) < f(W ) and f(C \prime 
i \cap W ) < f(W ) for all

i\in \{ 1,2,3\} . Again, for i = 3 this is trivial as C \prime 
3 = C3.

Because P \subseteq C1\cup (W \cap C2), we have that C \prime 
1\cap W = C1\cap W and C \prime 

2\cap W = C2\cap W .
Thus f(C \prime 

i \cap W ) < f(W ) for all i.
To prove that f(P \cap W ) < f(W ), first observe that P \cup W = C1 \cup W . Then by

Lemma 4.17,

f(P \cup W ) = f(C1 \cup W ) > f(W )/2.

By the submodularity of f ,

f(P \cap W ) + f(P \cup W )\leq f(P ) + f(W ).

Since f(P ) < f(C1) < f(W )/2, we have that f(C \prime 
1 \cap W ) = f(P \cap W ) < f(W ).

Similarly, to prove that f(C \prime 
2\cap W ) < f(W ), we note that C \prime 

2 \cup W = C2 \cup W . Then
by Lemma 4.17, f(C \prime 

2 \cup W ) > f(W )/2. We have already proved that f(C \prime 
2) < f(C2).

Then by making use of the submodularity of f , we have that

f(W )

2
+ f(C \prime 

2 \cap W ) < f(C \prime 
2 \cap W ) + f(C \prime 

2 \cup W )\leq f(C \prime 
2) + f(W ) <

f(W )

2
+ f(W ).

This concludes the proof that (C \prime 
1,C

\prime 
2,C

\prime 
3) is a W -improvement. Finally, the width

of (C \prime 
1,C

\prime 
2,C

\prime 
3) is at most the width of (C1,C2,C3), but its sum-width is strictly less.

This contradicts the minimality of (C1,C2,C3).

The following lemma with Lemma 4.15 complete the proof of Lemma 4.7 (note
symmetry). It also sets up the proof of Theorem 4.9 for W -improvements of arity 3,
which will be completed in subsection 4.4.3.

Lemma 4.19. Let (C1,C2,C3) be a minimum W -improvement of arity 3. Then
for every W \prime \subseteq W , f(C1 \cap W ) \leq f(W \prime ). Moreover, if the equality holds, then (C1 \cup 
W \prime ,C2 \setminus W \prime ,C3 \setminus W \prime ) is also a minimum W -improvement.

Proof. Let W \prime \subseteq W , and let (C1,C2,C3) be a minimum W -improvement of arity
3 and assume f(C1\cap W \prime )\geq f(W \prime ). We define (C \prime 

1,C
\prime 
2,C

\prime 
3) = (C1\cup W \prime ,C2\setminus W,C3\setminus W \prime ).

First we will prove that (C \prime 
1,C

\prime 
2,C

\prime 
3) is a W -improvement.

We start by showing that f(C \prime 
i)\leq f(Ci) for all i. The inequality

f(C \prime 
1) = f(C1 \cup W \prime )\leq f(C1)(4.2)

follows directly from our assumption and the submodularity of f . Moreover, (4.2)
turns into an equality only if f(C1 \cap W \prime ) = f(W \prime ).

To prove that

f(C \prime 
2)\leq f(C2),(4.3)

we do the following:

f(C \prime 
2) = f(C2 \setminus W \prime ) = f(C2 \cup W \prime ) = f(C2 \cup (C1 \cup W \prime ))

\leq f(C2) + f(C1 \cup W \prime ) - f(C2 \cap (C1 \cup W \prime )) (submodularity)

\leq f(C2) + f(C1) - f(C2 \cap (C1 \cup W \prime )) (by (4.2))

= f(C2) + f(C1) - f(C1 \cup (C3 \cap W \prime ))\leq f(C2). (Lemma 4.18)

The proof of f(C \prime 
3)\leq f(C3) is symmetric.
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1102 FEDOR V. FOMIN AND TUUKKA KORHONEN

Next we prove that f(C \prime 
i \cap W ) < f(W ) and that f(C \prime 

i \cap W ) < f(W ). First, note
that for each i \in \{ 1,2,3\} , C \prime 

i \cap W = Ci \cap W . So the cases with W are trivial. The
inequality f(C \prime 

1 \cap W ) < f(W ) is proved in Lemma 4.14.
The bound on f(C2 \cap W ) follows from the following chain of inequalities:

f(C \prime 
2 \cap W ) = f(C2 \cap W \prime \cap W ) = f(C2 \cup W \prime \cup W ) (Observation 3.1)

\leq f(C2 \cup W \prime ) + f(W ) - f((C2 \cup W \prime )\cap W ) (submodularity)

= f(C2 \cap W \prime ) + f(W ) - f(C2 \cap W ) (by W \prime \subseteq W )

= f(C2 \cap W \prime ) + f(W ) - f(C2 \cup W ) (Observation 3.1)

< f(C2 \setminus W \prime ) + f(W ) - f(W )/2 = f(C \prime 
2) + f(W )/2 (Lemma 4.17)

\leq f(C2) + f(W )/2 < f(W ). (by (4.3))

The proof of f(C \prime 
3 \cap W ) < f(W ) is symmetric. This completes the proof that

(C \prime 
1,C

\prime 
2,C

\prime 
3) is a W -improvement with f(C \prime 

i)\leq f(Ci) for all i.
Now, if f(C1 \cap W \prime ) > f(W \prime ), then f(C \prime 

1) < f(C1) and (C \prime 
1,C

\prime 
2,C

\prime 
3) contra-

dicts the minimality of (C1,C2,C3). If f(C1 \cap W \prime ) = f(W \prime ), then (C \prime 
1,C

\prime 
2,C

\prime 
3)

has the same width and the sum-width as (C1,C2,C3), which is a minimum W -
improvement. Thus in the case of f(C1\cap W \prime ) = f(W \prime ), (C \prime 

1,C
\prime 
2,C

\prime 
3) is also a minimum

W -improvement.

4.4.3. Completing the proof of Theorem 4.9. The following lemma is just
Lemmas 4.15 and 4.19 put together.

Lemma 4.20. Let (C1,C2,C3) be a minimum W -improvement. Then for every
W \prime \subseteq W it holds that f(C1 \cap W \prime ) \leq f(W \prime ). Moreover, if the equality holds, then
(C1 \cup W \prime ,C2 \setminus W \prime ,C3 \setminus W \prime ) is also a minimum W -improvement.

As discussed above, the first part of Lemma 4.20 directly gives Lemma 4.7 by the
symmetry of W -improvements. Next we prove Theorem 4.9 by using also the second
part of Lemma 4.20.

Theorem 4.9. Let T be a branch decomposition, r \in E(T ) an edge of T , and
(r,C1,C2,C3) a global T -improvement. Then for every i \in \{ 1,2,3\} and every node
w \in V (T ), it holds that f(Tr[w] \cap Ci) \leq f(Tr[w]). Moreover, if Tr[w] \cap Ci \not = \emptyset , then
f(Tr[w]\cap Ci) = f(Tr[w]) if and only if Tr[w]\subseteq Ci.

Proof. The first part follows from combining the fact that either Tr[w]\subseteq T [uv] or
Tr[w]\subseteq T [vu] with Lemma 4.7.

To prove the second part, suppose that for some node w \in V (T ) it holds that
Tr[w] \cap C1 \not = \emptyset , Tr[w] \not \subseteq C1, and f(Tr[w] \cap C1) = f(Tr[w]). Take a tripartition
(C \prime 

1,C
\prime 
2,C

\prime 
3) = (C1 \cup Tr[w],C2\setminus Tr[w],C3\setminus Tr[w]). By Lemma 4.20, this tripartition is a

minimum W -improvement. We argue that this minimum W -improvement contradicts
the fact that (r,C1,C2,C3) is a global T -improvement by showing that it r-intersects
fewer nodes of T than (r,C1,C2,C3).

The W -improvement (C1,C2,C3) r-intersects the node w but (C \prime 
1,C

\prime 
2,C

\prime 
3) does

not, so it suffices to prove the implication that if (C1,C2,C3) does not r-intersect a
node w\prime \in V (T ), then (C \prime 

1,C
\prime 
2,C

\prime 
3) does not r-intersect w\prime .

As both Tr[w] and Tr[w\prime ] represent leaves of r-subtrees of T , it follows that either
Tr[w\prime ]\subseteq Tr[w], Tr[w]\subseteq Tr[w\prime ], or Tr[w] and Tr[w\prime ] are disjoint. If Tr[w\prime ]\subseteq Tr[w], then
(C \prime 

1,C
\prime 
2,C

\prime 
3) does not r-intersect w\prime . If Tr[w] \subseteq Tr[w\prime ], then because (C1,C2,C3)

r-intersects w, it also r-intersects w\prime . If Tr[w\prime ] and Tr[w] are disjoint, then the
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1103

intersections of (C \prime 
1,C

\prime 
2,C

\prime 
3) with Tr[w\prime ] are the same as the intersections of (C1,C2,C3)

with Tr[w\prime ], so w\prime r-intersects (C \prime 
1,C

\prime 
2,C

\prime 
3) if and only if it r-intersects (C1,C2,C3).

5. Algorithmic properties of refinement. In this section we present our algo-
rithmic framework for designing fast FPT 2-approximation algorithms for computing
branch decompositions. In particular, we show that a sequence of refinement opera-
tions decreasing the width of a branch decomposition from k to k  - 1 or concluding
k \leq 2\ttb \ttw (f) can be implemented in time t(k) \cdot 2\scrO (k) \cdot n for connectivity functions f
whose branch decompositions support dynamic programming with time complexity
t(k) per node. That is, we prove Theorem 2.3. The concrete implementation of this

framework for rankwidth, with t(k) = 22
\scrO (k)

, is provided in section 6 and for graph
branchwidth, with t(k) = 2\scrO (k), in section 7.

5.1. Amortized analysis of refinement. A naive implementation of the re-
finement operation (see Definition 4.2) would use \Omega (n) time on each refinement, which
would result in the time complexity of \Omega (n2) over the course of n refinements. In this
section we show that the refinement operations can be implemented so that over any
sequence of refinement operations using global T -improvements on a branch decom-
position of width at most k, the total work done in refining the branch decomposition
amortizes to 2\scrO (k)n.

The efficient implementation of refinements is based on the notion of the edit
set of a global T -improvement. Informally, the edit set corresponding to a global T -
improvement (r,C1,C2,C3) are the nodes of the subtree of T obtained after pruning
all subtrees whose leaves are entirely from one of the sets Ci. We state this formally
as follows.

Definition 5.1 (edit set). Let T be a branch decomposition, let r \in E(T ), and let
(r,C1,C2,C3) be a global T -improvement. We say that the edit set of (r,C1,C2,C3)
is the set R\subseteq V (T ) of nodes of T that r-intersect (C1,C2,C3), i.e.,

R = \{ w \in V (T ) | Tr[w] intersects at least two sets from \{ C1,C2,C3\} \} .

Note that for a global T -improvement (uv,C1,C2,C3), both u and v are necessar-
ily in the edit set. We formalize the intuition about edit sets in the following lemma.
It will be implicitly used in many of our arguments.

Lemma 5.2. Let T be a branch decomposition, r = uv \in E(T ), (r,C1,C2,C3) a
global T -improvement, R the edit set of (r,C1,C2,C3), and T \prime the refinement of T
with (r,C1,C2,C3). It holds that

(1) every node in R is nonleaf;
(2) the nodes of R induce a connected subtree T [R] of T ; and
(3) there exists an edge r\prime \in E(T \prime ) so that for every w \in V (T ) \setminus R there is a node

w\prime \in V (T \prime ) with Tr[w] = T \prime 
r\prime [w

\prime ].

Proof. For (1), the set Tr[w] of a leaf w consists of one element. Thus w does
not r-intersect (C1,C2,C3). For (2), first note that \{ u, v\} \subseteq R. Then consider a node
w \in R \setminus \{ u, v\} , and let p be the r-parent of w. It holds that Tr[w]\subseteq Tr[p], so p must
also be in R.

For (3), observe that by the definition of edit set for every node w \in V (T ) \setminus R
it holds that Tr[w] \subseteq Ci for some i. This implies that the r-subtree of w appears
identically in T \prime , and therefore T \prime consists of the r-subtrees of all w \in NT (R) and a
connected subtree inserted in the place of R and connected to NT (R). As \{ u, v\} \subseteq | R| ,
this inserted subtree contains at least one edge, which we can designate as r\prime .
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1104 FEDOR V. FOMIN AND TUUKKA KORHONEN

Next we define the neighbor partition of an edit set R.

Definition 5.3 (neighbor partition). Let (r,C1,C2,C3) be a global T -
improvement and R its edit set. The neighbor partition of R is the partition (N1,N2,
N3) of the neighbors NT (R) of R, where Ni = \{ w \in NT (R) | Tr[w]\subseteq Ci\} .

Note that the neighbor partition is indeed a partition of NT (R) by the definition
of edit set.

Next we give an algorithm for performing the refinement operation in \scrO (| R| )
time, given the edit set R and its neighbor partition.

Lemma 5.4. Let T be a branch decomposition, let r = uv \in E(T ), and let
(r,C1,C2,C3) be a global T -improvement. Given the edit set R of (r,C1,C2,C3) and
the neighbor partition (N1,N2,N3) of R, T can be turned into the refinement of T
with (r,C1,C2,C3) in \scrO (| R| ) time.

