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Abstract. In 1959, Erd\H os and Gallai proved that every graph G with average vertex degree
\sansa \sansd (G) \geq 2 contains a cycle of length at least \sansa \sansd (G). We provide an algorithm that for k \geq 0, in
time 2\scrO (k) \cdot n\scrO (1) decides whether a 2-connected n-vertex graph G contains a cycle of length at
least \sansa \sansd (G) + k. This resolves an open problem explicitly mentioned in several papers. The main
ingredients of our algorithm are new graph-theoretical results interesting on their own.

Key words. longest path, longest cycle, fixed-parameter tractability, above guarantee
parameterization, average degree, dense graph, Erd\H os and Gallai theorem
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1. Introduction. The circumference of a graph is the length of its longest
(simple) cycle. In 1959, Erd\H os and Gallai [5] gave the following, now classical, lower
bound for the circumference of an undirected graph.

Theorem 1.1 (Erd\H os and Gallai [5]). Every graph with n vertices and more than
1
2 (n - 1)\ell edges (\ell \geq 2) contains a cycle of length at least \ell + 1.

We provide an algorithmic extension of the Erd\H os--Gallai theorem: A fixed-
parameter tractable (FPT) algorithm with parameter k, that decides whether the
circumference of a graph is at least \ell + k. To state our result formally, we need a
few definitions. For an undirected graph G with n vertices and m edges, we define
\ell EG(G) = 2m

n - 1 . Then by the Erd\H os--Gallai theorem, G always has a cycle of length at
least \ell EG(G) if \ell EG(G)> 2. The parameter \ell EG(G) is closely related to the average
degree of G, \sansa \sansd (G) = 2m

n . It is easy to see that for every graph G with at least two
vertices, \ell EG(G) - 1\leq \sansa \sansd (G)< \ell EG(G).

The maximum average degree \sansm \sansa \sansd (G) is the maximum value of \sansa \sansd (H) taken over
all induced subgraphs H of G. Note that \sansa \sansd (G)\leq \sansm \sansa \sansd (G) and \sansm \sansa \sansd (G) - \sansa \sansd (G) may
be arbitrarily large. By Goldberg [14] (see also [12]), \sansm \sansa \sansd (G) can be computed in
polynomial time. By Theorem 1.1, we have that if \sansa \sansd (G) \geq 2, then G has a cycle of
length at least \sansa \sansd (G) and, furthermore, if \sansm \sansa \sansd (G)\geq 2, then there is a cycle of length
at least \sansm \sansa \sansd (G). Based on this guarantee, we define the following problem.
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Longest Cycle Above MAD

Input: A graph G on n vertices and an integer k\geq 0.
Task: Decide whether G contains a cycle of length at least \sansm \sansa \sansd (G) + k.

Our main result is that this problem is FPT parameterized by k. More precisely,
we show the following.

Theorem 1.2. Longest Cycle Above MAD can be solved in time 2\scrO (k) \cdot n\scrO (1)

on 2-connected graphs.

While Theorem 1.2 concerns the decision variant of the problem, its proof may be
easily adapted to produce a desired cycle if it exists. We underline this because the
standard construction of a long cycle, which for every e \in E(G) invokes the decision
algorithm on G - e, does not work in our case, as edge deletions decrease the average
degree of a graph.

Theorem 1.2 has several corollaries. The following question was explicitly stated
in the literature [7, 10]. For a 2-connected graph G and a nonnegative integer k,
how difficult is it to decide whether G has a cycle of length at least \sansa \sansd (G) + k?
According to [10], it was not known whether the problem parameterized by k is FPT,
W[1]-hard, or Para-NP. Even the simplest variant of the question, whether a path
of length \sansa \sansd (G) + 1 can be computed in polynomial time, was open. Theorem 1.2
resolves this question because \sansm \sansa \sansd (G) \geq \sansa \sansd (G) for every graph G. Then in the case
\sansa \sansd (G) + k \leq \sansm \sansa \sansd (G), deciding whether G has a cycle of length at least \sansa \sansd (G) + k is
trivial. Otherwise, we set k\prime = (\sansa \sansd (G) + k) - \sansm \sansa \sansd (G)\leq k and call the algorithm from
Theorem 1.2 for the instance (G,k\prime ) of Longest Cycle Above MAD.

Corollary 1.3. For a 2-connected graph G and a nonnegative integer k, decid-
ing whether G has a cycle of length at least \sansa \sansd (G)+k can be done in time 2\scrO (k) \cdot n\scrO (1).

Similarly, we have the following corollary.

Corollary 1.4. For a 2-connected graph G and a nonnegative integer k, de-
ciding whether G has a cycle of length at least \ell EG(G) + k can be done in time
2\scrO (k) \cdot n\scrO (1).

An undirected graph G is d-degenerate if every subgraph of G has a vertex of
degree at most d, and the degeneracy of G is defined to be the minimum value of d
for which G is d-degenerate. Since a graph of degeneracy d has a subgraph H with at
least d \cdot | V (H)| /2 edges, we have that d\leq \sansa \sansd (H)\leq \sansm \sansa \sansd (G). Therefore, Theorem 1.2
implies the following corollary, which is the main result of [7].

Corollary 1.5 (see [7]). For a 2-connected graph G of degeneracy d, deciding
whether G has a cycle of length at least d+ k can be done in time 2\scrO (k) \cdot n\scrO (1).

Theorem 1.1 provides the same lower bound on the number of vertices in a longest
path. We consider the Longest Path Above MAD problem that, given a graph G
and integer k, asks whether G has a path with at least \sansm \sansa \sansd (G)+ k vertices. Observe
that a graph G has a path with \ell vertices if and only if the graph G\prime , obtained by
adding to G a universal vertex that is adjacent to every vertex of the original graph,
has a cycle with \ell + 1 vertices. Because it can be seen that \sansm \sansa \sansd (G) \leq \sansm \sansa \sansd (G\prime ) \leq 
\sansm \sansa \sansd (G) + 2, Theorem 1.2 yields the following.

Corollary 1.6. Longest Path Above MAD can be solved in time 2\scrO (k)\cdot n\scrO (1)

on connected graphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2723

We complement Theorem 1.2 by observing that the 2-connectivity condition is
crucial for tractability due to the fact that the considered properties are not closed
under taking biconnected components. In particular, it may happen that every long
cycle of a graph is in a biconnected component of a small average degree. This
observation yields the following theorem.

Theorem 1.7. It is NP-complete to decide whether an n-vertex connected graph
G has a cycle of length at least \ell EG(G) + 1 (\sansm \sansa \sansd (G) + 2, respectively).

The single-exponential dependence in k of the algorithm in Theorem 1.2 is asymp-
totically optimal: It is unlikely that Longest Cycle Above MAD can be solved
in 2o(k) \cdot n\scrO (1) time. This immediately follows from the well-known result (see, e.g.,
[3, Chapter 14]) that the existence of an algorithm for Hamiltonian Cycle with
running time 2o(n) would refute the Exponential Time Hypothesis (ETH) of Impagli-
azzo, Paturi, and Zane [15]. Thus Longest Cycle Above MAD cannot be solved
in 2o(k) \cdot n\scrO (1) time, unless ETH fails.

Comparison with the previous work. Two of the recent articles on the circumfer-
ence of a graph above guarantee are most relevant to our work. The first is the paper
of Fomin et al. [7] who gave an algorithm that in time 2\scrO (k) \cdot n\scrO (1) for a 2-connected
graph G of degeneracy d, decides whether G has a cycle of length at least d+ k. In
the heart of their algorithm is the following ``rerouting"" argument: If a cycle hits a
sufficiently ``dense"" subgraph H of G, then this cycle can be rerouted inside H to
cover all vertices of H. The main obstacle on the way of generalizing the result of
Fomin et al. [7] ``beyond"" the average degree was the lack of rerouting arguments in
graphs of large average degree.

The rerouting arguments in the proof of Theorem 1.2 use the structural properties
of dense graphs developed in the recent work of Fomin et al. [10] (see [9] for the full
version) on the parameterized complexity of finding a cycle above Dirac's bound. We
remind the reader that by the classical theorem of Dirac [4], every 2-connected graph
has a cycle of length at least min\{ 2\delta (G), | V (G)| \} , where \delta (G) is the minimum degree
of G. Fomin et al. gave an algorithm that in time 2\scrO (k+| B| ) \cdot n\scrO (1) decides whether a 2-
connected graph G contains a cycle of length at least min\{ 2\delta (G - B), | V (G)|  - | B| \} +k,
where B is a given subset of vertices which may have ``small"" degrees. The result of
Fomin et al. [9, 10] is ``orthogonal"" to ours in the following sense: It does not imply
Theorem 1.2 and Theorem 1.2 does not imply the theorem from [9]. However, the
tools developed in [9], in particular, the new type of graph decompositions called
Dirac decompositions, appear to be useful in our case too.

From a more general perspective, our work belongs to a popular subfield of pa-
rameterized complexity concerning parameterization above/below specified guaran-
tees. In addition to [10, 7], the parameterized complexity of paths and cycles above
some guarantees was studied in [2, 16] and [8].

2. Overview of the proof of the main result. Here we outline the critical
technical ideas leading to our main result, Theorem 1.2. We first explain our tech-
niques for the Longest Cycle Above AD problem. Let us remind the reader that
in this problem, the task is to decide whether a graph G has a cycle of length at least
\sansa \sansd (G) + k. (The difference with \sansm \sansa \sansd is that we do not take the maximum over all
subgraphs.)