Proof. We create three copies T1, T2, T3 of the induced subtree T [R]. We denote
the copy of a vertex x \in R in Ti by xi, and denote Ri = \{ xi | x \in R\} . To each Ti

we also insert a new node wi on the edge uivi, i.e., let V (Ti) \leftarrow V (Ti) \cup \{ wi\} and
E(Ti)\leftarrow E(Ti)\setminus \{ uivi\} \cup \{ uiwi,wivi\} . We then insert a new center node t and connect
each wi to it.

For each node y \in Ni, let p\in R be the r-parent of y. We remove the edge yp and
insert the edge ypi. It remains to remove all nodes of R, and then iteratively remove
degree-1 nodes and suppress degree-2 nodes in R1 \cup R2 \cup R3 \cup \{ t,w1,w2,w3\} .

For the time complexity, these operations can be done in time linear in | R| +
| R1| + | R2| + | R3| + | N1| + | N2| + | N3| = \scrO (| R| ) because T is represented as an
adjacency list and the maximum degree of T is 3.

The outline of the refinement operation in our framework is that the dynamic
programming outputs the edit set R and its neighbor partition in \scrO (t(k)| R| ) time,
then the algorithm of Lemma 5.4 computes the refinement in \scrO (| R| ) time, and then
the dynamic programming tables of the | R| new nodes are computed in \scrO (t(k)| R| )
time, making use of the previous dynamic programming tables of the nodes not in
the edit set, which are preserved throughout the refinement operation. To bound the
sum of the sizes of the edit sets R over the course of the algorithm, we introduce the
following potential function.

Definition 5.5 (k-potential). Let T be a branch decomposition of function f .
The k-potential of T is

\phi k(T ) =
\sum 

e\in E(T )
f(e)<k

f(e) \cdot 3f(e) +
\sum 

e\in E(T )
f(e)\geq k

3f(e) \cdot 3f(e).

When working with k-potentials, we will use the following notation. For x\geq 0, let

\phi k(x) =

\biggl\{ 
x \cdot 3x if x< k,
3x \cdot 3x otherwise.

For W \subseteq V , we will use \phi k(W ) to denote \phi k(f(W )). With this notation, the k-
potential of T is

\phi k(T ) =
\sum 

uv\in E(T )

\phi k(T [uv]).

Note that for any k, the k-potential of a branch decomposition T is at most
\scrO (3\ttb \ttw (T )\ttb \ttw (T )| E(T )| ), which is 2\scrO (k)n when \ttb \ttw (T ) =\scrO (k).
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1105

Next we show that performing a refinement operation with an edit set R decreases
the k-potential by at least | R| .

Lemma 5.6. Let T be a branch decomposition with an edge r = uv \in E(T ) so that
f(uv) = \ttb \ttw (T ) = k. Let (r,C1,C2,C3) be a global T -improvement, R be the edit set of
(r,C1,C2,C3), and T \prime be the refinement of T with (r,C1,C2,C3). Then it holds that
\phi k(T \prime )\leq \phi k(T ) - | R| .

Proof. We use the notation that W = T [uv]. Note that

\phi k(T ) = \phi k(k) +
\sum 

w\in (V (T )\setminus \{ u,v\} )

\phi k(Tr[w])(5.1)

and that by Observation 4.3

\phi k(T \prime ) =
\sum 

i\in \{ 1,2,3\} 

\left(  \phi k(Ci) +
\sum 

w\in V (T )

\phi k(Ci \cap Tr[w])

\right)  .(5.2)

Then

\phi k(T ) - \phi k(T \prime ) = \phi k(T ) - 
\sum 

i\in \{ 1,2,3\} 

\Biggl( 
\phi k(Ci) +

\sum 
w\in V (T )

\phi k(Ci \cap Tr[w])

\Biggr) 

\geq \phi k(T ) - 
\sum 

i\in \{ 1,2,3\} 

\Biggl( 
\phi k(Ci) + \phi k(Ci \cap W ) + \phi k(Ci \cap W )

+
\sum 

w\in (V (T )\setminus \{ u,v\} )

\phi k(Ci \cap Tr[w])

\Biggr) 
,

where the last line is obtained by taking Ci \cap Tr[u] = Ci \cap W and Ci \cap Tr[v] = Ci \cap W
out of the sum.

By the definition of W -improvement, we have that \phi k(Ci) \leq \phi k((k  - 1)/2) and
\phi k(Ci \cap W )\leq \phi k(k - 1). Then by interleaving the sums (5.1) and (5.2), we have that
\phi k(T ) - \phi k(T \prime ) is at least

\phi k(k) - 3\phi k((k - 1)/2) - 6\phi k(k - 1)

+
\sum 

w\in (V (T )\setminus \{ u,v\} )

\left(  \phi k(Tr[w]) - 
\sum 

i\in \{ 1,2,3\} 

\phi k(Ci \cap Tr[w])

\right)  .

By simplifying \phi k(k) - 3\phi k((k - 1)/2) - 6\phi k(k - 1)\geq 3 \cdot 3k, we lower bound the latter
by

3 \cdot 3k +
\sum 

w\in (V (T )\setminus \{ u,v\} )

\left(  \phi k(Tr[w]) - 
\sum 

i\in \{ 1,2,3\} 

\phi k(Ci \cap Tr[w])

\right)  .

Let us note that for w /\in R, \phi k(Tr[w]) =
\sum 

i\in \{ 1,2,3\} \phi k(Ci \cap Tr[w]) because Tr[w] is
a subset of some Ci and \phi k(\emptyset ) = 0. Also by Theorem 4.9, for any node w in the
edit set and every i it holds that f(Tr[w] \cap Ci) < f(Tr[w]). By making use of these
observations, we conclude that

\phi k(T ) - \phi k(T \prime )\geq 2 +
\sum 

w\in (R\setminus \{ u,v\} )

\left(  \phi k(Tr[w]) - 
\sum 

i\in \{ 1,2,3\} 

\phi k(Ci \cap Tr[w])

\right)  \geq | R| .
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1106 FEDOR V. FOMIN AND TUUKKA KORHONEN

In particular, when performing a sequence of refinement operations with global
T -improvements on edges r of width f(r) = \ttb \ttw (T ) = k, the sum of the sizes of edit
sets across all of the operations is at most \scrO (3k \cdot k \cdot | E(T )| ).

5.2. Refinement data structure. We define a refinement data structure to
formally capture what is required from the underlying dynamic programming in our
framework.

Definition 5.7 (refinement data structure). Let f be a connectivity function. A
refinement data structure of f with time complexity t(k) maintains a branch decom-
position T of f with \ttb \ttw (T ) \leq k rooted on an edge r = uv \in E(T ) and supports the
following operations:

1. Init(T , uv): Given a branch decomposition T of f with \ttb \ttw (T ) \leq k and an
edge uv \in E(T ), initialize the data structure in \scrO (t(k)| V (T )| ) time.

2. Move(vw): Move the root edge r = uv to an incident edge vw, i.e., set r\leftarrow vw.
Runs in \scrO (t(k)) time.

3. Width(): Return f(uv) in \scrO (t(k)) time.
4. CanRefine(): Returns true if there exists a W -improvement where W = T [uv]

and false otherwise. Runs in time \scrO (t(k)). Once CanRefine() has returned
true, the following can be invoked:
(a) EditSet(): Let (r,C1,C2,C3) be a global T -improvement, R the edit set of

(r,C1,C2,C3), and (N1,N2,N3) the neighbor partition of R. Returns R
and (N1,N2,N3). Runs in \scrO (t(k)| R| ) time.

(b) Refine(R, (N1,N2,N3)): Implements the refinement operation described
in Lemma 5.4. That is, computes the refinement of T by removing the
edit set R and inserting a connected subtree of | R| nodes in its place. Sets
r to an arbitrary edge between two newly inserted nodes (such an edge
exists because | R| \geq 2). Runs in \scrO (t(k)| R| ) time.

5. Output(): Outputs T in \scrO (t(k)| V (T )| ) time.

We explain how our algorithm uses the refinement data structure in subsection 5.3.
Let us here informally explain how the refinement data structure is typically imple-
mented using dynamic programming. The formal descriptions for rankwidth and
graph branchwidth constitute sections 6 and 7.

For each node w of T , the refinement data structure stores a dynamic program-
ming table of size \scrO (t(k)) that represents information of the r-subtree of w in such a
way that the dynamic programming tables of the nodes u and v combined together
can be used to detect the existence of a W -improvement on W = T [uv]. Now, the
Init(T , uv) operation is to compute these dynamic programming tables in a bottom-
up fashion for all nodes from the leaves towards the root uv, using \scrO (t(k)) time per
node. The Move(vw) operation changes the root edge uv to an incident edge vw. For
implementing Move(vw), we observe the following useful property.

Observation 5.8. Let T be a branch decomposition, r = uv \in E(T ) an edge of T ,
and r\prime = vw \in E(T ) another edge of T . For all nodes x\in V (T ) \setminus \{ v\} , the r-subtree of
x is the same as the r\prime -subtree of x.

In particular, as the dynamic programming table of a node depends only on its
r-subtree, it suffices to recompute only the dynamic programming table of the node
v in \scrO (t(k)) time when using Move(vw). The Width() operation is typically imple-
mented without dynamic programming, using some other auxiliary data structure.
The CanRefine() operation is implemented by combining the information of the dy-
namic programming tables of u and v in an appropriate way. Then the EditSet()
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1107

operation is implemented by tracing the dynamic programming backwards, working
with a representation of the global T -improvement (r,C1,C2,C3) that allows for ef-
ficiently determining whether Ci and Tr[w] intersect. The Refine(R, (N1,N2,N3))
operation is a direct application of Lemma 5.4 followed by computing the dynamic
programming tables of the | R| new nodes inserted by Lemma 5.4 in \scrO (t(k)| R| ) time,
and possibly also updating other auxiliary data structures. The implementation of
Output() is typically straightforward, as it just amounts to outputting the branch
decomposition that the data structure has been maintaining.

5.3. General algorithm. We present a general algorithm that uses the refine-
ment data structure to either improve the width of a given branch decomposition
from k to k  - 1 or conclude that it is already a 2-approximation, and runs in time
t(k)2\scrO (k)n, where t(k) is the time complexity of the refinement data structure.

Our algorithm is described as a pseudocode in Algorithm 5.1. The algorithm is
a depth-first search on the given branch decomposition T , where whenever we return
from a subtree via an edge uv of width f(uv) = k, we check if there exists a global
T -improvement (uv,C1,C2,C3). If there is no such global T -improvement, then we
conclude that T is already a 2-approximation. If there is such a global T -improvement,
then we refine T using it. We need to be careful to proceed so that the refinement
does not break invariants of depth-first search, and the extra work caused by refining
with an edit set R can be bounded by \scrO (t(k)| R| ).

Let us explain how Algorithm 5.1 is implemented with the refinement data struc-
ture. We always maintain that the root edge uv in the refinement data structure
corresponds to the edge uv in Algorithm 5.1. We start by calling Init(T , uv) after
line 7. In the cases of line 9 and line 15 the edge uv is changed to an adjacent edge
vw, which is done by the Move(vw) operation. The edge uv is changed also after the
refinement operation. There we can move to the appropriate edge with | R| Move(vw)
operations. Now that the edge uv of Algorithm 5.1 corresponds to the edge uv of
the refinement data structure, all nonelementary operations of Algorithm 5.1 can be
performed with the refinement data structure. In particular, checking f(uv) on line
13 is done by Width(), line 22 corresponds to CanRefine(), and line 26 corresponds
to EditSet() and Refine(). The returned edit set is also used to determine the node v
on line 24.

The rest of this section is devoted to proving the correctness and the time com-
plexity of Algorithm 5.1. The next lemma shows that adding the refinement operation
does not significantly change the properties of depth-first search and provides the key
argument for proving the correctness.

Lemma 5.9. Algorithm 5.1 maintains the invariant that the nodes with state \tto \ttp \tte \ttn 

form a path w1, . . . ,wl in T , where l\geq 2, w1 = s, wl - 1 = v, and wl = u.

Proof. This invariant is satisfied at the beginning of the algorithm. There are
three cases in the if-else structure that do not terminate the algorithm and alter u, v,
or the states, i.e., the cases of line 9, line 15, and line 22. The case of line 9 maintains
the invariant by extending the path by one node. The case of line 15 maintains the
invariant by removing the last node of the path. In the case of line 22, recall that
both u and v are in the edit set R and the edit set is a connected subtree of T , so the
refinement removes some suffix wj , . . . ,wl of the path. Together with the fact that w1

is a leaf and thus w1 /\in R (see Lemma 5.2), this implies that the node v\prime determined
in line 24 must be the node wj - 1 of the path. Finally, the path is extended by one
node in lines 28--31.
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1108 FEDOR V. FOMIN AND TUUKKA KORHONEN

Algorithm 5.1 Iterative refinement.

Input: Branch decomposition T of a connectivity function f .
Output: A branch decomposition of f of width at most \ttb \ttw (T ) - 1 or the conclusion
that \ttb \ttw (T )\leq 2\ttb \ttw (f).
1: Let k\leftarrow \ttb \ttw (T )
2: Let \tts \ttt \tta \ttt \tte be an array initialized with the value \ttu \ttn \tts \tte \tte \ttn for all nodes of T ,

including new nodes that will be created by the refinement operation.
3: Let s be an arbitrary leaf node of T
4: v\leftarrow s
5: u\leftarrow the neighbor of v
6: \tts \ttt \tta \ttt \tte [v] \leftarrow \tto \ttp \tte \ttn 

7: \tts \ttt \tta \ttt \tte [u] \leftarrow \tto \ttp \tte \ttn 

8: while \tts \ttt \tta \ttt \tte [u] = \tto \ttp \tte \ttn do
9: if exists w \in NT (u) with \tts \ttt \tta \ttt \tte [w] = \ttu \ttn \tts \tte \tte \ttn then

10: v\leftarrow u
11: u\leftarrow w
12: \tts \ttt \tta \ttt \tte [u] \leftarrow \tto \ttp \tte \ttn 

13: else if f(uv) <k then
14: if v = s then return T
15: else
16: \tts \ttt \tta \ttt \tte [u] \leftarrow \ttc \ttl \tto \tts \tte \ttd 

17: u\leftarrow v
18: v\leftarrow the node v \in NT (u) with \tts \ttt \tta \ttt \tte [v] = \tto \ttp \tte \ttn 

19:  \triangleleft Such a node v is unique.
20: end if
21: else
22: if exists a global T -improvement (uv,C1,C2,C3) then
23: R\leftarrow the edit set
24: v\prime \leftarrow the node v\prime \in NT (R) with \tts \ttt \tta \ttt \tte [v\prime ] = \tto \ttp \tte \ttn 

25:  \triangleleft Such node v\prime is unique.
26: T \leftarrow Refine(T , (uv,C1,C2,C3))
27:  \triangleleft Where the refinement operation works as in Lemma 5.4, i.e., by

removing the edit set R and inserting a connected subtree of | R| nodes in its
place.

28: v\leftarrow v\prime 

29: u\leftarrow the node u\in NT (v) that was inserted by the refinement
30:  \triangleleft Such node u is unique.
31: \tts \ttt \tta \ttt \tte [u] \leftarrow \tto \ttp \tte \ttn 

32: else
33: conclude \ttb \ttw (T )\leq 2\ttb \ttw (f)
34: end if
35: end if
36: end while

The next lemma will be used to prove the correctness of Algorithm 5.1 in the case
when it returns an improved branch decomposition.

Lemma 5.10. If Algorithm 5.1 reaches line 14, i.e., terminates by returning a
branch decomposition, then all nodes except v and u have state \ttc \ttl \tto \tts \tte \ttd .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

29
.1

77
.1

46
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FAST FPT-APPROXIMATION OF BRANCHWIDTH 1109

Proof. We show that Algorithm 5.1 maintains the invariant that if a node w
is closed, then all nodes w\prime in the s-subtree of w are also closed. This is trivially
maintained by the case of line 9. In other cases all of the neighbors of u except v are
closed due to Lemma 5.9. This implies that the case of line 15 also maintains the
invariant. The case of line 22, i.e., refinement, maintains this because the union of
the edit set R and the path w1, . . . ,wl defined in Lemma 5.9 is a connected subtree
that contains u, v, and s.

This invariant implies the conclusion of the lemma because at line 14 all neighbors
of u except v are closed.

We are ready to prove the correctness and the time complexity of Algorithm 5.1.
In particular, next we complete the proof of the main theorem of this section.

Theorem 2.3. Let f be a connectivity function for which there exists a refinement
data structure with time complexity t(k). There is an algorithm that, given a branch
decomposition (T,L) of f of width k, in time t(k) \cdot 2\scrO (k)n either outputs a branch
decomposition of f of width at most k - 1 or correctly concludes that k\leq 2\ttb \ttw (f).

Proof. It suffices to prove that Algorithm 5.1 is correct and runs in time t(k)2\scrO (k)n
provided a refinement data structure with time complexity t(k).

We first show the correctness. The algorithm terminates with the conclusion
\ttb \ttw (T ) \leq 2\ttb \ttw (f) if and only if there is no W -improvement of W = T [uv], where
f(W ) = \ttb \ttw (T ). Therefore, by Lemma 4.5, \ttb \ttw (T ) = f(W ) \leq 2\ttb \ttw (f). For the other
case, let w \not = s be a node of T and p be the s-parent of w. Note that the state of
w can become closed only if f(wp) < k, and after that, f(wp) will not change unless
w and p are in the edit set, in which case they are replaced by new nodes that are
unseen. Therefore, by Lemma 5.10, when Algorithm 5.1 reaches line 14, we have that
f(wp) <k for all w \in V (T ) \setminus \{ u, v\} , and by line 13 we also have f(uv) <k. Therefore
we have that f(e) < k for all edges e of T , implying that Algorithm 5.1 is correct
when it returns a branch decomposition.

Then we prove the running time. By the definition of W -improvement and The-
orem 4.9, the width of T never increases. By Lemma 5.6, with every refinement, the
potential function drops by at least | R| , the size of the edit set. While we cannot
control the size of the edit set for each new refinement, the total sum of the sizes of
the edit sets over all the sequence of refinements does not exceed \phi k(T ) = 2\scrO (k)n.
Thus the total time complexity of the refinement operations is t(k)2\scrO (k)n and the
total number of new nodes created over the course of the algorithm in refinement
operations is 2\scrO (k)n. All cases of the algorithm advance the state of some node ei-
ther from unseen to open or from open to closed, and therefore the total number of
operations is 2\scrO (k)n and their total time t(k)2\scrO (k)n.

6. Approximating rankwidth. In this section we prove Theorem 1.1, that is,
there is an algorithm that for an n-vertex graph G and an integer k in time 22

\scrO (k)

n2

either computes a rank decomposition of width at most 2k or correctly concludes that
the rankwidth of G is more than k. To prove that theorem, we define ``augmented
rank decompositions,"" show how to implement the refinement data structure of The-
orem 2.3 for augmented rank decompositions with time complexity t(k) = 22

\scrO (k)

, and
then apply the algorithm of Theorem 2.3 with iterative compression.

6.1. Preliminaries on rank decompositions. We start with preliminaries on
rank decompositions. Most of the material in this subsection is well known and is
commonly used in dynamic programming over rank decompositions [7, 22, 23]. For
the reader's convenience, we provide short proofs here.
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1110 FEDOR V. FOMIN AND TUUKKA KORHONEN

Let us recall that a rank decomposition of a graph G is a branch decomposition
of the function cutrkG : 2V (G)\rightarrow \BbbZ \geq 0 defined on vertex sets of a graph G. For a graph
G and a subset A of the vertex set V (G), we define cutrkG(A) as the rank of the
| A| \times | A| 0 - 1 matrix MG[A,A] over the binary field where the entry mi,j of MG[A,A]
on the ith row and the jth column is 1 if and only if the ith vertex in A is adjacent
to the jth vertex in A. That is, cutrkG(A) = rk(MG[A,A]). Then the rankwidth of a
graph G, \ttr \ttw (G), is the minimum width of a rank decomposition of G.

Oum and Seymour showed that cutrkG is a connectivity function [37].

Proposition 6.1 ([37]). The function cutrkG is a connectivity function.

In the rest of this section we will always assume that we are computing the
rankwidth of a graph G, and therefore we drop the subscript in cutrkG. We also
assume that a representation of G that allows for checking the existence of an edge
in \scrO (1) time (e.g., an adjacency matrix) is available.

The following definition of a representative will be used for dynamic programming
on rank decompositions.

Definition 6.2 (representative). Let A\subseteq V (G). A set R\subseteq A is a representative
of A if for every vertex v \in A there is a vertex u \in R with N(v) \setminus A = N(u) \setminus A. The
representative R is minimal if for each v \in A there exists exactly one such u\in R.

Note that there always exists a minimal representative. The property of cutrk
that we exploit in dynamic programming is that it bounds the size of any minimal
representative.

Proposition 6.3 ([37]). Let A \subseteq V (G). If cutrk(A) \leq k, then any minimal
representative of A has size at most 2k.

To do computations on minimal representatives, we usually need to work with
representatives of bipartitions (A,A).

Definition 6.4 (representative of (A,A)). Let A \subseteq V (G). A pair (R,Q) with
R \subseteq A and Q\subseteq A is a (minimal) representative of (A,A) if R is a (minimal) repre-
sentative of A and Q is a (minimal) representative of A.

Given some representative of (A,A), a minimal representative can be found in
polynomial time by the following lemma.

Lemma 6.5. Let A \subseteq V (G). Given a representative (R,Q) of (A,A), a minimal
representative of (A,A) can be computed in (| R| + | Q| )\scrO (1) time.

Proof. One can use the partition refinement algorithm on the graph G[R,Q].

We will also need the following lemma to work with representatives.

Lemma 6.6. Let RA be a representative of A, and let RB be a representative of
B. Then RA \cup RB is a representative of A\cup B.

Proof. If N(v) \setminus A = N(u) \setminus A, then N(v) \setminus (A\cup B) = N(u) \setminus (A\cup B).

Next define the AR-representative of a vertex.

Definition 6.7 (AR-representative of a vertex). Let A \subseteq V (G), let R be a
minimal representative of A, and let v be a vertex v \in A. The AR-representative of v,
denoted by repAR

(v), is the vertex u\in R with N(u) \setminus A = N(v) \setminus A.

By the definition of a minimal representative, there exists exactly one AR-
representative of a vertex, so the function repAR

(v) is well-defined. Using a mini-
mal representative of (A,A) we can compute repAR

(v) efficiently.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1111

Lemma 6.8. Let A \subseteq V (G). Given a vertex v \in A and a minimal representative
(R,Q) of (A,A), repAR

(v) can be computed in (| R| + | Q| )\scrO (1) time.

Proof. Test for each u\in R if N(u)\cap Q = N(v)\cap Q.

We also define the AR-representative of a set.

Definition 6.9 (AR-representative of a set). Let A\subseteq V (G), let R be a minimal
A-representative, and let X \subseteq A. The AR-representative of X, denoted by repAR

(X),
is the set repAR

(X) =
\bigcup 

v\in X\{ repAR
(v)\} .

Because repAR
(v) is well-defined, repAR

(X) is also well-defined. By applying
Lemma 6.8, the AR-representative of a set X can be computed in | X| (| R| + | Q| )\scrO (1)

time. As any AR-representative of a set is a subset of R, there are at most 2| R| 

different AR-representatives of sets. Therefore if cutrk(A)\leq k, there are at most 22
k

different AR-representatives of sets.
Many computations on AR-representatives of sets rely on the following

observation.

Observation 6.10. Let A\subseteq V (G) be a set of vertices, X \subseteq A, Y \subseteq A, and let RA

be a minimal representative of A, let RX be a minimal representative of X, and let
RY be a minimal representative of Y . Also let X \prime \subseteq X and Y \prime \subseteq Y . Then it holds
that repARA

(X \prime \cup Y \prime ) = repARA
(repXRX

(X \prime )\cup repYRY
(Y \prime )).

6.2. Augmented rank decompositions. In order to do dynamic program-
ming efficiently on a rank decomposition, we define the notion of an augmented rank
decomposition.

Definition 6.11 (augmented rank decomposition). An augmented rank decom-
position is a pair (T,\scrR ), where T is a rank decomposition and \scrR is an auxiliary array
that stores for each edge uv \in E(T ) a minimal representative (\scrR [uv],\scrR [vu]) of the
bipartition (T [uv], T [vu]).

For an augmented rank decomposition (T,\scrR ), root edge r \in E(T ), and a node
w \in V (T ) we will also use the notation \scrR r[w] to denote the minimal representative of
Tr[w] stored in \scrR . Note that by Lemma 6.3 an augmented rank decomposition can
be represented in \scrO (2kn) space, where k is the width.

Next we show that we can maintain an augmented rank decomposition in our
iterative compression.

Lemma 6.12. Let v \in V (G). Given an augmented rank decomposition (T,\scrR ) of
G \setminus \{ v\} of width k, an augmented rank decomposition of G of width at most k+ 1 can
be computed in 2\scrO (k)n time.

Proof. We obtain a rank decomposition T \prime of G by subdividing an arbitrary edge
of T and inserting v as a leaf connected to the node created by subdividing. The
width of T \prime is at most k + 1 because adding one vertex to A increases cutrk(A) by at
most one.

For the new edge incident with v a minimal representative is easy to compute in
\scrO (n) time: \{ v\} is a minimal representative of \{ v\} and a minimal representative of
V (G)\setminus \{ v\} has one vertex from N(v) if it is nonempty and one from V (G)\setminus (N(v)\cup \{ v\} )
if it is nonempty.

Other edges of T \prime correspond to edges of T in the sense that for each x\prime y\prime \in E(T \prime )
nonincident to v, we have (T \prime [x\prime y\prime ], T \prime [y\prime x\prime ]) = (A\prime ,A\prime ) = (T [xy] \cup \{ v\} , T [yx]) for the
corresponding xy \in E(T ). We start by setting for each such A\prime the representative as
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1112 FEDOR V. FOMIN AND TUUKKA KORHONEN

\scrR [xy] \cup \{ v\} . This is not necessarily a minimal representative of A\prime , but we turn it
into minimal later. Now we have representatives of size at most 2k + 1 for the sides
of bipartitions containing v.