The nucleus of our proof is a novel structural analysis of dense subgraphs in
graphs with large average degrees. Informally, we prove that if there is a cycle of
length at least \sansa \sansd (G) + k in G, then G contains a dense subgraph H and a long (of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2724 F. FOMIN, P. GOLOVACH, D. SAGUNOV, AND K. SIMONOV

H

Fig. 1. A cycle revolving around H. The segments of the cycle outside H are shown in green
and the segments inside H are in blue. Note: color appears only in the online article.

length at least \sansa \sansd (G)+ k) cycle C that ``revolves"" around H (see Figure 1). By that,
we mean the following. First, the number of times cycle C enters and leaves H is
bounded by \scrO (k). Second, C contains at least \sansa \sansd (G)  - ck vertices of H for some
constant c. Moreover, we need a way stronger ``routing"" property of H. Basically
for any possible ``points of entry and departure"" of cycle C in H, we show that these
pairs of vertices could be connected in H by internally vertex-disjoint paths of total
length at least \sansa \sansd (G)  - ck. Furthermore, such paths could be found in polynomial
time. Then everything boils down to the following problem. For a given subgraph H
of G, we are looking for at most k internally vertex-disjoint paths outside H of total
length \Omega (k), where each path starts and ends in H. This task can be done in time
2\scrO (k) \cdot n\scrO (1) by making use of color coding. Finally, if we find such paths, then we
could complete them to a cycle of length at least \sansa \sansd (G) + k by augmenting them by
the paths inside H.

Identifying dense subgraph H. Notice that we can assume that \sansa \sansd (G)\geq \alpha k for a
sufficiently big positive constant \alpha . Otherwise, we can solve the problem in 2\scrO (k) \cdot 
n\scrO (1) time using the known algorithm for Longest Cycle [11]. We start with
preprocessing rules allowing us to get rid of ``useless"" parts of the graph. If there
is a vertex v of degree less than 1

2\sansa \sansd (G), then the removal of v does not decrease
the average degree. Notice that the graph obtained by the iterative removal of low
degree vertices may become disconnected. Then it suffices to keep only the densest of
the connected components, as its average degree is at least the average degree of G.
Similarly, if the graph is connected but has a cut-vertex, keeping the densest block
also suffices. By applying these reduction rules exhaustively, we find an induced
2-connected subgraph H of G whose minimum degree \delta (H) \geq 1

2\sansa \sansd (H) \geq 1
2\sansa \sansd (G).

Similarly to removing sparse blocks, if H contains a vertex separator X of size two
such that there is a ``sparse"" component A of H  - X, then A can be removed. By
applying the last reduction rule we either find a cycle of length at least \sansa \sansd (G) + k or
can conclude that the resulting subgraph H is 3-connected.

If (G,k) is a yes-instance, that is, graph G contains a cycle of length at least
\sansa \sansd (G)+k, there are two possibilities. Either in G a cycle of length at least 2\delta (H)+k
``lives"" entirely in H, or it passes through some other vertices of G. If a long cycle is
entirely in H, we can employ the recent result of Fomin et al. [9] that finds in time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2725

2\scrO (k) \cdot n\scrO (1) in a 2-connected graph G a cycle of length at least 2\delta (G)+k\geq \sansa \sansd (G)+k.
However, if no long cycle lives entirely inH, the result of Fomin et al. is not applicable.

The next step of constructing H crucially benefits from the graph-theoretical
result of Fomin et al. [9]. Specifically, we use the theorem about the Dirac decom-
position from [9]. The definition of the Dirac decomposition is technical and we give
it in section 4. For 2-connected graphs, the Dirac decomposition imposes a very in-
tricate structure. However, since, thanks to the reduction rules, H is 3-connected,
we bypass most of the technical details from [9]. Informally, the Dirac decomposition
leads to the following win-win situation. By Dirac's theorem [4], graph H contains
a cycle S of length at least 2\delta (H) \geq \sansa \sansd (G). Moreover, we could find such a cycle in
polynomial time. By the result of Fomin et al. [9], if the length of S is less than
2\delta (H) + k, then either S can be enlarged in polynomial time, or (a) H is small, that
is, | V (H)| < \sansa \sansd (H) + k, yielding that H is extremely dense; or (b) H has a vertex
cover of size 1

2\sansa \sansd (H) - \scrO (k). If S got enlarged, we iterate until we achieve cases (a)
or (b). If we are in case (a), the construction of H is completed. In case (b), we
need to prune the obtained graph a bit more. More specifically, we can delete \scrO (k)
vertices in the vertex cover and select a subset of the independent set to achieve the
property that (i) each of the remaining vertices in the vertex cover is adjacent to at
least \sansa \sansd (H) - \scrO (k) vertices in the selected independent subset, and (ii) every vertex of
the selected subset of the independent set sees nearly all vertices of the vertex cover.
This means that the obtained induced subgraph is also dense, albeit in a different
sense. Depending on the case, we use different arguments to establish the routing
properties of H.

Routing in H. The case (a), when | V (H)| < \sansa \sansd (H) + k, is easier. In this case,
the degrees of almost all vertices are close to | V (H)| . Let S = \{ x1y1, . . . , x\ell y\ell \} be
an arbitrary set of \scrO (k) pairs of distinct vertices of H forming a linear forest (that
is, the union of xiyi is a union of disjoint paths). The intuition behind S is that xi

corresponds to the vertex from where the long cycle leaves H and yi when it enters H
again. We show first how to construct a cycle in H + S (that is, the graph obtained
from H by turning the pairs of S into edges) containing every pair xiyi from S as
an edge. This is done by performing constant-length jumps: Any two vertices can be
connected either by an edge, or through a common neighbor, or through a sequence of
two neighbors. Then we extend the obtained cycle to a Hamiltonian cycle in H+S---
every vertex of H that is not yet on a cycle can be inserted due to the high degrees
of the vertices. The extension of S into a Hamiltonian cycle is shown in Figure 2(a).

A

H H

a) b) c)

Fig. 2. Constructing cycles. The set of pairs S that may be both edges and nonedges of H is
shown by red lines and the extension of S into a long cycle is blue. The paths revolving around H
are green. The vertex cover in (c) is denoted by A. Note: color appears only in the online article.
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Therefore, if there is a collection of at most k internally vertex disjoint paths going
outside from H and returning back, the high density of H allows collecting all of them
in a cycle containing all the vertices of H. Together with all the additional vertices
these paths visit outside of H, we construct a long cycle in G (see Figure 2(b)). The
only condition is that these paths have to form a linear forest. Thus, if we find a
collection of such paths with enough internal vertices, we immediately obtain a long
cycle revolving around H. The crucial part of the proof is to show that if there is any
cycle of length at least \sansa \sansd (H) + k in G, then it can be assumed to have this form.

Let us remark that a similar rerouting property was used by Fomin et al. [7] in
their above-degeneracy study. Actually, for case (a), we need only a minor adjustment
of the arguments from [7]. However, in the ``bipartite dense"" case (b), the structure
of the dense subgraph H is more elaborate and this case requires a new approach.
Contrary to case (a), the long cycle that we construct in H+S is not Hamiltonian but
visits all the vertices of the vertex cover (see Figure 2(c)). In this case, the behavior
of paths depends on which part of H they hit. Because of that, while establishing
the routing properties, we have to take into account the difference between paths
connecting vertices from the vertex cover, independent set, and both. Pushing the
rerouting intuition through, in this case, turns out to be quite challenging.

Final steps. After finalizing the rerouting arguments above, it only remains to
design an algorithm that checks whether there exists a collection of paths in G that
start and end in H and have at least a certain number of internal vertices in total. We
do it with a color-coding-style approach. For case (a), such a subroutine has already
been developed in the above-degeneracy case [7]. On the other hand, for the bipartite
dense case (b) we need to impose an additional restriction on the desired paths, as the
length of the final cycle also depends on how the paths' end-vertices are distributed
between the two parts and we have to incorporate these kinds of constraints in our
path-finding subroutine.

Finally, to solve Longest Cycle Above MAD, we use the fact that given a
graph G, we can find an induced subgraph F with \sansa \sansd (F ) = \sansm \sansa \sansd (G) in polynomial
time by the result of Goldberg [14] (see also [12]). Then we find a dense subgraph
H of F with the described properties and use H to find a cycle of length at least
\sansm \sansa \sansd (G) + k.

3. Preliminaries. In this section, we introduce basic notations, and a series of
previously known results that will be helpful to us.

We consider only finite undirected graphs. For a graph G, V (G) and E(G) denote
its vertex and edge sets, respectively. Throughout the paper, we use n= | V (G)| and
m= | E(G)| whenever the considered graph G is clear from the context. For a graph
G and a subset X \subseteq V (G) of vertices, we write G[X] to denote the subgraph of G
induced by X. We write G - X to denote the graph G[V (G)\setminus X]; for a single-element
set X = \{ x\} , we write G  - x. Similarly, if Y is a set of pairs of distinct vertices,
G  - Y = (V (G),E(G) \setminus Y ). For a set Y of pairs of distinct vertices of G, G + Y
denotes the graph (V (G),E(G)\cup Y ), that is, the graph obtained by adding the edges
in Y \setminus E(G); slightly abusing notation we may denote the pairs of such a set Y in the
same way as edges. For a vertex v, we denote by NG(v) the (open) neighborhood of
v, i.e., the set of vertices that are adjacent to v in G. A set of vertices X is a vertex
cover of G if for every edge xy of G, x\in X or y \in X.