For the sides of bipartitions not containing v, we compute minimal representatives
by dynamic programming. We root the decomposition at v and proceed from leaves
to the root. For leaves, the minimal representatives have exactly one vertex, the leaf.
For nonleaves, we want to compute a minimal representative of a set B corresponding
to a subtree with v /\in B such that B = B1 \cup B2, where we have already computed
minimal representatives R1 and R2 of B1 and B2, and a representative RA of B of
size | RA| \leq 2k + 1. By Lemma 6.6, R1 \cup R2 is a representative of B, so (R1 \cup R2,RA)
is a representative of (B,B) of size 2\scrO (k), so we use Lemma 6.5 to compute a minimal
representative of (B,B) in time 2\scrO (k).

6.3. Refinement data structure for rankwidth. This subsection is devoted
to proving the following lemma.

Lemma 6.13. There is a refinement data structure for rank decompositions with
time complexity t(k) = 22

\scrO (k)

, where the Init operation requires an augmented rank
decomposition and the Output operation outputs an augmented rank decomposition.

Combined with Theorem 2.3 we get the following corollary.

Corollary 6.14. There is an algorithm that, given an augmented rank decom-
position of G of width k, outputs an augmented rank decomposition of G of width at
most k - 1 or correctly concludes that k\leq 2\ttr \ttw (G) in time 22

\scrO (k)

n.

And by applying iterative compression with Corollary 6.14 and Lemma 6.12 we
obtain the main result of this section.

Theorem 1.1. There is an algorithm that, given an n-vertex graph G and an
integer k, in time 22

\scrO (k)

n2, either computes a rank decomposition of G of width at
most 2k or correctly concludes that the rankwidth of G is more than k.

Our refinement data structure is based on characterizing global T -improvements
by dynamic programming on the augmented rank decomposition (T,\scrR ) directed to-
wards the edge r \in E(T ). In subsections 6.3.1, 6.3.2, 6.3.3, and 6.3.4 we introduce
the objects manipulated in this dynamic programming and prove properties of them,
and in subsection 6.3.5 we apply this dynamic programming to provide the refinement
data structure.

6.3.1. Embeddings. Bui-Xuan, Telle, and Vatshelle in [7] characterized the
cut-rank of a bipartition (A,A) by the existence of an embedding of G[A,A] into a
certain graph Rk. Next we define this notion of embedding. In our definition the
function describing the embedding is in some sense inversed. This inversion will make
manipulating embeddings in dynamic programming easier.

Definition 6.15 (embedding). Let G and H be bipartite graphs and let (AG,BG)
and (AH ,BH) be bipartitions of their vertex sets. A function f : V (H)\rightarrow 2V (G) is an
embedding of G into H if

\bullet f(u)\cap f(v) = \emptyset for u \not = v;
\bullet AG =

\bigcup 
v\in AH

f(v), BG =
\bigcup 

v\in BH
f(v); and

\bullet for every pair (aH , bH)\in AH \times BH and every (a, b)\in f(aH)\times f(bH), it holds
that ab\in E(G) if and only if aHbH \in E(H).

When using the notation G[X,Y ] to construct a bipartite graph, we always assume
that the bipartition of G[X,Y ] is (X,Y ). Note that the embedding completely defines
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1113

the edges of G[X,Y ] in terms of the edges of H, and in particular gives a representative
of (X,Y ) of size at most | V (H)| , as we formalize as follows.

Observation 6.16. Let G be a graph and (A,A) be a bipartition of V (G). Let
H be a bipartite graph with bipartition (AH ,BH). Let f : V (H) \rightarrow 2V (G) be an
embedding of G[A,A] into H. Let g be a function mapping each v \in V (H) to a subset
of f(v) as follows:

g(v) =

\biggl\{ 
\{ u\} where u\in f(v) iff(v) is nonempty,
\emptyset otherwise.

Then (
\bigcup 

v\in AH
g(v),

\bigcup 
v\in BH

g(v)) is a representative of (A,A) of size at most | V (H)| .
Next we define the graph Rk that will be used to characterize cut-rank.

Definition 6.17 (graph Rk [7]). For each k \geq 0, we denote by Rk the bipartite
graph with a bipartition (A,B), having for each subset X \subseteq \{ 1, . . . , k\} a vertex aX \in A
and a vertex bX \in B (in particular, having | A| = 2k and | B| = 2k), and having an edge
between aX and bY if and only if | X \cap Y | is odd.

Proposition 6.18 ([7]). Let A \subseteq V (G). It holds that cutrk(A) \leq k if and only
if there is an embedding of G[A,A] into Rk.

We will find global T -improvements by computing embeddings into Rk by dy-
namic programming. In order to manipulate embeddings and objects related to
embeddings we introduce some notation that naturally extends the definitions of in-
tersections and unions of sets.

Definition 6.19 (intersection f \cap X). Let f : V (H) \rightarrow 2A be a function and
X \subseteq A be a set. We denote by f \cap X the function f \cap X : V (H) \rightarrow 2X with
(f \cap X)(v) = f(v)\cap X.

We note that an intersection of an embedding and a set is again an embedding.

Observation 6.20. Let A be a set, let C \subseteq A, and let X \subseteq A. If f : V (H)\rightarrow 2A is
an embedding of G[A\cap C,A\setminus C] into H, then f\cap X is an embedding of G[X\cap C,X \setminus C]
into H.

Finally, we define the union of functions.

Definition 6.21 (union f \cup g). Let f : V (H) \rightarrow 2X and g : V (H) \rightarrow 2Y be
functions. We define function f \cup g : V (H)\rightarrow 2X\cup Y with (f \cup g)(v) = f(v)\cup g(v).

6.3.2. Representatives of embeddings. Next we define the AR-representative
of an embedding, extending the definition of the AR-representative of a set.

Definition 6.22 (AR-representative of an embedding). Let A \subseteq V (G), and let
R be a minimal representative of A. Also let f : V (H)\rightarrow 2A be an embedding. The
AR-representative of f is the function g : V (H)\rightarrow 2R, where g(v) = repAR

(f(v)).

The AR-representative of an embedding is well-defined because the AR-
representative of a set is well-defined. If cutrk(A) \leq k, then the number of AR-

representatives of embeddings into H is at most (22
k

)| V (H)| . In particular, the number

of AR-representatives of embeddings into Rk is at most (22
k

)2\cdot 2
k

= 22
\scrO (k)

.
We will define the compatibility and the composition of two representatives of

embeddings. The intuition is that embeddings fX and fY of disjoint subgraphs can be
merged into an embedding fX \cup fY if and only if their representatives are compatible.
Moreover, the representative of fX \cup fY will be the composition of the representatives
of fX and fY .
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1114 FEDOR V. FOMIN AND TUUKKA KORHONEN

Let X and Y be disjoint subsets of V (G) and let A = X \cup Y . Also let R be
a minimal representative of A, RX a minimal representative of X, and RY a min-
imal representative of Y . Also let H be a bipartite graph, gX : V (H) \rightarrow 2RX an
XRX

-representative an embedding, and gY : V (H)\rightarrow 2RY a YRY
-representative of an

embedding.

Definition 6.23 (compatibility). Let (AH ,BH) be the bipartition of H. The
representatives gX and gY are compatible if for every pair (aH , bH) \in AH \times BH it
holds that

1. for every (a, b) \in gX(aH)\times gY (bH) it holds that ab \in E(G)\leftrightarrow aHbH \in E(H);
and

2. for every (a, b)\in gY (aH)\times gX(bH) it holds that ab\in E(G)\leftrightarrow aHbH \in E(H).

Note that compatibility can be tested in (| V (H)| + | RX | + | RY | )\scrO (1) time. Next
we show that two embeddings can be merged into an embedding only if their repre-
sentatives are compatible.

Lemma 6.24. Let C \subseteq A be a set and let fA be an embedding of G[A \cap C,A \setminus C]
into H. If gX is the XRX

-representative of fA \cap X and gY is the YRY
-representative

of fA \cap Y , then gX and gY are compatible.

Proof. Let fX = fA \cap X, fY = fA \cap Y , and let (AH ,BH) be the bipartition of H.
For the case (1) of compatibility it suffices to prove for every pair (aH , bH)\in AH\times BH

and every (a, b)\in gX(aH)\times gY (bH) that ab\in E(G) if and only if aHbH \in E(H).
As gX(aH) is an XRX

-representative of fX(aH), there exists a\prime \in fX(aH) with
N(a\prime ) \setminus X = N(a) \setminus X. Similarly there exists b\prime \in fY (bH) with N(b\prime ) \setminus Y = N(b) \setminus Y .
Therefore ab \in E(G) if and only if a\prime b\prime \in E(G). Since fX(aH) = fA(aH) \cap X and
fY (bH) = fA(bH)\cap Y , we have that a\prime \in fA(aH) and that b\prime \in fA(bH). Because fA is
an embedding it holds that a\prime b\prime \in E(G) if and only if aHbH \in E(H). This concludes
the proof that the case (1) of compatibility holds.

For (2) it suffices to prove the same but for every pair (a, b) \in gY (aH)\times gX(bH).
This proof is symmetric.

The composition is defined as the representative of the union.

Definition 6.25 (composition). The composition of gX and gY is the function
gA : V (H)\rightarrow 2A defined by gA(v) = repAR

(gX(v)\cup gY (v)) for all v \in V (H).

By using a minimal (A,A)-representative (R,Q) the composition can be computed
in time (| V (H)| + | R| + | Q| + | RX | + | RY | )\scrO (1).

Next we prove that two embeddings can be merged into an embedding if their
representatives are compatible, and in this case the composition gives the resulting
representative.

Lemma 6.26. Let C \subseteq A be a set. Let gX be the XRX
-representative of an em-

bedding fX of G[X \cap C,X \setminus C] into H and gY the YRY
-representative of an embedding

fY of G[Y \cap C,Y \setminus C] into H. If gX and gY are compatible, then fX \cup fY is an
embedding of G[A \cap C,A \setminus C] into H so that the composition of gX and gY is the
AR-representative of fX \cup fY .

Proof. Let (AH ,BH) be the bipartition of H. We let fA = fX \cup fY and observe
that fA is a function fA : V (H) \rightarrow 2A that satisfies fA(u) \cap fA(v) = \emptyset for u \not = v,
(X \cap C) \cup (Y \cap C) = (A \cap C) =

\bigcup 
v\in AH

fA(v), and (X \setminus C) \cup (Y \setminus C) = (A \setminus C) =\bigcup 
v\in BH

fA(v). Therefore fA is an embedding of G[A \cap C,A \setminus C] into H if for every
pair (aH , bH)\in AH \times BH and every (a, b)\in fA(aH)\times fA(bH) it holds that ab\in E(G)
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1115

if and only if aHbH \in E(H). We say that fA is good for a pair (a, b)\in (A\cap C)\times (A\setminus C)
if this holds for this pair. Now fA is an embedding of G[A \cap C,A \setminus C] into H if it is
good for every pair (a, b)\in (A\cap C)\times (A \setminus C).

Because fX is an embedding of G[X\cap C,X\setminus C] into H we have that fX is good for
all pairs in (X\cap C)\times (X \setminus C) and therefore fA is good for all pairs in (X\cap C)\times (X \setminus C).
Analogously because fY is an embedding of G[Y \cap C,Y \setminus C] into H we have that fA
is good for all pairs in (Y \cap C)\times (Y \setminus C). It remains to prove that fA is good for all
pairs in (X \cap C)\times (Y \setminus C) and in (Y \cap C)\times (X \setminus C).

Let (a, b) \in (X \cap C) \times (Y \setminus C). The set gX(aH) is an XRX
-representative of

fX(aH) \supseteq \{ a\} , so there exists a\prime \in gX(aH) so that N(a\prime ) \setminus X = N(a) \setminus X. Similarly
there exists b\prime \in gY (bH) so that N(b\prime ) \setminus Y = N(b) \setminus Y . Therefore ab \in E(G) if and
only if a\prime b\prime \in E(G). Now, by compatibility (1) it holds that a\prime b\prime \in E(G) if and only if
aHbH \in E(H). Therefore fA is good for (a, b).

The proof for (a, b) \in (Y \cap C) \times (X \setminus C) is symmetric, using compatibility (2)
instead. Therefore fA is an embedding of G[A\cap C,A \setminus C] into H. Finally, by Obser-
vation 6.10 the composition of gX and gY is the AR-representative of fA.

6.3.3. Improvement embeddings. In order to construct a minimum W -
improvement (C1,C2,C3), we build six embeddings simultaneously in the dynamic
programming, three to bound cutrk(Ci) and three to bound cutrk(Ci \cap W ). We of

course also need to bound cutrk(Ci \cap W ), but note that G[(Ci \cap W )\cap W, (Ci \cap W )\cap 
W ] = G[\emptyset ,W ], so dynamic programming is not required for building the side of W of

the embedding G[Ci \cap W,Ci \cap W ].

Definition 6.27 (A-restricted improvement embedding). Let A \subseteq V (G). A
10-tuple

\=E = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

is an A-restricted improvement embedding if there exists a tripartition (C1,C2,C3)
of A so that

1. for each i\in \{ 1,2,3\} , fC
i is an embedding of G[A\cap Ci,A\cap Ci] into Rki

; and
2. for each i\in \{ 1,2,3\} , fW

i is an embedding of G[A\cap Ci,A\cap Ci] into Rl.

Note that an A-restricted improvement embedding \=E uniquely defines such a
tripartition (C1,C2,C3) of A. We call such a tripartition the tripartition of \=E. We
say that \=E intersects a set if its tripartition (C1,C2,C3) intersects it. We call the
quadruple (k1, k2, k3, l) the shape of \=E. An A-restricted improvement embedding is
k-bounded if k1, k2, k3, l\leq k.