A path P in G is a subgraph of G with V (P ) = \{ v0, . . . , v\ell \} and E(P ) = \{ vi - 1vi | 
1 \leq i \leq \ell \} . We write v0v1 \cdot \cdot \cdot v\ell to denote P ; the vertices v0 and v\ell are end-vertices
of P , the vertices v2, . . . , v\ell are internal, and \ell is the length of P . For a path P

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2727

with end-vertices s and t, we say that P is an (s, t)-path. Two paths P1 and P2 are
internally disjoint if no internal vertex of one of the paths is a vertex of the other;
note that end-vertices may be the same. For two internally disjoint paths P1 and P2

having one common end-vertex, we write P1P2 to denote the concatenation of P1 and
P2. A graph F is a linear forest if every connected component of F is a path. Let S
be a set of pairs of distinct vertices of G; they may be either edges or nonedges. We
say that S is potentially cyclable if (V (G), S) is a linear forest. A cycle is a graph C
with V (C) = \{ v1, . . . , v\ell \} for \ell \geq 3 and E(C) = \{ vi - 1vi | 1 \leq i \leq \ell \} , where v0 = v\ell .
We may write that C = v1 \cdot \cdot \cdot v\ell . A cycle C (a path P , respectively) is Hamiltonian
if V (C) = V (G) (V (P ) = V (G), respectively). A graph G is Hamiltonian if it has a
Hamiltonian cycle.

A set of vertices S is a separator of a connected graph G if G - S is disconnected.
For a positive integer k, G is k-connected if | V (G)| >k and for every set S of at most
k - 1 vertices, G - S is connected. If S = \{ v\} is a separator of size one, then v is called
a cut-vertex. Note, in particular, that a connected graph with at least three vertices
is 2-connected if it has no cut-vertex. A block of a connected graph with at least two
vertices is an inclusion-wise maximal induced subgraph without cut-vertices, that is,
either a 2-connected graph or K2.

The degree of a vertex v in a graph G is \sansd G(v) = | NG(v)| . The minimum degree
of G is \delta (G) = min\{ \sansd G(v) | v \in V (G)\} . For a nonempty set of vertices X, the
average degree of X is \sansa \sansd G(X) = 1

| X| 
\sum 

v\in X \sansd G(v), and the average degree of G is

\sansa \sansd (G) = \sansa \sansd G(V (G)) = 2m
n . The maximum average degree is \sansm \sansa \sansd (G) = max\{ \sansa \sansd (H) | 

H is induced subgraph of G\} .
The following observation about the circumference lower bound \ell EG(G) and the

average degree of G is useful for us.

Observation 1. For every graph G with at least two vertices \ell EG(G) - 1\leq \sansa \sansd (G)<
\ell EG(G).

Goldberg [14] proved that, given a graph G, an induced subgraph H of maximum

density, that is, a subgraph with the maximum value | E(H)| 
| V (H)| , can be found in poly-

nomial time. This result was improved by Gallo, Grigoriadis, and Tarjan [12]. Note
that if H is an induced subgraph of maximum density, then \sansm \sansa \sansd (G) = \sansa \sansd (H).

Proposition 3.1 (see [12]). An induced subgraph of the maximum density of a
given graph G can be found in \scrO (nm log(n2/m)) time.

We recall Dirac's theorem and point out that there are algorithmic proofs that
construct actual cycles of length at least min\{ 2\delta (G), n\} in polynomial time (see, e.g.,
[17]).

Proposition 3.2 (Dirac [4, Theorem 4]). Every 2-connected graph G with \delta (G)
\geq 2 contains a cycle of length at least min\{ 2\delta (G), n\} and, furthermore, such a cycle
can be found in polynomial time.

We use the lower bound on the length of a longest (s, t)-path in a 2-connected
graph via the average degree obtained by Fan [6].

Proposition 3.3 (see [6, Theorem 1]). Let s and t be two distinct vertices in a
2-connected graph G. Then G has an (s, t)-path of length at least \sansa \sansd G(V (G) \setminus \{ s, t\} ).

Notice that the proof of Proposition 3.3 in [6] is constructive and a required path
can be found in polynomial time.
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It is wellknown that Longest Cycle, which asks whether a graph has a cycle of
length at least k, can be solved in 2\scrO (k) \cdot n\scrO (1) time. The currently best deterministic
algorithm is due to Fomin et al. [11].

Proposition 3.4 (see [11]). Longest Cycle can be solved in 4.884k \cdot n\scrO (1)

time.

The task of Longest (s, t)-Path is, given a graph G with two terminal vertices
s and t, and a positive integer k, decide whether G has an (s, t)-path with at least k
vertices. Fomin et al. [11] proved that this problem is FPT when parameterized by k.

Proposition 3.5 (see [11]). Longest (s, t)-Path can be solved in 2\scrO (k) \cdot n\scrO (1)

time.

4. Finding a dense subgraph. Here we show that given an instance of Long-
est Cycle Above MAD, we can in polynomial time either solve the problem or
find a dense induced subgraph of the input graph. This part crucially depends on
structural and algorithmic results obtained by Fomin et al. in [9]. To describe these
results, we have to define the notion of the Dirac decomposition introduced in [9]
(see Definition 5) even if the only property that we need is that a 3-connected graph
does not admit such a decomposition. A leaf-block of a connected graph having a
cut-vertex is a block containing exactly one cut-vertex of the original graph. A vertex
of a leaf-block is inner if it is distinct from the cut-vertex in this block. The definition
in [9] uses a set B of vertices of small degrees that could be removed from the graph.
For our purposes, we adapt the special case of the Dirac decomposition corresponding
to [9, Definition 5] with B = \emptyset .

Definition 4.1 (Dirac decomposition [9]). Let G be a 2-connected graph and let
C be a cycle in G of length at least 2\delta (G). Two disjoint paths P1 and P2 in G induce
a Dirac decomposition for C in G if the following hold.

(i) The cycle C is of the form C = P1P
\prime P2P

\prime \prime , where each of the paths P \prime and
P \prime \prime has at least \delta (G) - 2 edges.

(ii) For every connected component H of G  - V (P1 \cup P2), one of the following
holds:
-- H is 2-connected and the maximum size of a matching in G between V (H)

and V (P1) is one, and between V (H) and V (P2) is also one;
-- H is not 2-connected and has at least three vertices (i.e., has a cut-

vertex), exactly one vertex of P1 has neighbors in H, that is, | NG(V (H))\cap 
V (P1)| = 1, and no inner vertex from a leaf-block of H has a neighbor in
P2;

-- H is not 2-connected and has at least three vertices (i.e., has a cut-vertex),
| NG(V (H))\cap V (P2)| = 1, and no inner vertex from a leaf-block of H has
a neighbor in P1.

(iii) There is exactly one connected component H in G - V (P1\cup P2) with V (H) =
V (P \prime ) \setminus \{ s\prime , t\prime \} , where s\prime and t\prime are the end-vertices of P \prime . Analogously, there
is exactly one connected component H in G - V (P1\cup P2) with V (H) = V (P \prime \prime )\setminus 
\{ s\prime \prime , t\prime \prime \} , where s\prime \prime and t\prime \prime are the end-vertices of P \prime \prime .

Fomin et al. [9, Lemma 20] proved the following algorithmic result.1

Proposition 4.2 (see [9, Lemma 20]). Let G be a 2-connected graph with \delta (G)<
n
2 and let k be an integer such that 0< k\leq 1

24\delta (G). Then there is an algorithm that,

1We give a simplified variant of [9, Lemma 20] for B = \emptyset .
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given a non-Hamiltonian cycle C of length less than 2\delta (G) + k, in polynomial time
finds either

\bullet a longer cycle in G, or
\bullet a vertex cover of G of size at most \delta (G) + 2k, or
\bullet two paths P1, P2 that induce a Dirac decomposition for C in G.

We use the corollary of Proposition 4.2 for 3-connected graphs.

Corollary 4.3. Let G be a 3-connected graph and k be an integer such that
0< k \leq 1

24\delta (G). Then there is an algorithm that, given a cycle C of length less than
2\delta (G) + k, in polynomial time either

\bullet returns a longer cycle in G, or
\bullet returns a vertex cover of G of size at most \delta (G) + 2k, or
\bullet reports that C is Hamiltonian.

Proof. To see the claim, observe that by condition (ii) of the definition of a
Dirac decomposition, any 2-connected graph G admitting such a decomposition has a
separator of size 2 and, therefore, is not 3-connected. Indeed, following the notation
from the definition, let H be a connected component of G - V (P1 \cup P2). Note that
| V (H)| \geq 3. If H is 2-connected, then the maximum size of a matching in G between
V (H) and V (P1) is one, and between V (H) and V (P2) is also one. Then one can
choose an end-vertex of each edge of the matching between V (H) and V (P1)\cup V (P2) in
such a way that these two vertices separate a vertex ofH and a vertex of V (P1)\cup V (P2).
Suppose that H is not 2-connected and exactly one vertex u of P1 has neighbors in
H and no inner vertex from a leaf-block of H has a neighbor in P2. Then because
G is 2-connected, u has a neighbor v in a leaf-block L of H distinct from the unique
cut-vertex w of L. Thus, u and w form a separator of size 2 in G. The last case from
(ii) is symmetric.

By the condition of Corollary 4.3, G is 3-connected. Thus, G has no separator of
size 2. By the above claim, we obtain that G does not admit a Dirac decomposition
for C.

Observe that it can be easily verified whether C is a Hamiltonian cycle. If this
holds, we report that C is Hamiltonian and stop. Suppose that this is not the case
and | V (C)| < n. If \delta (G)\geq n

2 then by Proposition 3.2, G has a Hamiltonian cycle C \prime 

which can be constructed in polynomial time. In this case, our algorithm returns C \prime 

and stops. From now on, we assume that \delta (G)< n
2 . Then we can apply the algorithm

from Proposition 4.2. Because G has no Dirac decomposition for C, the algorithm
either finds a longer cycle or returns a vertex cover of G of size at most \delta (G) + 2k
which we return and stop. This completes the proof.

We use Corollary 4.3 to show the following crucial lemma that allows us to either
find a solution cycle or obtain a dense induced subgraph H forming the ``core"" of a
potential solution. Such a graph H either has a bounded size and is very dense or is
a dense graph with a vertex cover of bounded size.

Lemma 4.4. There is a polynomial-time algorithm that, given an instance (G,k)
of Longest Cycle Above MAD, where 0<k\leq 1

80\sansm \sansa \sansd (G) - 1, either
(i) finds a cycle of length at least \sansm \sansa \sansd (G) + k in G, or
(ii) finds an induced subgraph H of G with \sansa \sansd (H)\geq \sansm \sansa \sansd (G) - 1 such that \delta (H)\geq 

1
2\sansa \sansd (H) and | V (H)| < \sansa \sansd (H) + k+ 1, or

(iii) finds an induced subgraph H of G such that there is a partition \{ A,B\} of
V (H) with the following properties:
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-- B is an independent set;
-- 1

2\sansm \sansa \sansd (G) - 4k\leq | A| ;
-- for every v \in A, | NH(v)\cap B| \geq 2| A| ;
-- for every v \in B, \sansd H(v)\geq | A|  - 2k - 2.

Proof. Let G be a graph and let k \leq 1
80\sansm \sansa \sansd (G) - 1 be a positive integer. First,

we apply Proposition 3.1 and find a densest induced subgraph H of G. Then we
apply a series of reduction rules to H. It is slightly more convenient for us to use
\ell EG(H) as a measure of density. Note that \ell EG(H)> \sansa \sansd (H) =\sansm \sansa \sansd (G)\geq \ell EG(H) - 1
by Observation 1. Our reduction rules delete some vertices of H without decreasing
\ell EG(H). However, it may happen that the average degree gets smaller, but since we
do not decrease \ell EG(H), the total decrease of the average degree is at most one.

The first three rules follow the classical proof of Theorem 1.1.

Reduction Rule 4.1. If H is disconnected, then find a connected component F
of H with the maximum value of \ell EG(F ) and set H := F .

The following rule is the reason why we switched from the average degree to the
Erd\H os--Gallai bound.

Reduction Rule 4.2. If H is connected but not 2-connected, then find a block
F of H with the maximum value of \ell EG(F ) and set H := F .

Reduction Rule 4.3. If H has a vertex v with \sansd H(v) \leq 1
2\ell EG(H), then set

H :=H  - v.

The next rule is more complicated.

Reduction Rule 4.4. If H is 2-connected and has a separator S of size two
such that there is a component F of G - S with \sansa \sansd H(V (F ))\leq 2

3\ell EG(H), then delete
the vertices of F .

The Rules 4.1--4.4 are applied exhaustively whenever one of them is applicable.
In the next claim, we show that this does not decrease the density of the graph.

Claim 4.1. Let H \prime be the graph obtained by the exhaustive application of Rules 4.1--
4.4 to H. Then \ell EG(H

\prime )\geq \ell EG(H) and \sansa \sansd (H \prime )\geq \ell EG(H
\prime ) - 1\geq \sansm \sansa \sansd (G) - 1.

Proof of Claim 4.1. It is sufficient to show the claim for H \prime obtained by applying
either of the rules once. Let d= \ell EG(H), and we use n and m to denote the number
of vertices and edges, respectively, in H. For Rules 4.1--4.3, the proof follows the
classical proof of Theorem 1.1; we provide the arguments here for completeness.

To see the claim for Rule 4.1, assume that H is a disjoint union of F1 and F2.
Denote by ni andmi the number of vertices and edges, respectively, in Fi for i\in \{ 1,2\} .
We claim that \ell EG(F1) \geq d or \ell EG(F2) \geq d. To obtain a contradiction, assume that
\ell EG(F1)< d and \ell EG(F2)< d. Then 2m1 < d(n1  - 1) and 2m2 < d(n2  - 1). We have
that 2m = 2m1 + 2m2 < d(n1 + n2  - 1) - d \leq d(n - 1) contradicting 2m

n - 1 = d. This
shows that Rule 4.1 is safe.

The safety of Rule 4.2 is proved similarly. Suppose that H is connected and let
v be a cut-vertex of H. Let \{ X,Y \} be a separation of H corresponding to v, that
is, X \cup Y = V (H), X \cap Y = \{ v\} , and no vertex of X \setminus Y is adjacent to a vertex
of Y \setminus X. Let F1 = H[X] and F2 = H[Y ]. As above, we use ni and mi to denote
the number of vertices and edges, respectively, in Fi for i \in \{ 1,2\} . We clam that
\ell EG(F1)\geq d or \ell EG(F2)\geq d. The proof is by contradiction. Assume that \ell EG(F1)<d
and \ell EG(F2) < d. Then 2m1 < d(n1  - 1) and 2m2 < d(n2  - 1). We have that
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2m = 2m1 + 2m2 < d(n1 + n2  - 2) = d(n - 1). However, this means that 2m
n - 1 < d; a

contradiction. This proves the claim for Rule 4.2.
For Rule 4.3, let v \in V (H) be a vertex with \sansd H(v)\leq 1

2\ell EG(H) and let H \prime =H - v.
Then

\ell EG(H
\prime ) =

2m - 2\sansd H(v)

n - 2
\geq 2m - d

n - 2
=

2m - 2m/(n - 1)

n - 2
=

2m

n - 1
= d,

as required.
Finally, we deal with Rule 4.4. Suppose that H is 2-connected and H has a

separator S of size two such that there is a component F of G - S with \sansa \sansd H(V (F ))\leq 
2
3\ell EG(H). Let n1 and m1 be the number of vertices and edges in F , respectively. We
have that H \prime =H  - V (F ). Denote by n2 and m2 the number of vertices and edges,
respectively, in H \prime . We have to prove that \ell EG(H

\prime )\geq d. Assume that this is not the
case and \ell EG(H

\prime ) < d. Then 2m2 < d(n2  - 1). Since each vertex of S is adjacent to
at most n1 vertices of V (F ) in G and \sansa \sansd H(V (F ))\leq 2

3d, we have that for the number
of edges m\prime 

1 of H[V (F )\cup S] - E(H[S]),

2m\prime 
1 \leq 

2

3
dn1 + 2n1 = dn1 + 2n1  - 

1

3
dn1

and, since m=m\prime 
1 +m2,

\ell EG(H) =
2m

n - 1
<

dn1 + 2n1  - dn1/3 + d(n2  - 1)

n1 + n2  - 1
= d - n1

d/3 - 2

n1 + n2  - 1
.(4.1)

As d\geq \sansm \sansa \sansd (G)> 6, we obtain that 1
3d - 2> 0 and by (4.1), \ell EG(H)<d; a contradic-

tion. Therefore, \ell EG(H
\prime )\geq d as required. This proves that \ell EG(H

\prime )\geq \ell EG(H).
For the second part of the claim, recall that \sansa \sansd (H) = \sansm \sansa \sansd (H). Then by Obser-

vation 1 and because \ell EG(H
\prime ) \geq \ell EG(H), \sansa \sansd (H \prime ) \geq \ell EG(H

\prime )  - 1 \geq \ell EG(H)  - 1 \geq 
\sansa \sansd (H) - 1\geq \sansm \sansa \sansd (G) - 1. This concludes the proof.

For simplicity, from now on we use the same notation H for the graph obtained
by the exhaustive application of Rules 4.1--4.4.

Because Rules 4.1 and 4.2 are not applicable, we have that H is 2-connected. Sup-
pose that H has a separator S = \{ x, y\} of size two. Let F1 and F2 be two connected
components of H  - S. Because of Rule 4.4, \sansa \sansd H(V (Fi)) >

2
3\ell EG(H) for i \in \{ 1,2\} .

Let F \prime 
i = H[V (Fi) \cup S] for i \in \{ 1,2\} . By Proposition 3.3, F \prime 

1 has an (x, y)-path P1

of length at least 2
3\ell EG(H). In the same way, F \prime 

2 has an (x, y)-path P2 of length at
least 2

3\ell EG(H). Concatenating these paths we obtain the cycle C whose length is al
least 4

3\ell EG(H) \geq 4
3\sansm \sansa \sansd (G). Because 0 < k \leq 1

80\sansm \sansa \sansd (G)  - 1, C is a cycle of length
at least \sansm \sansa \sansd (G) + k. Then our algorithm returns C and stops as is required in (i).

Assume from now on that H has no separator of size two. Because | V (H)| \geq 
\sansa \sansd (H) + 1 \geq \ell EG(H) \geq 3, H is 3-connected. Because Rule 4.3 is not applicable,
\delta (H)> 1

2\ell EG(H). Let k\prime = \lceil \sansm \sansa \sansd (G)\rceil +k - 2\delta (H)\leq k+1. Observe that H has a cycle
of length at least \sansm \sansa \sansd (G)+k if and only if H has a cycle of length at least 2\delta (H)+k\prime .