In the following lemma we introduce the notation \=E \cap X, where \=E is an A-
restricted improvement embedding and X \subseteq A.

Lemma 6.28. Let A\subseteq V (G), X \subseteq A, and

\=E = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

be an A-restricted improvement embedding with tripartition (C1,C2,C3). The tuple

\=E \cap X = (fC
1 \cap X,fC

2 \cap X,fC
3 \cap X,fW

1 \cap X,fW
2 \cap X,fW

3 \cap X,k1, k2, k3, l)

is an X-restricted improvement embedding with tripartition (C1 \cap X,C2 \cap X,C3 \cap X).

Proof. By Observation 6.20, for each i, fC
i \cap X is an embedding of G[X \cap Ci,X \cap 

Ci] to Rki and fW
i is an embedding of G[X \cap Ci,X \cap Ci] to Rl.
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1116 FEDOR V. FOMIN AND TUUKKA KORHONEN

We also define the union of improvement embeddings, extending the definition of
the union of embeddings.

Definition 6.29. Let X and Y be disjoint subsets,

\=E1 = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

an X-restricted improvement embedding, and

\=E2 = (gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k1, k2, k3, l)

a Y -restricted improvement embedding with the same shape. We denote by \=E1 \cup \=E2

the 10-tuple

\=E1 \cup \=E2 = (fC
1 \cup gC1 , fC

2 \cup gC2 , fC
3 \cup gC3 , fW

1 \cup gW1 , fW
2 \cup gW2 , fW

3 \cup gW3 , k1, k2, k3, l).

Note that if the tripartition of X is (C1 \cap X,C2 \cap X,C3 \cap X), the tripartition of
Y is (C1 \cap Y,C2 \cap Y,C3 \cap Y ), and \=E1 \cup \=E2 is indeed an X \cup Y -restricted improvement
embedding, then the tripartition of \=E1 \cup \=E2 is (C1,C2,C3).

We will use dynamic programming on the rank decomposition T to compute
improvement embeddings, minimizing the number of nodes of T intersected.

6.3.4. Representatives of improvement embeddings. The definition of the
AR-representative of an improvement embedding extends the definition of the AR-
representative of an embedding.

Definition 6.30 (AR-representative of improvement embedding). Let A\subseteq V (G),
and let R be a minimal representative of A. Also let

\=E = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

be an A-restricted improvement embedding. The AR-representative of \=E is the tuple

(gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k1, k2, k3, l),

where each such g is the AR-representative of the corresponding embedding f .

The shape of the AR-representative of \=E is the same as the shape of \=E. When
cutrk(A) \leq k, the number of AR-representatives of k-bounded improvement embed-

dings is (22
\scrO (k)

)6k4 = 22
\scrO (k)

. We naturally extend the definitions of composition and
compatibility to representatives of improvement embeddings.

Let G be a graph, X and Y disjoint subsets of V (G), and A = X \cup Y . Also
let R be a minimal representative of A, RX a minimal representative of X, and
RY a minimal representative of Y . Let \~EX = (fC

1 , fC
2 , fC

3 , fW
1 , fW

2 , fW
3 , k1, k2, k3, l)

be the XRX
-representative of an X-restricted improvement embedding and \~EY =

(gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k\prime 1, k

\prime 
2, k

\prime 
3, l

\prime ) be the YRY
-representative of a Y -restricted im-

provement embedding.

Definition 6.31 (C-compatibility). \~EX and \~EY are C-compatible if they have
the same shape and for each i\in \{ 1,2,3\} , fC

i and gCi are compatible.

Definition 6.32 (compatibility). \~EX and \~EY are compatible if they are C-
compatible and for each i\in \{ 1,2,3\} , fW

i and gWi are compatible.

We derive the following lemma directly from Lemma 6.24.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1117

Lemma 6.33. Let \=E be an A-restricted improvement embedding. If \~EX is the
XRX

-representative of \=E \cap X and \~EY is the YRY
-representative of \=E \cap Y , then \~EX

and \~EY are compatible.

Proof. Apply Lemma 6.24 to each embedding in \=E.

Next we define the composition of two representatives of improvement embed-
dings, extending the definition of the composition of representatives of embeddings.

Definition 6.34 (composition). If \~EX and \~EY are compatible, then the compo-
sition of \~EX and \~EY is the pointwise composition of \~EX and \~EY , i.e., the composition
is the 10-tuple

\~EA = (hC
1 , h

C
2 , h

C
3 , h

W
1 , hW

2 , hW
3 , k1, k2, k3, l),

where for each i \in \{ 1,2,3\} hC
i is the composition of fC

i and gCi , and hW
i is the

composition of fW
i and gWi .

Next we prove the main lemma for computing improvement embeddings by dy-
namic programming, which is an extension of Lemma 6.26.

Lemma 6.35. Let X and Y be disjoint sets, A = X \cup Y , R a minimal represen-
tative of A, RX a minimal representative of X, and RY a minimal representative of
Y . Let \=E1 be an X-restricted improvement embedding and \=E2 a Y -restricted improve-
ment embedding. Let \~EX be the XRX

-representative of \=E1, and let \~EY be the YRY
-

representative of \=E2. If \~EX and \~EY are compatible, then \=E1 \cup \=E2 is an A-restricted
improvement embedding and the composition of \~EX and \~EY is the AR-representative
of \=E1 \cup \=E2.

Proof. Denote

\=E1 = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

and

\=E2 = (gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k1, k2, k3, l).

Let (CX
1 ,CX

2 ,CX
3 ) be the tripartition of \=E1 and (CY

1 ,CY
2 ,CY

3 ) the tripartition of \=E2.
By Lemma 6.26, fC

i \cup gCi is an embedding of G[CX
i \cup CY

i ,A \setminus (CX
i \cup CY

i )] to Rki
and

fW
i \cup gWi is an embedding of G[CX

i \cup CY
i ,A \setminus (CX

i \cup CY
i )] to Rl for every i. Therefore

\=E = (fC
1 \cup gC1 , fC

2 \cup gC2 , fC
3 \cup gC3 , fW

1 \cup gW1 , fW
2 \cup gW2 , fW

3 \cup gW3 , k1, k2, k3, l)

is an improvement embedding with tripartition (CX
1 \cup CY

1 ,CX
2 \cup CY

2 ,CX
3 \cup CY

3 ). By
Lemma 6.26 the composition of \~EX and \~EY is the AR-representative of \=E.

Finding the W -improvement. In the dynamic programming we will determine
if there exists a W -improvement based on the representatives of W -restricted im-
provement embeddings and the representatives of W -restricted improvement embed-
dings. For this purpose we will define the root-compatibility of two representatives
of improvement embeddings, characterizing whether they can be merged to yield a
W -improvement.

Let W \subseteq V (G), let RW be a minimal representative of W , and let RW be a
minimal representative of W . Also let

\~EW = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)
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1118 FEDOR V. FOMIN AND TUUKKA KORHONEN

be a WRW
-representative of a W -restricted improvement embedding and

\~EW = (gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k1, k2, k3, l)

be a WRW
-representative of an W -restricted improvement embedding so that \~EW

and \~EW have the same shape.

Definition 6.36 (root-compatibility). \~EW and \~EW are root-compatible if they
are C-compatible and

1. for each i, there exists an embedding fW
i of G[\emptyset ,W ] into Rl so that fW

i is

compatible with the WRW
-representative of fW

i ; and

2. for each i, there exists an embedding gWi of G[\emptyset ,W ] into Rl so that gWi is

compatible with the WRW
-representative of gWi .

The definition does not directly provide an efficient algorithm for checking root-
compatibility, but a couple of observations and brute force yields a 22

\scrO (k)

time algo-
rithm as follows.

Lemma 6.37. Let cutrk(W ) \leq k and suppose that the improvement embeddings
are k-bounded. Given \~EW , \~EW , RW , and RW , the root-compatibility of \~EW and \~EW

can be checked in time 22
\scrO (k)

.

Proof. We prove the case (1); the other case is symmetric.

Suppose there exists such an embedding fW
i . Let (AH ,BH) be the bipartition of

Rl and let uH , vH \in BH be a pair of distinct vertices in BH . Suppose that there exists
u, v \in W such that N(u) \cap W = N(v) \cap W , u \in fW

i (uH), and v \in fW
i (vH). Note that

now, if we remove u from fW
i (uH) and insert it into fW

i (vH), we obtain an embedding

whose WRW
-representative is compatible with the same WRW

-representatives as fW
i .

Therefore, we can assume for any u, v \in W that if N(u)\cap W = N(v)\cap W , then there

exists vH \in BH so that \{ u, v\} \subseteq fW
i (vH).

As for any v \in W there is a vertex vR \in RW with N(v) \cap W = N(vR) \cap W , it is

sufficient to enumerate all intersections fW
i \cap RW and assign each v to the same vertex

of BH as vR. Note that in this case, the WRW
-representative of fW

i depends only on

the intersection fW
i \cap RW . The number of the intersections is at most

\bigl( 
2| RW | \bigr) | BH | \leq 

(22
k

)2
k

= 22
\scrO (k)

and each can be checked in time 2\scrO (k).

We also introduce the definition of Ci-emptiness to denote whether none of the
vertices has been assigned to Ci in the tripartition.

Definition 6.38 (Ci-empty). Let \~ER = (fC
1 , fC

2 , fC
3 , . . .) be the AR-representative

of an A-restricted improvement embedding. Let i \in \{ 1,2,3\} , and let (AH ,BH) be the
bipartition of Rki

. \~ER is Ci-empty if for every v \in AH it holds that fC
i (v) = \emptyset .

The definition of Ci-emptiness is for determining which of the parts of a corre-
sponding tripartition intersect A.

Observation 6.39. Let \~ER be the AR-representative of an A-restricted improve-
ment embedding \=E and (C1,C2,C3) the tripartition of \=E. It holds that Ci = \emptyset if and
only if \~ER is Ci-empty.

Finally, we describe how to find W -improvements based on representatives of
improvement embeddings.

Lemma 6.40. Let T be a rank decomposition, uv = r \in E(T ), and W = T [uv].
Denote X = W = Tr[u], Y = W = Tr[v], and let RX be a minimal representative of X
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1119

and RY a minimal representative of Y . There exists a W -improvement (C1,C2,C3)
with arity \alpha and cutrk(Ci)\leq ki for each i\in \{ 1,2,3\} if and only if there exist \~Eu and
\~Ev such that

1. \~Eu is the XRX
-representative of an X-restricted improvement embedding with

shape (k1, k2, k3, l) whose tripartition is (C1 \cap X,C2 \cap X,C3 \cap X);
2. \~Ev is the YRY

-representative of a Y -restricted improvement embedding with
shape (k1, k2, k3, l) whose tripartition is (C1 \cap Y,C2 \cap Y,C3 \cap Y );

3. \~Eu and \~Ev are root-compatible;
4. ki < cutrk(W )/2 for all i, l < cutrk(W ); and
5. \alpha = 2 if there exists i such that both \~Eu and \~Ev are Ci-empty and otherwise

\alpha = 3.

Proof. If direction:
Let

\=EX = (fC
1 , fC

2 , fC
3 , fW

1 , fW
2 , fW

3 , k1, k2, k3, l)

be an X-restricted improvement embedding whose XRX
-representative is \~Eu and

whose tripartition is (C1 \cap X,C2 \cap X,C3 \cap X). Also let

\=EY = (gC1 , g
C
2 , g

C
3 , g

W
1 , gW2 , gW3 , k1, k2, k3, l)

be a Y -restricted improvement embedding whose YRY
-representative is \~Eu and whose

tripartition is (C1 \cap Y,C2 \cap Y,C3 \cap Y ).
As \~Eu and \~Ev are C-compatible, Lemma 6.26 implies that for each i \in \{ 1,2,3\} ,

fC
i \cup gCi is an embedding of G[Ci,Ci] into Rki . Therefore by Proposition 6.18 it holds

that cutrk(Ci)\leq ki.
As \~Eu and \~Ev are root-compatible, by the definition of root-compatibility and

Lemma 6.26 for each i there exists an embedding fW
i of G[\emptyset ,W ] to Rl so that fW

i \cup fW
i

is an embedding of G[Ci \cap W, (Ci \cap W )\cup W ] = G[Ci \cap W,Ci \cap W ] to Rl. Therefore by
Proposition 6.18 it holds that cutrk(Ci \cap W )\leq l.

Symmetrically, by root-compatibility there exists an embedding gWi of G[\emptyset ,W ] to

Rl so that gWi \cup gWi is an embedding of G[Ci\cap W, (Ci\cap W )\cup W ] = G[Ci\cap W,Ci \cap W ]
to Rl. Therefore by Proposition 6.18 it holds that cutrk(Ci \cap W )\leq l.

Finally note that Ci = \emptyset if and only if both \~Eu and \~Ev are Ci-empty.
Only if direction: Let (C1,C2,C3) be a W -improvement of arity \alpha , where cutrk(Ci)

= ki. Also let l = cutrk(W ) - 1. By Proposition 6.18, for each i there exists an em-
bedding fC

i of G[Ci,Ci] to Rki , an embedding fW
i of G[Ci \cap W,Ci \cap W ] to Rl, and

an embedding fW
i of G[Ci \cap W,Ci \cap W ] to Rl.