Notice that by our definition of k\prime , it may happen that k\prime \leq 0. In this case, G
has a cycle C of length at least min\{ | V (H)| ,2\delta (H)\} by Proposition 3.2 and C can be
constructed in polynomial time. If the length of C is at least 2\delta (H)+k\prime =\sansm \sansa \sansd (G)+k
then our algorithm returns C and stops. Assume that the length of C is less than
2\delta (H) + k\prime \leq 2\delta (H). Then the length of C is | V (H)| , that is, C is a Hamiltonian
cycle of H. Since \sansm \sansa \sansd (G)+k= 2\delta (H)+k\prime and \sansa \sansd (H)\geq \sansm \sansa \sansd (G) - 1 by Claim 4.1, we
have that | V (H)| = | V (C)| < 2\delta (H) + k\prime =\sansm \sansa \sansd (G) + k \leq \sansa \sansd (H) + k + 1. Recall that
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\delta (H) > 1
2\ell EG(H) and \ell EG(H) > \sansa \sansd (H) by Observation 1. Then \delta (H) > 1

2\ell EG(H) >
1
2\sansa \sansd (H). Taking into account that \sansa \sansd (H) \geq \sansm \sansa \sansd (G)  - 1 by Claim 4.1, we conclude
that H satisfies condition (ii) of the lemma. Then we return H and stop.

From now on we assume that k\prime > 0. Recall that H is 3-connected and k\prime \leq k+1\leq 
1
80\sansm \sansa \sansd (G)\leq 1

24\delta (H). This allows us to apply Corollary 4.3. We find an arbitrary cycle
in H and apply the algorithm from Corollary 4.3 for H and k\prime iteratively while the
algorithm produces a longer cycle. Let C be the cycle of maximum length produced
by the algorithm.

If the length of C is at least 2\delta (H)+k\prime , then the length of C is at least \sansm \sansa \sansd (G)+k
and we solved the problem. In this case, we return C and stop. Assume that the
length of C does not exceed 2\delta (H) + k\prime  - 1. Suppose that the algorithm constructed
a Hamiltonian cycle. This means that | V (H)| \leq 2\delta (H) + k\prime  - 1 < \ell EG(H) + k \leq 
\sansa \sansd (H)+k+1. Since \sansa \sansd (H)\geq \sansm \sansa \sansd (G) - 1 and \delta (H)> 1

2\ell EG(H)> 1
2\sansa \sansd (H), H satisfies

(ii). Then we return H and stop. It remains to consider the last case when the
algorithm from Corollary 4.3 returns a vertex cover X of H with | X| \leq \delta (H) + 2k\prime .

Because k\prime > 0, we have that \sansm \sansa \sansd (G) + k  - 2\delta (H) > 0 and, therefore, \delta (H) <
1
2 (\sansa \sansd (H)+ k+1). Hence, | X| \leq 1

2 (\sansa \sansd (H)+3k+3). Consider B = V (H) \setminus X. Because
X is a vertex cover of H, B is an independent set. Let p= | X| and q= | B| . We show
some properties of p and q.

First, we show that p\geq 1
2\sansa \sansd (H), that is, | X| \geq 1

2\sansa \sansd (H). We have that | E(H)| \leq \bigl( 
p
2

\bigr) 
+ qp and

\sansa \sansd (H)\leq 
2
\bigl( 
p
2

\bigr) 
+ 2pq

p+ q
=

2p2 + 2pq - p2  - p

p+ q
= 2p - p2 + p

p+ q
\leq 2p.

Next, we show that q > 12p, i.e., | B| > 12| X| . We have that

\sansa \sansd (H)\leq 
2
\bigl( 
p
2

\bigr) 
+ 2pq

p+ q
=

p(p - 1) + 2pq

p+ q
<

2p2 + 2pq - p2

p+ q
= 2p - p2

p+ q

\leq \sansa \sansd (H) + 3k+ 3 - p2

p+ q
.

Thus, p2

p+q < 3k+3 and (3k+3)q > p2 - (3k+3)p. Then q\geq p( p
3k+3  - 1). Recall that

p\geq 1
2\sansa \sansd (H) and k+ 1\leq 1

80\sansm \sansa \sansd (G)\leq 1
80 (\sansa \sansd (H) + 1). Then p

3k+3 > 13 and q > 12p.
We use the last inequality q > 12p and claim that at most 4k  - 1 vertices of X

have less than 2p neighbors in B. For the sake of contradiction, assume that this is
not the case. Then | E(H)| \leq 

\bigl( 
p
2

\bigr) 
+ 4k \cdot 2p+ (p - 4k)q and

\sansa \sansd (H)\leq 
2
\bigl( 
p
2

\bigr) 
+ 16kp+ 2(p - 4k)q

p+ q
<

2p2 + 2pq - 8k(q - 2p)

p+ q
= 2p - 8k(q - 2p)

p+ q

\leq \sansa \sansd (H) + 3k+ 3 - 8k(q - 2p)

p+ q
\leq \sansa \sansd (H) + 6k - 8k(q - 2p)

p+ q
.

Therefore, 6k \geq 8k(q - 2p)
p+q and 11p \geq q. However, the last inequality contradicts that

q > 12p. This proves our claim.
We use this property and define A = \{ v \in X | | NH(v) \cap B| \geq 2p\} . Since | X \setminus 

A| \leq 4k  - 1 and | X| \geq 1
2\sansa \sansd (H) \geq 1

2\sansm \sansa \sansd (G)  - 1, | A| \geq 1
2\sansm \sansa \sansd (G)  - 4k. Consider

H \prime = H[A \cup B]. We have that \{ A,B\} is a partition of V (H \prime ) with the properties
that B is an independent set, 1

2\sansm \sansa \sansd (G) - 4k \leq | A| , | NH\prime (v) \cap B| \geq 2p \geq 2| A| for all
v \in A. Also, \sansd H\prime (v) \geq | A|  - 2k\prime \geq | A|  - 2k  - 2 for all v \in B since by construction
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2733

\delta (H) \geq | X|  - 2k\prime . These are exactly the properties that are required in (iii). Then
our algorithm returns H \prime .

To complete the proof of the lemma, we argue that our algorithm is polynomial.
For this, note that Rules 4.1--4.4 can be applied in polynomial time because all con-
nected components, blocks, and separators of size two can be listed in polynomial time.
Further, the algorithm from Corollary 4.3 is polynomial. Since constructing a cycle
length at least min\{ | V (H)| ,2\delta (H)\} in a 2-connected graph can be done in polynomial
time by Proposition 3.2, we conclude that the overall running time is polynomial.

5. Covering vertices of dense graphs. In this section, we prove that, given
a sufficiently dense graph G and a bounded-size set of pairs of distinct vertices S
forming a linear forest, we can find a long cycle in G+S containing all edges from S.
First, we consider the case where there is a small number of vertices in the graph
compared to the average degree. Then, we deal with the case where one part in a
bipartition of a dense bipartite graph has a bounded size.

Recall that for a set S of pairs of distinct vertices of a graph G, we say that S is
potentially cyclable if (V (G), S) is a linear forest.

Lemma 5.1. Let G be a graph and k be an integer such that (i) 0<k\leq 1
60\sansa \sansd (G),

(ii) \delta (G)\geq 1
2\sansa \sansd (G), and (iii) \sansa \sansd (G)+ k > n. Let also S be a potentially cyclable set of

at most k pairs of distinct vertices. Then G+ S has a Hamiltonian cycle containing
every edge of S.

Proof. Let G be a graph and let k be an integer satisfying (i)--(iii). Let d= \sansa \sansd (G).
Using the property that k is small compared to d, we upper bound the number of
vertices of degree at most 4

5d.

Claim 5.1. Less than 1
12n vertices of G have degree at most 4

5d.

Proof of Claim 5.1. Suppose that at least 1
12n vertices of G have degree at most

4
5d. Then

d\leq 1

n

\Bigl( 4

60
nd+

11

12
n(n - 1)

\Bigr) 
=

4

60
d+

11

12
(n - 1)\leq 4

60
d+

11

12
(d+ k) =

59

60
d+

11

12
k

and, therefore, d\leq 55k. However, by (i), 60k\leq d, a contradiction proving the claim.

Denote by X the set of vertices of G whose degrees are at most 4
5d. Let S be a

potentially cyclable set of at most k pairs of distinct vertices of G and let G\prime =G+S.
We show that G\prime has a cycle containing the edges of S and the vertices of X.

Claim 5.2. G\prime has a cycle C containing every edge of S and every vertex of X.

Proof of Claim 5.2. Let S = \{ x1y1, . . . , xryr\} . Note that some end-vertices of the
edges of S may be the same. However, because S forms a linear forest in G\prime , we can
assume without loss of generality that it may only happen that yi - 1 = xi for some
i\in \{ 2, . . . , r\} . We prove that G\prime has an (x1, yr)-path P of length at most 5r - 4.

The proof is by induction. We show that for every i\in \{ 1, . . . , r\} , G\prime has an (x1, yi)-
path Pi containing x1y1, . . . , xiyi and avoiding the end-vertices ofxi+1yi+1, . . . , xryr
distinct from yi, such that its length is at most 5i - 4.

The claim is trivial for i = 1 as we can set P1 = x1y1. Assume that i > 1
and Pi - 1 exists. Consider xiyi. If yi - 1 = xi, then we just add xiyi to the end
of Pi - 1, i.e., set Pi = Pi - 1xiyi. Suppose that yi - 1 \not = xi. If yi - 1xi \in E(G\prime ), we
set Pi = Pi - 1yi - 1xiyi. Similarly, if yi - 1 and xi have a common neighbor z /\in U =
\{ x1, . . . , xr\} \cup \{ y1, . . . , yr\} \cup V (Pi - 1), we define Pi = Pi - 1yi - 1zxiyi. Assume from now
on that these are not the case.
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2734 F. FOMIN, P. GOLOVACH, D. SAGUNOV, AND K. SIMONOV

Recall that \delta (G)\geq 1
2d and k\leq 1

60d. Let W =U \cup X. We have that

| W | \leq 5(i - 1) - 3 + 2(r - i+ 1) + | X| \leq 5k+ | X| 

and, using Claim 5.1, obtain that

| W | \leq 5k+
1

12
n\leq 5k+

1

12
(d+ k)<

1

2
d.

Because \sansd G\prime (yi - 1)\geq 1
2d and \sansd G\prime (xi)\geq 1

2d, we have that yi - 1 and xi have neighbors u
and v, respectively, such that u, v /\in W . If uv \in E(G\prime ), we define Pi = Pi - 1yi - 1uvxiyi.
Otherwise, observe that u, v /\in X and, therefore, \sansd G\prime (u) \geq 4

5d and \sansd G\prime (v) \geq 4
5d.

Because n < d + k, u and v have at least 3
5d  - k common neighbors. Since | U | \leq 

5(i - 1) - 3+ 2(r - i+1)\leq 5k and k\leq 1
60d, u and v have a common neighbor w /\in U .

Hence, we can set Pi = Pi - 1yi - 1uwvxiyi.
Observe that in all cases, we constructed Pi from Pi - 1 by appending to the end-

vertex yi - 1 a path of length at most 5. This means that the length of Pi is at most
5i - 4. This completes the inductive step and the proof of the existence of P with the
desired properties.

Now we apply similar arguments to show that P can be extended to include every
vertex of X. More precisely, we prove the following. Let X \setminus V (P ) =Z = \{ z1, . . . , zs\} 
and let z0 = yr. We show that there is an (x1, z)-path P \prime with z \in \{ z0, . . . , zs\} 
containing P as a subpath that includes every vertex of Z and has length at most
5r - 4 + 4s.

We prove by induction that for every i \in \{ 0, . . . , s\} , G\prime has an (x1, z)-path Pi

containing P as a subpath such that z \in \{ z0, . . . , zi\} \subseteq V (Pi) and the length of Pi is
at most 5r - 4 + 4i.

For i= 0, we set P0 = P and obtain that the claim holds. Let i\geq 1 and assume
that an (x1, z)-path Pi - 1 with the required properties exists. If zi \in V (Pi - 1), we take
Pi = Pi - 1. Assume that zi /\in V (Pi - 1). If zzi \in E(G\prime ), we set Pi = Pi - 1zzi. If z and
zi have a common neighbor v /\in V (Pi - 1), we define Pi = Pi - 1zvzi. Assume that these
are not the case.

Let W = V (Pi - 1)\cup X. Observe that

| W | \leq | V (P )| + 4| X| \leq 5k+ 4| X| \leq 5k+
4

12
n\leq 5k+

1

3
(d+ k)\leq 4

9
d,(5.1)

by Claim 5.1 and because k \leq 1
60d. As \sansd G\prime (z) \geq 1

2d and \sansd G\prime (zi) \geq 1
2d, there are

neighbors u and v of z and zi, respectively, such that u, v /\in W . If uv \in E(G\prime ), we let
Pi = Pi - 1zuvzi. If u and v are not adjacent, we use the property that \sansd G\prime (u) \geq 4

5d
and \sansd G\prime (v) \geq 4

5d, because u, v /\in X. Then u and v have at least 3
5d  - k common

neighbors. Note that | V (Pi - 1)| \leq | W | \leq 4
9d. Then u and v have at least 7

45d - k > 0
common neighbors that are not in V (Pi - 1). Let w be such a neighbor. Then we set
Pi = Pi - 1zuwvzi.

Since Pi is constructed from Pi - 1 by appending to z a path of length at most 4,
the length of Pi is at most 5i - 4. This completes the inductive step and we conclude
that P \prime exists.

Now we have that G\prime has an (x1, z)-path P \prime of total length at most 5r  - 4 + 4s
that contains every edge of S and every vertex of X. To complete the proof, we
show that we can connect the end-vertices of P \prime to form a cycle. This is trivial if
x1z \in E(G\prime ) or if x1 and z have a common neighbor v /\in V (P \prime ). Suppose that these
are not the case. Note that | V (P \prime )| \leq 5k + 4| X| and, by the same arguments as in
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2735

(5.1), | V (P \prime )| \leq 4
9d. This means that x1 and z have neighbors u and v, respectively,

such that u, v /\in V (P \prime ), because \sansd G\prime (x1) \geq 1
2d and \sansd G\prime (z) \geq 1

2d. If uv \in E(G\prime ), we
connect the end-vertices of P \prime by the path x1uvz. Otherwise, we again use the fact
that u, v /\in X and, therefore, \sansd G\prime (u) \geq 4

5d and \sansd G\prime (v) \geq 4
5d. In the same way as

above, u and v have at least 3
5d  - k common neighbors and at least one common

neighbor w /\in V (P \prime ). Then P \prime is completed to a cycle by adding the path x1uwvz.
This completes the proof.

By Claim 5.2, G\prime has a cycle C containing every edge of S and every vertex of X.
Suppose that C is a cycle of this type that has the maximum length. We prove that
C is Hamiltonian.

The proof is by contradiction. Assume that C is not Hamiltonian. We consider
two cases depending on the length of C.

Case 1. | V (C)| \leq 1
2d. Consider an arbitrary edge xy \in E(C) \setminus S. Note that such

an edge exists because S forms a linear forest. We show that we always can extend
C by replacing xy with a path. If x and y have a common neighbor z /\in V (C), then
we can replace xy by xzy. Otherwise, because \sansd G\prime (x) \geq 1

2d and \sansd G\prime (y) \geq 1
2d, x and

y have neighbors u and v, respectively, such that u, v /\in V (C). If uv \in E(G), then we
replace xy by xuvy and extend C. If uv /\in E(G\prime ), then we use the fact that X \subseteq V (C)
and, therefore, u, v /\in X. Then \sansd G\prime (u)\geq 4

5d and \sansd G\prime (v)\geq 4
5d. Because | V (G\prime )| <d+k,

u and v have at least 3
5d  - k common neighbors. Since | V (C)| \leq 1

2d and k \leq 1
60d,

there is a common neighbor w of u and v such that w /\in V (C). Then we replace xy
by xuwvy and again extend C. Note that the extended cycle contains the edges of
S and the vertices of X. However, this contradicts the choice of C as a maximum
length cycle with this property.

Case 2. | V (C)| > 1
2d. Since C is not Hamiltonian, there is a vertex v /\in V (C). We

show that there is an edge xy \in E(C) \setminus S such that both x and y are adjacent to v.
Suppose that this is not the case and for every xy \in E(C) \setminus S, v is not adjacent to at
least one end-vertex. Consider R = E(C) \setminus S. Since 1 \leq | S| \leq k and S \subseteq E(C), the
edges of R form a linear forest with at least 1

2d - k edges. Each vertex in V (C) covers at
most two edges in R. Then our assumption that v is not adjacent to at least one end-
vertex of every edge of R implies that v is not adjacent to at least 1

2

\bigl( 
1
2d - k

\bigr) 
> 1

4d - k
vertices of C. Because X \subseteq V (C), v /\in X and \sansd G\prime (v) \geq 4

5d. As | V (G\prime )| < d + k, v
can have at most 1

5d + k nonneighbors. However, 1
4d  - k > 1

5d + k, as k \leq 1
60d, a

contradiction. This proves the existence of xy \in E(C) \setminus S such that both x and y are
adjacent to v. But then we can extend C by replacing xy by xvy contradicting the
choice of C. This concludes the case analysis and the proof of the lemma.

Let us remark that the proof is, in fact, constructive and can be turned into a
polynomial-time procedure that first constructs a cycle C containing every edge of S
and every vertex of X, and then extends C until we obtain a Hamiltonian cycle.

Now we consider dense bipartite graphs. Similarly to Lemma 5.1, we show that
for a given set of pairs of vertices forming a linear forest, there is a cycle containing
all these pairs in the extended graph, and also each vertex of the ``high degree"" part
of the graph. For an example, see Figure 3.

Lemma 5.2. Let G be a bipartite graph, \{ A,B\} is a bipartition of V (G) with
p = | A| , and let k be an integer such that (i) 0 < k \leq 1

10p, (ii) for every v \in A,
\sansd G(v)\geq 2p, and (iii) for every v \in B, \sansd G(v)\geq p - k. Let S be a potentially cyclable set
of at most 9

4k pairs of distinct vertices. Then G\prime =G+S has a cycle C containing every
edge of S and every vertex of A. Furthermore, C is a longest cycle in G\prime containing
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2736 F. FOMIN, P. GOLOVACH, D. SAGUNOV, AND K. SIMONOV

A

B

Fig. 3. Structure of G and G\prime =G+ S. The set of pairs S is shown by red lines and the edges
of C that are not in S are green. Note that G\prime is not required to be bipartite. Note: color appears
only in the online article.

the edges of S and the length of C is 2p - s+t, where s is the number of edges of S with
both end-vertices in A and t is the number of edges in S with both end-vertices in B.