Let

\=EX = (fC
1 \cap X,fC

2 \cap X,fC
3 \cap X,fW

1 \cap X,fW
2 \cap X,fW

3 \cap X,k1, k2, k3, l)

and note that the tripartition of \=EX is (C1 \cap X,C2 \cap X,C3 \cap X). Also let

\=EY = (fC
1 \cap Y, fC

2 \cap Y, fC
3 \cap Y, fW

1 \cap Y, fW
2 \cap Y, fW

3 \cap Y,k1, k2, k3, l)

and note that the tripartition of \=EY is (C1 \cap Y,C2 \cap Y,C3 \cap Y ). Let \~Eu be the XRX
-

representative of \=EX and \~Ev the YRY
-representative of \=EY . Note that now \~Eu and

\~Ev satisfy (1) and (2).
By Lemma 6.24, \~Eu and \~Ev are C-compatible. By Lemma 6.24, for each i, fW

i \cap Y
is an embedding of G[\emptyset ,W ] to Rl whose YRY

-representative is compatible with the
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1120 FEDOR V. FOMIN AND TUUKKA KORHONEN

XRX
-representative of fW

i \cap X, and fW
i \cap X is an embedding of G[\emptyset ,W ] whose XRX

-

representative is compatible with the YRY
-representative of fW

i \cap Y . Therefore \~Eu

and \~Ev are root-compatible by the definition of root-compatibility.
If (C1,C2,C3) has arity 2, then there is i such that Ci = \emptyset , which implies that

both \~Eu and \~Ev are Ci-empty. Otherwise each Ci intersects with at least one of X
or Y , and therefore for each i at least one of \~Eu or \~Ev is not Ci-empty.

6.3.5. Refinement data structure for augmented rank decompositions.
In this subsection we provide the refinement data structure for augmented rank
decompositions using dynamic programming building on the previous subsections.
Throughout this subsection, we assume that we are maintaining an augmented rank
decomposition (T,\scrR ) of width \ttr \ttw (T ) \leq k, and therefore we are only interested in
k-bounded improvement embeddings.

Concrete representatives. In order to maintain an augmented rank decomposi-
tion in the refinement operation, we need to construct a minimal representative of
each set Ci of the W -improvement (C1,C2,C3). To do this, we maintain ``concrete
representatives"" in the dynamic programming.

Definition 6.41 (concrete representative). Let H be bipartite graph, let A \subseteq 
V (G), and let f : V (H) \rightarrow 2A be a function. A concrete representative of f is a
function g defined in Observation 6.16, i.e., a function g mapping each v \in V (H) to
a subset of f(v) as follows:

g(v) =

\biggl\{ 
\{ u\} where u\in f(v) if f(v) is nonempty,
\emptyset otherwise.

Let \=E = (fC
1 , fC

2 , fC
3 , . . .) be an A-restricted improvement embedding. A concrete

representative of \=E is a triple (gC1 , g
C
2 , g

C
3 ), where each gCi is a concrete representative

of fC
i .

Note that a concrete representative can be represented in \scrO (| V (H)| ) space. By
Observation 6.16, a concrete representative of an embedding of G[Ci,Ci] into H can be
turned into a representative of (Ci,Ci) of size at most | V (H)| . In particular, using a
concrete representative of a V (G)-restricted improvement embedding with tripartition
(C1,C2,C3) we can compute a minimal representative of each Ci in time 2\scrO (k).

We define the union of two concrete representatives naturally.

Definition 6.42 (union of concrete representatives). Let fR be a concrete repre-
sentative of a function f : V (H)\rightarrow 2X and gR a concrete representative of a function
g : V (H) \rightarrow 2Y . We denote by fR \cup gR the function mapping each v \in V (H) to a
subset of f(v)\cup g(v) as follows:

(fR \cup gR)(v) =

\biggl\{ 
fR(v) if fR(v) \not = \emptyset ,
gR(v) otherwise.

The union of concrete representatives of improvement embeddings is the pointwise
union of such triples of concrete representatives.

Observe that such fR \cup gR is a concrete representative of f \cup g.
Dynamic programming tables. In the refinement data structure we maintain a

dynamic programming table for each node w \in V (T ). We call this table the r-table of
the node w to signify that this table contains information about the r-subtree of w.
Next we formally define an r-table.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1121

Definition 6.43 (r-table). For an augmented rank decomposition (T,\scrR ), root
edge r \in E(T ), node w \in V (T ), and A = Tr[w], R =\scrR r[w], an r-table of w is a triple
(\scrE ,\scrI ,\scrC ), where

1. \scrE is the set of all AR-representatives of k-bounded A-restricted improvement
embeddings;

2. \scrI is a function mapping each \~ER \in \scrE to the least integer i such that there
exists an A-restricted improvement embedding \=E whose AR-representative is
\~ER and which r-intersects i nodes of the r-subtree of w; and

3. \scrC is a function mapping each \~ER \in \scrE to a concrete representative of an A-
restricted improvement embedding \=E such that \~ER is the AR-representative
of \=E and \=E r-intersects \scrI ( \~ER) nodes of the r-subtree of w.

Note that an r-table can be represented by making use of 22
\scrO (k)

space.
To correctly construct the refinement that matches the concrete representation

obtained, we need to spell out some additional properties of r-tables, which will be
naturally satisfied by the way the r-tables will be constructed.

Definition 6.44 (local and global representation). Let (T,\scrR ) be an augmented
rank decomposition, r \in E(T ), w \in V (T ), A = Tr[w], and R = \scrR r[w]. An r-table
(\scrE ,\scrI ,\scrC ) of w locally represents an A-restricted improvement embedding \=E if there
exists \~ER \in \scrE so that \~ER is the AR-representative of \=E, \scrI ( \~ER) is the number of nodes
in the r-subtree of w r-intersected by \=E, and \scrC ( \~ER) is a concrete representative of \=E.
The r-table of w globally represents \=E if the r-tables of all nodes w\prime in the r-subtree
of w (including w itself) locally represent \=E \cap Tr[w\prime ].

Definition 6.45 (linked r-table). A linked r-table of w is a 4-tuple (\scrE ,\scrI ,\scrC ,\scrL )
so that (\scrE ,\scrI ,\scrC ) is an r-table of w and for each \~ER \in \scrE there exists an A-restricted
improvement embedding \=E so that

1. \~ER is the AR-representative of \=E;
2. (\scrE ,\scrI ,\scrC ) globally represents \=E; and
3. if w is nonleaf and has r-children w1 and w2 with r-tables (\scrE 1,\scrI 1,\scrC 1) and

(\scrE 2,\scrI 2,\scrC 2), then \scrL is a function mapping \~ER to a pair \scrL ( \~ER) = ( \~E1, \~E2) such
that \~E1 \in \scrE 1, \~E2 \in \scrE 2, \~E1 is the Tr[w1]\scrR r[w1]-representative of \=E \cap Tr[w1],

and \~E2 is the Tr[w2]\scrR r[w2]-representative of \=E \cap Tr[w2].

The existence of a linked r-table will be formally proved in Lemma 6.47 when also
its construction is given. Note that a linked r-table of a node w can be represented
in 22

\scrO (k)

space. We start implementing the dynamic programming from the leaves.

Lemma 6.46. Let (T,\scrR ) be an augmented rank decomposition, let r \in E(T ), and
let w be a leaf node of T . A linked r-table of w can be constructed in time 2\scrO (k).

Proof. Let A = Tr[w]. As | A| = 1, the number of A-restricted improvement
embeddings is 2\scrO (k), and we can iterate over all of them and construct the r-table
directly by definition. Moreover, the r-table is by definition linked because A is
the minimal representative of itself, and so there is bijection between A-restricted
improvement embeddings and their AA-representatives.

The next lemma is the main dynamic programming lemma. It specifies the com-
putation of linked r-tables for nonleaf nodes.

Lemma 6.47. Let (T,\scrR ) be an augmented rank decomposition, r \in E(T ), w a
nonleaf node of T , and w1 and w2 the r-children of w. Given linked r-tables of the
nodes w1 and w2, a linked r-table (\scrE ,\scrI ,\scrC ,\scrL ) of w can be constructed in time 22

\scrO (k)

.
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1122 FEDOR V. FOMIN AND TUUKKA KORHONEN

Proof. Let A = Tr[w], X = Tr[w1], Y = Tr[w2], R = \scrR r[w], RX = \scrR r[w1], and
RY = \scrR r[w2]. Let (\scrE 1,\scrI 1,\scrC 1) be the given r-table of w1 and (\scrE 2,\scrI 2,\scrC 2) the given
r-table of w2.

Let \=E be a k-bounded A-restricted improvement embedding. Note that the num-
ber of nodes in the r-subtree of w that \=E r-intersects is i1 + i2 + iw, where i1 is the
number of nodes in the r-subtree of w1 that \=E \cap X r-intersects, i2 is the number of
nodes in the r-subtree of w2 that \=E \cap Y r-intersects, and iw = 1 if \=E r-intersects w
and 0 otherwise. Moreover, the fact whether \=E r-intersects w can be determined only
by considering the AR-representative of \=E, in particular by whether it is Ci-empty
for at most one i.

We enumerate all pairs ( \~E1, \~E2) \in \scrE 1 \times \scrE 2. If \~E1 is compatible with \~E2, then
by Lemma 6.35, for any \=EX and \=EY such that \~E1 is a XRX

-representative of \=EX

and \~E2 is a YRY
-representative of \=EY it holds that \=E = \=EX \cup \=EY is an A-restricted

improvement embedding such that \=E \cap X = \=EX , \=E \cap Y = \=EY , and the composition
\~ER of \~E1 and \~E2 is the AR-representative of \=E. Let us fix such \=EX and \=EY so that
they are globally represented by (\scrE 1,\scrI 1,\scrC 1) and (\scrE 2,\scrI 2,\scrC 2), respectively. If \~ER /\in \scrE ,
or \~ER \in \scrE but \scrI ( \~ER) > \scrI 1( \~E1) + \scrI 2( \~E2) + iw, we insert \~ER to \scrE and set \scrI ( \~ER)\leftarrow 
\scrI 1( \~E1) + \scrI 2( \~E2) + iw, \scrC ( \~ER)\leftarrow \scrC 1( \~E1)\cup \scrC 2( \~E2) and \scrL ( \~ER)\leftarrow ( \~E1, \~E2). Now (\scrE ,\scrI ,\scrC )
globally represents \=E.

As the number of such pairs is 22
\scrO (k)

, this algorithm clearly works in time 22
\scrO (k)

.
The fact that for all A-restricted improvement embeddings \=E we actually consid-

ered a pair ( \~E1, \~E2)\in \scrE 1 \times \scrE 2 so that \~E1 is a XRX
-representative of \=E \cap X and \~E2 is

a YRY
-representative of \=E \cap Y follows from the definition of r-state and Lemma 6.28,

i.e., the fact that \=E \cap X is an X-restricted improvement embedding and \=E \cap Y is a
Y -restricted improvement embedding.

Now the Init(T , r) operation can be implemented in | V (T )| 22\scrO (k)

time by con-
structing a linked r-table of each node in the order from leaves to root with | V (T )| 
applications of Lemma 6.47. For the Move(vw) operation, observe that the linked r-
table of a node x\in V (T ) depends only on the r-subtree of x, and therefore by Obser-
vation 5.8 it suffices to recompute only the linked r-table of v when using Move(vw).

Therefore Move(vw) can be implemented in 22
\scrO (k)

time by a single application of
Lemma 6.47. The operation Width() is implemented without r-tables. It amounts to
finding the smallest k\prime for which G[\scrR [uv],\scrR [vu]] has an embedding to Rk\prime , which can

be done by brute force in time 22
\scrO (k)

. The Output() operation also is straightforward
as we just output the augmented rank decomposition we are maintaining.

It remains to implement CanRefine(), EditSet(), and Refine(R, (N1,N2,N3)).
The following is the main lemma for them, providing the implementations of CanRe-
fine() and EditSet() and setting the stage for Refine(R, (N1,N2,N3)).

Lemma 6.48. Let (T,\scrR ) be an augmented rank decomposition, uv = r \in E(T ),
and W = T [uv]. For each node w \in V (T ), let (\scrE w,\scrI w,\scrR w,\scrL w) be the linked r-
table of w. There is an algorithm that returns \bot if there is no W -improvement,
and otherwise returns a tuple (R,N1,N2,N3,C

R
1 ,CR

2 ,CR
3 ), where (r,C1,C2,C3) is a

global T -improvement, R is the edit set of (r,C1,C2,C3), (N1,N2,N3) is the neighbor
partition of R, and for each i \in \{ 1,2,3\} , CR

i is a minimal representative of Ci. The

algorithm runs in time 22
\scrO (k)

(| R| + 1).

Proof. Denote X = W = Tr[u], Y = W = Tr[v], and let RX = \scrR r[u] and RY =
\scrR r[v].
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1123

We iterate over all pairs ( \~Eu, \~Ev)\in \scrE u\times \scrE v satisfying the conditions in Lemma 6.40
and determine the width, the arity, and the sum-width of a corresponding W -
improvement as in Lemma 6.40. Also, the minimum number of nodes of T r-intersected
by a W -improvement corresponding to ( \~Eu, \~Ev) can be determined as \scrI u( \~Eu)+\scrI v( \~Ev).
If no such pair is found, we return \bot . Otherwise we find a pair ( \~Eu, \~Ev) so that \~Eu is
the XRX

-representative of an X-restricted improvement embedding \=EX that is glob-
ally represented by (\scrE u,\scrI u,\scrC u) and whose tripartition is (C1 \cap X,C2 \cap X,C3 \cap X),
\~Ev is the YRY

-representative of a Y -restricted improvement embedding \=EY that is
globally represented by (\scrE v,\scrI v,\scrC v) and whose tripartition is (C1 \cap Y,C2 \cap Y,C3 \cap Y ),

and (r,C1,C2,C3) is a global T -improvement of T . As | \scrE u| | \scrE v| = 22
\scrO (k)

and each pair

can be checked in time 22
\scrO (k)

(root-compatibility by Lemma 6.37), this phase has time

complexity 22
\scrO (k)

.
Let (fC

1 , fC
2 , fC

3 ) = \scrC u( \~Eu) \cup \scrC v( \~Ev). Now fC
i is a concrete representative of an

embedding of G[(X \cap Ci) \cup (Y \cap Ci), (X \setminus Ci) \cup (Y \setminus Ci)] = G[Ci,Ci] to Rki
, and

therefore by Observation 6.16 we obtain a representative of (Ci,Ci) of size at most
2 \cdot 2ki from fC

i . We compute a minimal representative CR
i of Ci in time 2\scrO (k) by

Lemma 6.5.
We compute the edit set and the neighbor partition with a BFS-type algorithm

that maintains a queue Q containing pairs (w, \~Ew), where w \in V (T ), with the invariant
that if w is in the r-subtree of u, then \~Ew is the Tr[w]\scrR r[w]-representative of \=EX\cap Tr[w]

and if w is in the r-subtree of v, then \~Ew is the Tr[w]\scrR r[w]-representative of \=EY \cap Tr[w].

We start by inserting the pairs (u, \~Eu) and (v, \~Ev) to Q. Then we iteratively pop a
pair (w, \~Ew) from the queue. If there is i such that \~Ew is Cj-empty for all j \not = i, then
it holds that Tr[w]\subseteq Ci, and therefore we insert w to Ni. Otherwise, we insert w to R,
let w1 and w2 be the r-children of w, and let ( \~E1, \~E2) =\scrL w( \~Ew). We insert ( \~E1,w1)
and ( \~E2,w2) into Q. This maintains the invariant by the definition of a linked r-table.

For each node w \in R\cup N1\cup N2\cup N3 we access tables indexed by \~Ew and determine
Ci-emptiness, so the work is bounded by | R \cup N1 \cup N2 \cup N3| \cdot 22

\scrO (k)

= | R| \cdot 22\scrO (k)

.

What is left is the Refine(R, (N1,N2,N3)) operation. Computing the refinement
T \prime of T itself is a direct application of Lemma 5.4 and computing the linked r-tables of
the new nodes is done by | R| applications of Lemma 6.47, but in order to compute the
linked r-tables we must first make T \prime augmented, that is, for each new edge uv com-
pute a minimal representative of (T \prime [uv], T \prime [vu]). We use the minimal representatives
of C1, C2, and C3 returned by the algorithm of Lemma 6.48 for this.

Lemma 6.49. Let T be a rank decomposition, let r \in E(T ), and let (r,C1,C2,C3)
be a global T -improvement. Let w be a nonleaf node of T , and let w1 and w2 be
the r-children of w. Let i,j, and l be such that \{ i, j, l\} = \{ 1,2,3\} . Given minimal
representatives of Tr[w1]\cap Ci, Tr[w2]\cap Ci, Tr[w], Cj, and Cl, a minimal representative
of (Tr[w]\cap Ci, Tr[w]\cap Ci) can be computed in 2\scrO (k) time.

Proof. As (r,C1,C2,C3) is a global T -improvement of T , by Theorem 4.9 and
Proposition 6.3 each of the given minimal representatives has size at most 2k.

It holds that

Tr[w]\cap Ci = (Tr[w1]\cap Ci)\cup (Tr[w2]\cap Ci),

so by Lemma 6.6 we obtain a representative of Tr[w] \cap Ci as the union of the given
minimal representatives of Tr[w1]\cap Ci and Tr[w2]\cap Ci. It also holds that

Tr[w]\cap Ci = Tr[w]\cup Ci = Tr[w]\cup Cj \cup Cl,
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1124 FEDOR V. FOMIN AND TUUKKA KORHONEN

so again by Lemma 6.6 we obtain a representative of Tr[w]\cap Ci as the union of the
given minimal representatives of Tr[w], Cj , and Cl. Now we have a representative of
(Tr[w]\cap Ci, Tr[w]\cap Ci) of size 2\scrO (k), so we can use Lemma 6.5 to compute a minimal
representative in time 2\scrO (k).

In particular, a minimal representative of Tr[w] is available in (T,\scrR ) as \scrR [pw],
where p is the r-parent of w, and minimal representatives of Tr[w1]\cap Ci and Tr[w2]\cap Ci

are available by doing the construction in an order towards the root r.
This completes the description of the refinement data structure for augmented

rank decompositions and thus also the proof of Theorem 6.13.

7. Approximating graph branchwidth. In this section we prove the following
theorem.

Theorem 1.5. There is an algorithm that, given an n-vertex graph G and an
integer k, in time 2\scrO (k)n either computes a branch decomposition of G of width at
most 2k or correctly concludes that the branchwidth of G is more than k.

We start with the definition of branch decomposition of a graph.

Definition 7.1 (border). Let G be a graph and X \subseteq E(G). The border \delta G(X)
of X is the set of vertices of G that are incident to an edge in X and to an edge in
E(G) \setminus X.

The following result is well known.

Proposition 7.2. The function | \delta G| : 2E(G)\rightarrow \BbbZ \geq 0 assigning for each X \subseteq E(G)
the cardinality | \delta G(X)| of the border of X is a connectivity function.

A branch decomposition of a graph G is a branch decomposition of function | \delta G| ,
and the branchwidth of G, denoted by \ttb \ttw (G), is the branchwidth of | \delta G| . In the rest
of this section we assume that we are computing the branchwidth of a graph G and
drop the subscript.

For branchwidth we do not need iterative compression as we can use the algorithm
of Korhonen [32] and the connection between branchwidth and treewidth [41] to obtain
a branch decomposition of G of width at most 3k in 2\scrO (k)n time.

The following is the main lemma, and the whole section is devoted to its proof.

Lemma 7.3. There is a refinement data structure for branch decompositions of
graphs with time complexity t(k) = 2\scrO (k).

With Theorem 2.3 and the aforementioned connections to treewidth, this will
prove Theorem 1.5.

The remaining part of this section is organized as follows. In subsection 7.1 we
define augmented branch decompositions, in subsection 7.2 we introduce the objects
manipulated in our dynamic programming and prove some properties of them. Then
in subsection 7.3 we give the refinement data structure for branch decompositions
using this dynamic programming.

7.1. Augmented branch decompositions. In our refinement data structure
we maintain an augmented branch decomposition. An augmented branch decomposi-
tions stores the border description of each bipartition corresponding to an edge of it.

Definition 7.4 (border description). Let X \subseteq E(G). The border description
of X is the pair (\delta (X), f), where f : \delta (X)\rightarrow \BbbZ \geq 0 is the function so that f(v) is the
number of edges in X incident to v.
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1125

An augmented branch decomposition is a branch decomposition T where for each
edge uv \in E(T ) the border descriptions of T [uv] and T [vu] are stored. Note that an
augmented branch decomposition can be represented in \scrO (| V (T )| \ttb \ttw (T )) space.

The following lemma leads to an algorithm for computing the border descriptions.

Lemma 7.5. Let X,Y be disjoint subsets of E(G). Given the border descriptions
of X and Y , the border description of X \cup Y can be computed in \scrO (| \delta (X)| + | \delta (Y )| )
time.

Proof. Let (\delta (X), f) be the border description of X and (\delta (Y ), g) the border
description of Y . It holds that \delta (X \cup Y )\subseteq \delta (X)\cup \delta (Y ), where (\delta (X)\cup \delta (Y ))\setminus \delta (X \cup Y )
can be identified as the vertices v for which f(v) + g(v) is the degree of v. Now
(\delta (X \cup Y ), f + g) is the border description of X \cup Y .

Because \delta (X) = \delta (X) and the number of edges in X incident to v is the degree of
v minus the number of edges in X incident to v, the border description of X can be
computed from the border description of X in \scrO (| \delta (X)| ) time. It follows that, given
a branch decomposition T , a corresponding augmented branch decomposition can be
computed in \scrO (| V (T )| \ttb \ttw (T )) time by using Lemma 7.5 \scrO (| V (T )| ) times.

7.2. Borders of tripartitions. We define the partial solutions stored in dy-
namic programming tables.

Definition 7.6 (border of a tripartition). Let A\subseteq E(G), and let (C1,C2,C3) be
a tripartition of A. The border of (C1,C2,C3) is the 9-tuple

(R1,R2,R3, r1, r2, r3, k1, k2, k3),

where for each i \in \{ 1,2,3\} it holds that Ri = \delta (Ci) \cap \delta (A), ri = 0 if Ci = \emptyset and
otherwise ri = 1, and ki is the number of vertices v \in V (G) \setminus \delta (A) such that there
exists an edge e1 \in Ci incident to v and an edge e2 \in A \setminus Ci incident to v, i.e.,
ki = | \delta (Ci)\cap \delta (A \setminus Ci) \setminus \delta (A)| .

We call a border of tripartition k-bounded if for each i it holds that ki \leq k. Note
that if | \delta (A)| \leq k, then the number of k-bounded borders of tripartitions of A is
\leq (2k)323k3 = 2\scrO (k), and each of them can be represented in \scrO (k) space.

We define the composition of borders of tripartitions to combine partial solutions.

Definition 7.7 (composition). Let X and Y be disjoint subsets of E(G), and
let A = X \cup Y . Let RX = (RX

1 ,RX
2 ,RX

3 , rX1 , rX2 , rX3 , kX1 , kX2 , kX3 ) be the border of
a tripartition of X and RY = (RY

1 ,R
Y
2 ,R

Y
3 , r

Y
1 , rY2 , rY3 , kY1 , kY2 , kY3 ) the border of a

tripartition of Y . Denote F = (\delta (X)\cup \delta (Y )) \setminus \delta (A). The composition of RX and RY

is the 9-tuple (R1,R2,R3, r1, r2, r3, k1, k2, k3), where for each i\in \{ 1,2,3\} ,
1. Ri = \delta (A)\cap (RX

i \cup RY
i );

2. ri = max(rXi , rYi ); and
3. ki = kXi +kYi + | F \cap (RX

i \cup RY
i ) \cap (RX

j \cup RX
l \cup RY

j \cup RY
l )| , where \{ i, j, l\} =

\{ 1,2,3\} .
Note that when the sets \delta (X), \delta (Y ), and \delta (A) are given and have size \leq k, the

composition can be computed in \scrO (k) time.
Next we prove that the composition operation really combines partial solutions,

as expected.

Lemma 7.8. Let X and Y be disjoint subsets of E(G), and let A = X \cup Y . If RX

is the border of a tripartition (CX
1 ,CX

2 ,CX
3 ) and RY is the border of a tripartition

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1126 FEDOR V. FOMIN AND TUUKKA KORHONEN

(CY
1 ,CY

2 ,CY
3 ), then the composition of RX and RY is the border of the tripartition

(CX
1 \cup CY

1 ,CX
2 \cup CY

2 ,CX
3 \cup CY

3 ).

Proof. Let V X be the set of vertices incident to X, and V Y the set of vertices
incident to Y . Also let F = (\delta (X)\cup \delta (Y )) \setminus \delta (A). Let i \in \{ 1,2,3\} , and let j and l be
such that \{ i, j, l\} = \{ 1,2,3\} . It holds that

\delta (CX
i \cup CY

i ) = (\delta (CX
i )\cup \delta (CY

i ))\cap (\delta (CX
j )\cup \delta (CX

l )\cup \delta (CY
j )\cup \delta (CY

l )\cup \delta (A)),

which by \delta (A) = \delta (A) implies

\delta (CX
i \cup CY

i )\cap \delta (A) = (\delta (CX
i )\cup \delta (CY

i ))\cap \delta (A).

Then, because \delta (A)\cap V X \subseteq \delta (X) and \delta (A)\cap V Y \subseteq \delta (Y ), we have

\delta (CX
i \cup CY

i )\cap \delta (A) = (\delta (CX
i )\cup \delta (CY

i ))\cap \delta (A)

= ((\delta (CX
i )\cap \delta (X))\cup (\delta (CY

i )\cap \delta (Y )))\cap \delta (A)

= (RX
i \cup RY

i )\cap \delta (A),

so the sets R1, R2, and R3 in the composition are correct.
Let us then show that the numbers k1, k2, and k3 in the composition are correct.

First, note that

| \delta (CX
i \cup CY

i )\cap \delta (A \setminus (CX
i \cup CY

i )) \setminus \delta (A)| 
= | \delta (CX

i \cup CY
i ) \setminus \delta (A)| 

= | \delta (CX
i \cup CY

i )\cap F | + | \delta (CX
i \cup CY

i ) \setminus (F \cup \delta (A))| .(7.1)

By observing that V X \cap F \subseteq \delta (X) and V Y \cap F \subseteq \delta (Y ), we have that

\delta (CX
i \cup CY

i )\cap F = F \cap (\delta (CX
i )\cup \delta (CY

i ))\cap (\delta (CX
j )\cup \delta (CX

l )\cup \delta (CY
j )\cup \delta (CY

l ))

= F \cap (RX
i \cup RY

i )\cap (RX
j \cup RX

l \cup RY
j \cup RY

l ).