Proof. The proof of the lemma follows the same strategy as the proof of Lemma 5.1.
Suppose that G, k, and S satisfy the conditions of the lemma. Let also G\prime =G+ S.
Denote by s the number of edges of S with both end-vertices in A, and let t be the
number of edges in S with both end-vertices in B.

Claim 5.3. G\prime has a cycle C containing every edge of S.

Proof of Claim 5.3. Let S = \{ x1y1, . . . , xryr\} . We can assume without loss of
generality that it may only happen that yi - 1 = xi for some values i \in \{ 2, . . . , r\} and
other end-vertices of the edges of S are distinct. We prove that G\prime has an (x1, yr)-path
P of length at most 5r - 4 containing every edge of S.

We show inductively that for every i \in \{ 1, . . . , r\} , G\prime has an (x1, yi)-path Pi

containing x1y1, . . . , xiyi and avoiding the end-vertices of xi+1yi+1, . . . , xryr distinct
from yi (it may happen that xi+1 = yi) whose length is at most 5i - 4.

If i= 1, then we set P1 = x1y1 and the claim holds. Assume that i > 1 and Pi - 1

exists. Consider xiyi. If yi - 1 = xi, then we just add xiyi to the end of Pi - 1, i.e., set
Pi = Pi - 1xiyi. Suppose that yi - 1 \not = xi. If yi - 1xi \in E(G\prime ), we set Pi = Pi - 1yi - 1xiyi.
Assume from now on that these are not the cases. Let U = V (Pi - 1) \cup \{ x1, . . . , xr\} \cup 
\{ y1, . . . , yr\} . Denote UA =U\cap A and UB =U\cap B. Observe that | UA| \leq \lceil 1

2 (5r - 4)+s\rceil \leq 
63
8 k < 8k. Symmetrically, | UB | < 8k. We consider the following four cases depending
on whether yi - 1 and xi belong to A or B.

Case 1. yi - 1, xi \in B. Becase \sansd G(yi - 1) \geq p  - k and \sansd G(xi) \geq p  - k, yi - 1 and
xi have at least p  - 2k common neighbors in A. Because | UA| < 8k and p \geq 10k,
we obtain that yi - 1 and xi have a common neighbor v /\in UA. Then we construct
Pi = Pi - 1yi - 1vxiyi.

Case 2. yi - 1 \in A and xi \in B. Because \sansd G(yi - 1) \geq 2p, | UB | < 8k, and p \geq 10k,
yi - 1 has a neighbor u \in B such that u /\in UB . Then applying for u and xi the same
arguments as in Case 1, we obtain that u and xi have a common neighbor v \in A such
that v /\in UA. Then we set Pi = Pi - 1yi - 1uvxiyi.

Case 3. yi - 1 \in B and xi \in A. This case is symmetric to Case 2. Using the
same arguments we obtain that xi has a neighbor v \in B \setminus UB , and yi - 1 and v have a
common neighbor u\in A \setminus UA. Then Pi = Pi - 1yi - 1uvxiyi.

Case 4. yi - 1, xi \in A. Because \sansd G(yi - 1)\geq 2p, \sansd G(xi)\geq 2p, | UB | < 8k, and p\geq 10k,
yi - 1 and xi have neighbors in B \setminus UB . If these vertices have a common neighbor v
of this type, then we set Pi = Pi - 1yi - 1vxiyi. Otherwise, let u and v be neighbors of
yi - 1 and xi, respectively, in B \setminus UB . Using the arguments from Case 1, we have that
u and v have a common neighbor w \in A \setminus UA. Then we define Pi = Pi - 1yi - 1uwvxiyi.
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2737

In all cases, Pi was constructed from Pi - 1 by extending it by a path of length at
most 5. This completes the inductive step and proves the existence of P .

To complete the proof, we show that the end-vertices of P can be connected by
a path Q to form a cycle. This is trivial if x1yr \in E(G\prime ). Otherwise, we construct
Q using the same arguments as in the above Cases 1--4. Let UA = V (P ) \cap A and
UB = V (P ). Because | V (P )| \leq 5r  - 3, we have that | UA| < 8k and | UB | < 8k. If
x1, yr \in B, we find a common neighbor v \in A \setminus UA in the same way as in Case 1 and
define Q= x1vyr. If x1 \in A and yr \in B, we find a neighbor u of x1 in B \setminus UB and then
a common neighbor v of u and yr in A \setminus UA following the arguments from Case 2.
Then Q= x1uvyr. Then case x1 \in B and yr \in A is symmetric. Finally, if x1, yr \in B,
we use the same arguments as in Case 4. We either find a common neighbor v \in B\setminus UB

of x1 and yr and define Q= x1vyr or we find two distinct neighbors u and v of x1 and
yr, respectively, where u, v \in B \setminus UB . In the last case, we find a common neighbor w
of u and v in A \setminus UA, and set Q= x1uwvyr. This completes the proof.

By Claim 5.3, G\prime has a cycle C containing every edge of S. Let C be a cycle in
G\prime containing the edges of S that has the maximum length. We show that C contains
every vertex of A.

The proof is by contradiction. Assume that A \setminus V (C) \not = \emptyset . Because | S| \leq 9
4k,

| V (C) \cap B| \leq p + 9
4k. Then because k \leq 1

10p and \sansd G(v) \geq 2p for every v \in A,
W =B \setminus V (C) \not = \emptyset and, moreover, every vertex v \in A has a neighbor u \in W . In fact,
every vertex v \in A has at least two distinct neighbors u \in W . We consider two cases
depending on the number of vertices of A outside C.

Case 1. | A\setminus V (C)| > 2k. Let xy \in E(C)\setminus S. We assume without loss of generality
that x \in A and y \in B. We show that C can be extended by replacing xy by a path.
We have that x has a neighbor u \in W . Because \sansd G(u) \geq p - k and \sansd G(y) \geq p - k, u
and y have at least p - 2k common neighbors in A. Since | A \setminus V (C)| > 2k, u and y
have a common neighbor v \in A\setminus V (C). This means that we can replace xy with xuvy
and extend C.

Case 2. | A \setminus V (C)| \leq 2k. Denote by R the set of pairs \{ x, y\} of distinct vertices
of V (C)\cap A such that C contains a segment xvy for some v \in B and xv, yv /\in S. Note
that because | A \cap V (C)| \geq p  - 2k, | R| \geq p  - 2k  - | S| \geq 23

4 k. Observe also that the
pairs of R form a linear forest. Then there is a subset R\prime \subseteq R of disjoint pairs with
| R\prime | \geq 1

2 | R| \geq 23
8 k > 2k.

Let u \in A \setminus V (C). Recall that u has two distinct neighbors v,w \in W . We claim
that there is a pair \{ x, y\} \in R\prime such that xv, yw \in E(G) or xw,yv \in E(G). Because
\sansd G(v)\geq p - k, by the pigeonhole principle, there are at most k pairs \{ x, y\} \in R\prime such
that xv /\in E(G) or yw /\in E(G). Thus, there is R\prime \prime \subseteq R\prime of size at least | R\prime |  - k > k
such that xv, yv \in E(G) for every \{ x, y\} \in R\prime \prime . Since \sansd G(w)\geq p - k, there are at most
1
2k pairs \{ x, y\} \in R\prime \prime such that xw,yw /\in E(G). As | R\prime \prime | > k, we conclude that there
is a pair \{ x, y\} \in R\prime \prime such that xw \in E(G) or yw \in E(G). Thus, xv, yw \in E(G) or
xw,yv \in E(G). Let xzy be the segment of C. If xv, yw \in E(G), we replace xzy by
xvuwy, and xzy is replaced by xwuvy if xw,yv \in E(G). In both cases, we extend C
contradicting its choice. This completes the proof of the first claim of the lemma.

To see that C is a longest cycle containing every edge of S, it is sufficient to recall
that A\subseteq V (C). Then C contains 2(p - s) edges xy with x\in A and y \in B. Hence, the
total number of edges is 2p - s+ t.

We remark that the proof of the lemma can be used to construct the required
cycle C in polynomial time.
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6. Rerouting long cycles to dense subgraphs. In this section, we show that
a dense induced subgraph can be used to find a long cycle in a 2-connected graph.
Specifically, we show that one can always assume that a long cycle is an extension
of a longest cycle in a dense subgraph. To state this more precisely, we need some
additional terminology that we introduce next.

Let T \subseteq V (G) for a graph G. A path P is called a T -segment if P is of length
at least two, the end-vertices of P lie in T , and v /\in T for any internal vertex v of
P . A set of internally disjoint paths \scrP = \{ P1, . . . , Pr\} is a system of T -segments if (i)
Pi is a T -segment for every i \in \{ 1, . . . , r\} , and (ii) the union of the paths in \scrP is a
linear forest. Let A,B \subseteq V (G) be disjoint sets of vertices in G. For a pair \{ x, y\} of
distinct vertices in G, we say that \{ x, y\} is an A-pair (B-pair, respectively) if x, y \in A
(x, y \in B, respectively), and we say that \{ x, y\} is an (A,B)-pair if either x\in A, y \in B
or, symmetrically, y \in A, x \in B. If \{ A,B\} is a partition of T \subseteq V (G), then for a
T -segment P with end-vertices x and y, P is an A-segment if \{ x, y\} is an A-pair,
P is a B-segment if \{ x, y\} is a B-pair, and P is an (A,B)-segment if \{ x, y\} is an
(A,B)-pair.