Since V X \setminus (F \cup \delta (A)) = V X \setminus \delta (X) and V Y \setminus (F \cup \delta (A)) = V Y \setminus \delta (Y ) are disjoint, we
get that

| \delta (CX
i \cup CY

i ) \setminus (F \cup \delta (A))| 
= | (\delta (CX

i )\cap (\delta (CX
j )\cup \delta (CX

l )) \setminus \delta (X)| + | (\delta (CY
i )\cap (\delta (CY

j )\cup \delta (CY
l )) \setminus \delta (Y )| 

= | \delta (CX
i )\cap \delta (X \setminus CX

i ) \setminus \delta (X)| + | \delta (CY
i )\cap \delta (Y \setminus CY

i ) \setminus \delta (Y )| 
= kXi + kYi .

Hence, by (7.1) the numbers k1, k2, and k3 in the composition are correct. The
numbers r1, r2, and r3 are correct by observing that CX

i \cup CY
i is empty if and only if

both CX
i and CY

i are empty.

The next lemma gives the method for determining if there exists a W -improvement
based on borders of tripartitions.

Lemma 7.9. Let T be a branch decomposition, and let uv = r \in E(T ) and W =
T [uv]. Denote X = W and Y = W . There exists a W -improvement (C1,C2,C3) with
arity \alpha and | \delta (Ci)| = ki for each i \in \{ 1,2,3\} if and only if there exists RX and RY

such that
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FAST FPT-APPROXIMATION OF BRANCHWIDTH 1127

1. RX = (RX
1 ,RX

2 ,RX
3 , rX1 , rX2 , rX3 , kX1 , kX2 , kX3 ) is the border of the tripartition

(C1 \cap X,C2 \cap X,C3 \cap X);
2. RY = (RY

1 ,R
Y
2 ,R

Y
3 , r

Y
1 , rY2 , rY3 , kY1 , kY2 , kY3 ) is the border of the tripartition

(C1 \cap Y,C2 \cap Y,C3 \cap Y );
3. the composition of RX and RY is (\emptyset ,\emptyset ,\emptyset , r1, r2, r3, k1, k2, k3), where it holds

that r1 + r2 + r3 = \alpha and ki < | \delta (W )| /2 for each i; and
4. for each i it holds that kXi + | RX

i | < | \delta (W )| and kYi + | RY
i | < | \delta (W )| .

Proof. Suppose that such RX and RY exist. By Lemma 7.8 and the fact that
\delta (E(G)) = \emptyset , (\emptyset ,\emptyset ,\emptyset , r1, r2, r3, k1, k2, k3) is the border of (C1,C2,C3). By the definition
of border we have that ki = | \delta (Ci)| and r1 + r2 + r3 is the number of nonempty
sets in (C1,C2,C3). It remains to prove that | \delta (Ci \cap W )| = kXi + | RX

i | and that
| \delta (Ci \cap W )| = kYi + | RY

i | for each i. We have that

\delta (W \cap Ci) = (\delta (W \cap Ci)\cap \delta (W ))\cup (\delta (W \cap Ci)\cap \delta (W \setminus Ci))

= (\delta (X \cap Ci)\cap \delta (X))\cup (\delta (X \cap Ci)\cap \delta (X \setminus Ci))

= (\delta (X \cap Ci)\cap \delta (X))\cup (\delta (X \cap Ci)\cap \delta (X \setminus Ci)\cap \delta (X))

\cup (\delta (X \cap Ci)\cap \delta (X \setminus Ci) \setminus \delta (X))

= (\delta (X \cap Ci)\cap \delta (X))\cup (\delta (X \cap Ci)\cap \delta (X \setminus Ci) \setminus \delta (X)).

Therefore, by the definition of border,

| (\delta (X \cap Ci)\cap \delta (X))\cup (\delta (X \cap Ci)\cap \delta (X \setminus Ci) \setminus \delta (X))| 
= | \delta (X \cap Ci)\cap \delta (X)| + | \delta (X \cap Ci)\cap \delta (X \setminus Ci) \setminus \delta (X)| = | RX

i | + kXi .

The other case is symmetric.
The above is the proof of the if direction. The proof for the only if direction is

the same but starting from the supposition that such W -improvement (C1,C2,C3)
exists and letting RX be the border of (C1 \cap X,C2 \cap X,C3 \cap X) and RY the border
of (C1 \cap Y,C2 \cap Y,C3 \cap Y ).

7.3. Refinement data structure for graph branch decompositions. In
the refinement data structure for branch decompositions we maintain an augmented
branch decomposition T rooted at edge r \in E(T ) and a dynamic programming table
that stores for each node w \in V (T ) all k-bounded borders of tripartitions of Tr[w]
and information about how many nodes in the r-subtree of w they intersect. We call
this dynamic programming table an r-table to signify that it is directed towards r.

In this subsection we always assume that k is an integer such that \ttb \ttw (T )\leq k, and
therefore we only care about k-bounded borders of tripartitions. Next we formally
define the contents of an r-table.

Definition 7.10 (r-table). Let T be a branch decomposition, r \in E(T ) an edge
of T , w \in V (T ), and A = Tr[w]. The r-table of w is the pair (\scrB ,\scrI ), where \scrB is the
set of all k-bounded borders of tripartitions of A, and \scrI is a function mapping each
R \in \scrB to the least integer i such that there exists a tripartition of A whose border is
R and that r-intersects i nodes of the r-subtree of w.

As there are 2\scrO (k) k-bounded tripartitions of Tr[w], the r-table of w can be
represented in 2\scrO (k) space.

Lemma 7.11. Let T be an augmented branch decomposition, let r \in E(T ), and let
w be a nonleaf node of T with r-children w1 and w2. Given the r-tables of w1 and
w2, the r-table of w can be constructed in 2\scrO (k) time.
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1128 FEDOR V. FOMIN AND TUUKKA KORHONEN

Proof. Denote A = Tr[w], X = Tr[w1], and Y = Tr[w2]. Let (\scrB w1 ,\scrI w1) and
(\scrB w2 ,\scrI w2) be the r-tables of w1 and w2.

We construct the r-table (\scrB ,\scrI ) of w as follows. We iterate over all pairs

(RX ,RY )\in \scrB w1
\times \scrB w2

and let \scrB be the set of compositions of those pairs. This correctly constructs \scrB by
Lemma 7.8 and the observation that if (C1,C2,C3) is a tripartition of A whose border
is k-bounded, then (C1 \cap X,C2 \cap X,C3 \cap X) is a tripartition of X whose border
is k-bounded and (C1 \cap Y,C2 \cap Y,C3 \cap Y ) is a tripartition of Y whose border is k-
bounded. For each R \in \scrB we set \scrI (R) as the minimum value of \scrI w1

(RX) + \scrI w2
(RY ) +

iw over such pairs RX , RY whose composition is R, where iw = 1 if R is of the
form (. . . , r1, r2, r3, . . .) where r1 + r2 + r3 \geq 2, and iw = 0 otherwise. This correctly
constructs \scrI by the observations that (C1,C2,C3) r-intersects a node w\prime in the r-
subtree of w1 if and only if (C1 \cap X,C2 \cap X,C3 \cap X) intersects w\prime , (C1,C2,C3)
r-intersects a node w\prime in the r-subtree of w2 if and only if (C1 \cap Y,C2 \cap Y,C3 \cap Y )
intersects w\prime , and that (C1,C2,C3) intersects w if and only if r1 + r2 + r3 \geq 2.

As | \scrB w1 | | \scrB w2 | = 2\scrO (k), the time complexity is 2\scrO (k).

Now the Init(T , r) operation can be implemented in | V (T )| 2\scrO (k) time by first
making T augmented by 2| V (T )| applications of Lemma 7.5 and then constructing the
k-bounded r-tables of all nodes in the order from leaves to root by | V (T )| applications
of Lemma 7.11. For the Move(vw) operation, we note the r-table of a node x\in V (T )
depends only on the r-subtree of x, and therefore by Observation 5.8 it suffices to
recompute only the r-table of the node v when using Move(vw). Therefore Move(vw)
can be implemented in 2\scrO (k) time by a single application of Lemma 7.11. The Width()
operation returns | \delta (T [uv])| , which is available because T is augmented. The Output()
operation is also straightforward as it just returns the branch decomposition we are
maintaining.

The following lemma implements the operations CanRefine() and EditSet() based
on Lemma 7.9.

Lemma 7.12. Let T be a branch decomposition, and let uv = r \in E(T ) and
W = T [uv]. For each node w \in V (T ) let (\scrB w,\scrI w) be the r-table of w. There is an
algorithm that returns \bot if there is no W -improvement, and otherwise returns a tuple
(R,N1,N2,N3), where (r,C1,C2,C3) is a global T -improvement, R is the edit set of
(r,C1,C2,C3), and (N1,N2,N3) is the neighbor partition of R. The algorithm runs
in time 2\scrO (k)(| R| + 1).

Proof. Denote X = W = Tr[u], Y = W = Tr[v]. We iterate over all pairs
(RX ,RY ) \in \scrB u \times \scrB v, using Lemma 7.9 to either conclude that there exists no W -
improvement or to find a pair (RX ,RY ) such that there is a global T -improvement
(r,C1,C2,C3) so that RX is the border of (C1 \cap X,C2 \cap X,C3 \cap X), RY is the border
of (C1\cap Y,C2\cap Y,C3\cap Y ), and the number of nodes of T r-intersected by (C1,C2,C3)
is \scrI u(RX) + \scrI v(RY ). In time 2\scrO (k) we either find such a pair or conclude that there
is no W -improvement.

We compute the edit set and the neighbor partition with a BFS-type algorithm
that maintains a queue Q containing pairs (w,Rw), where w \in V (T ), with the invariant
that there exists a global T -improvement (r,C1,C2,C3) so that for all (w,Rw) that
appear in the queue, Rw is the border of (C1 \cap Tr[w],C2 \cap Tr[w],C3 \cap Tr[w]). We
start by inserting the pairs (u,RX) and (v,RY ) to Q. We iteratively pop a pair
(w,Rw) from the queue. Denote Rw = (. . . , r1, r2, r3, . . .). If there is i such that
rj = 0 for both j \not = i, then it holds that Tr[w] \subseteq Ci, and therefore we insert w
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into Ni. Otherwise, we insert w into R, let w1 and w2 be the r-children of w, and
find a pair (Rw1 ,Rw2) \in \scrB w1 \times \scrB w2 so that the composition of Rw1 and Rw2 is Rw

and \scrI w1
(Rw1

) + \scrI w2
(Rw2

) + 1 = \scrI w(Rw). This kind of pair exists and maintains the
invariant by the definition of r-table and Lemma 7.8.

For each node w \in R \cup N1 \cup N2 \cup N3 we iterate over \scrB w1
\times \scrB w2

and access
some tables, so the total amount of work is bounded by | R \cup N1 \cup N2 \cup N3| 2\scrO (k) =
| R| 2\scrO (k).

What is left is the Refine(R, (N1,N2,N3)) operation. Computing the refinement
of T is done in \scrO (| R| ) time by applying Lemma 5.4. Computing the border descrip-
tions of the newly inserted edges can be done in a bottom-up fashion starting from
N1\cup N2\cup N3 by 2| R| applications of Lemma 7.5. Then computing the r-tables of the
newly inserted nodes can be done also in a similar fashion in | R| 2\scrO (k) time by | R| 
applications of Lemma 7.11.

This completes the description of the refinement data structure for branch de-
compositions and thus also the proof of Theorem 7.3.

Appendix. Definitions of treewidth and cliquewidth.
Treewidth. A tree decomposition of a graph G is a pair (X,T ), where T is a tree

whose vertices we will call nodes and X = (\{ Xi | i \in V (T )\} ) is a collection of subsets
of V (G) such that

1.
\bigcup 

i\in V (T )Xi = V (G);
2. for each edge (v,w)\in E(G), there is an i\in V (T ) such that v,w \in Xi; and
3. for each v \in V (G) the set of nodes \{ i | v \in Xi\} forms a subtree of T .

The width of a tree decomposition (\{ Xi | i \in V (T )\} , T ) equals maxi\in V (T )\{ | Xi|  - 1\} .
The treewidth of a graph G is the minimum width over all tree decompositions of G.

Cliquewidth. Let G be a graph, and let k be a positive integer. A k-graph is a
graph whose vertices are labeled by integers from \{ 1,2, . . . , k\} . We call the k-graph
consisting of exactly one vertex labeled by some integer from \{ 1,2, . . . , k\} an initial
k-graph. The cliquewidth is the smallest integer k such that G can be constructed by
means of repeated application of the following four operations on k-graphs:

\bullet introduce: construction of an initial k-graph labeled by i and denoted by i(v)
(that is, i(v) is a k-graph with a single vertex);

\bullet disjoint union (denoted by \oplus );
\bullet relabel: changing all labels i to j (denoted by \rho i\rightarrow j); and
\bullet join: connecting all vertices labeled by i with all vertices labeled by j by

edges (denoted by \eta i,j).
Using the symbols of these operation, we can construct well-formed expressions.

An expression is called k-expression for G if the graph produced by performing these
operations, in the order defined by the expression, is isomorphic to G when labels are
removed, and the cliquewidth of G is the minimum k such that there is a k-expression
for G.
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