First, we consider the case when there is a dense subgraph H with the property
that for every potentially cyclable set S of at most k pairs of distinct vertices, H +S
has a Hamiltonian cycle containing every edge of S. We show the following lemma
whose proof is almost identical to the proof of Lemma 3 in [7]. Nevertheless, we
provide the proof here, as we are proving a slightly different statement, and the proof
is useful as a warmup before the proof of the next more technical lemma.

Lemma 6.1. Let G be a 2-connected graph and let k be a positive integer. Suppose
that H is an induced subgraph of G such that | V (H)| \geq 2k and for every potentially
cyclable set S of at most k pairs of distinct vertices of H, H + S has a Hamiltonian
cycle containing every edge of S. Then G has a cycle of length at least | V (H)| + k if
and only if one of the following holds:

(i) There are two distinct vertices s, t\in V (H) such that there is an (s, t)-path P
in G of length at least k+ 1 whose internal vertices lie in V (G) \setminus V (H).

(ii) There is a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) such that
r\leq k and the total number of vertices on the paths in \scrP outside T is at least
k and at most 2k - 2.

Proof. Let T = V (H). We start with the easier part, where we show that if either
(i) or (ii) is fulfilled, then G has a cycle of length at least | V (H)| + k.

Suppose that there are distinct s, t\in T and an (s, t)-path P in G with all internal
vertices outside T such that the length of P is at least k+ 1. Let S = \{ st\} . We have
that H + S has a Hamiltonian cycle C containing st. We replace the edge st in C
by the path P . Then the length of the obtained cycle C \prime is at least | V (H)| + k as
required.

Suppose thatG has a system of T -segments \scrP = \{ P1, . . . , Pr\} and the total number
of vertices on the paths outside T is at least k. Let si and ti be the end-vertices of
Pi for i \in \{ 1, . . . , r\} and define S = \{ s1t1, . . . , srtr\} . Observe that S is a potentially
cyclable set for H and | S| \leq k. Then H +S has a Hamiltonian cycle C that contains
every edge of S. We construct the cycle C \prime from C by replacing siti by the path Pi

for every i\in \{ 1, . . . , r\} . Because the total number of vertices in the paths of \scrP outside
T is at least k, the length of C \prime is at least | V (H)| + k.

To show the implication in the other direction, assume that G has a cycle C of
length at least | V (H)| + k. We consider the following three cases depending on the
structure of C.
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2739

Case 1. V (C) \cap T = \emptyset . Since G is a 2-connected graph, there are pairwise distinct
vertices s, t \in T and x, y \in V (C), and vertex-disjoint (s,x)- and (y, t)-paths P1 and
P2 such that the internal vertices of the paths are outside T \cup V (C). The length of
C is at least | V (H)| + k\geq 3k. Therefore, C contains an (x, y)-path P with at least k
vertices. The concatenation of P1, P , and P2 is an (s, t)-path in G of length at least
k+ 1 whose internal vertices are outside T . Hence, (i) holds.

Case 2. | V (C) \cap T | = 1. Let V (C) \cap T = \{ s\} for some vertex s. Since G is
2-connected, there is an (x, t)-path P in G  - s such that x \in V (C), t \in T , and the
internal vertices of P are outside T \cup V (C). Because the length of C is at least 3k, C
contains an (s,x)-path P \prime with at least k + 1 vertices. The concatenation of P \prime and
P is an (s, t)-path in G of length at least k+1 whose internal vertices are outside T .
Hence, (i) holds.

Case 3. | V (C)\cap T | \geq 2. Since k > 0 and | V (C)| \geq | V (H)| +k, V (C)\setminus T \not = \emptyset . Then
there are pairs of distinct vertices \{ s1, t1\} , . . . ,\{ s\ell , t\ell \} in T\cap V (C) and paths P1, . . . , P\ell 

on C such that (a) Pi is an (si, ti)-path for i \in \{ 1, . . . , \ell \} with at least one internal
vertex and the internal vertices of Pi are outside T , and (b)

\bigcup \ell 
i=1 V (Pi)\setminus T = V (C)\setminus T .

In words, P1, . . . , P\ell form the ``outside"" part of C with respect to T . Note that the
total number of internal vertices on these paths is at least k.

If there is i\in \{ 1, . . . , \ell \} such that Pi is of at least k+1, then (i) is fulfilled. Assume
that this is not the case and the length of each Pi is at most k. Let r \in \{ 1, . . . , \ell \} be the
minimum integer such that the total number of internal vertices in P1, . . . , Pr is at least
k. Because each path has at least one internal vertex, r\leq k. Let S = \{ s1t1, . . . , srtr\} .
By the definition of S, these pairs of vertices compose either a linear forest or a cycle.

Suppose that the pairs in S form a cycle. This means that C is the concatenation
of P1, . . . , Pr. Therefore, every edge of C is outside of H, and we have that r = \ell .
Observe that r \geq 2 in this case. By the choice of r, the total number of internal
vertices in P1, . . . , Pr - 1 is at most k  - 1. We also have that Pr has at most k  - 1
internal vertices. Because r \leq k, | V (C)| \leq 3k  - 2. However, this is a contradiction
with | V (C)| \geq | V (H)| + k \geq 3k. Therefore, S forms a linear forest. This means that
\scrP = \{ P1, . . . , Pr\} is a system of T -segments for T = V (H) and it holds that r\leq k, and
the total number of vertices on the paths in \scrP outside T is at least k. To show that
(ii) is fulfilled, it remains to prove that the total number of internal vertices on the
paths in \scrP is at most 2k - 2. For this, recall that by the choice of r, the total number
of internal vertices on P1, . . . , Pr - 1 is at most k  - 1. Since the number of internal
vertices on Pr is at most k - 1, the total number of the internal vertices on all paths
is at most 2k - 2 as required. This completes the proof.

Now we show a related result for dense induced subgraphs of another type. See
Figure 4 for an illustration.

Lemma 6.2. Let G be a 2-connected graph and let k be a positive integer. Suppose
that H is an induced subgraph of G whose set of vertices has a partition \{ A,B\} with
| A| \geq 3

2k and B being an independent set. Suppose also that for every potentially
cyclable set S in H of at most k pairs of distinct vertices in H, with s A-pairs and
t B-pairs, H + S has a cycle of length at least 2| A|  - s+ t. Then G has a cycle of
length at least 2| A| + k if and only if one of the following holds:

(i) There are two distinct vertices x, y \in V (H) such that H has an (x, y)-path P
of length at least k+ 2 whose internal vertices lie in V (G) \setminus V (H).

(ii) There is a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) with s
A-segments and t B-segments such that
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A

B

Fig. 4. Structure of segments in Case (ii) of Lemma 6.2. The A-segments are shown by green
lines, the B-segments are red, and the (A,B)-segments are blue. Note: color appears only in the
online article.

(a) r\leq k,
(b) every A-segment has at least two internal vertices,
(c) the total number of internal vertices on the paths in \scrP is at least k+s - t

and at most 3k - 2.

Proof. The proof follows the same lines as the proof of Lemma 6.1 but is more
technical. Let T = V (H). First, we show that if either (i) or (ii) is fulfilled, then G has
a cycle of length at least 2| A| + k. This part is almost identical to the corresponding
part of the proof of Lemma 6.1.

Suppose that there are distinct x, y \in T and an (x, y)-path P in G with all internal
vertices outside T such that the length of P is at least k+2. Let S = \{ xy\} . We have
that H + S has a cycle C containing xy of length at least 2| A|  - 1. We replace the
edge xy in C by the path P . Then the length of the obtained cycle C \prime is at least
2| A| + k as required.

Assume that there is a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) with
s A-segments and t B-segments such that (a)--(c) are fulfilled. Let xi and yi be the
end-vertices of Pi for i \in \{ 1, . . . , r\} and define S = \{ x1y1, . . . , xryr\} . Observe that S
is a potentially cyclable set for H and | S| \leq k. Then H + S has a cycle C of length
at least 2| A|  - s+ t that contains every edge of S. We construct the cycle C \prime from C
by replacing xiyi by the path Pi for every i\in \{ 1, . . . , r\} . Because the total number of
internal vertices in the paths of \scrP is at least k+s - t, the length of C \prime is at least 2| A| +k.

For the opposite direction, assume that G has a cycle C of length at least 2| A| +k.
We consider the following three cases. The arguments in the first two cases repeat
the arguments in the proof of Lemma 6.1.

Case 1. V (C) \cap T = \emptyset . Since G is a 2-connected graph, there are pairwise distinct
vertices x, y \in T and x\prime , y\prime \in V (C), and vertex disjoint (x,x\prime )- and (y, y\prime )-paths P1

and P2 such that the internal vertices of the paths are outside T \cup V (C). The length
of the cycle C is at least 2| A| + k\geq 3k. Therefore, C contains an (x\prime , y\prime )-path P with
at least k + 1 vertices. The concatenation of P1, P , and P2 is an (x, y)-path in G of
length at least k+ 2 whose internal vertices are outside T . Hence, (i) is fulfilled.

Case 2. | V (C) \cap T | = 1. Let V (C) \cap T = \{ x\} for some vertex x. Since G is
2-connected, there is an (y, y\prime )-path P in G  - x such that y\prime \in V (C), y \in T , and
the internal vertices are outside T \cup V (C). Because the length of C is at least 3k, C
contains an (x, y\prime )-path P \prime with at least k+ 2 vertices. The concatenation of P \prime and
P is an (x, y)-path in G of length at least k+2 whose internal vertices are outside T .
Hence, (i) holds.
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Case 3. | V (C) \cap T | \geq 2. Observe that because B is an independent set, H has
no cycle of length greater than 2| A| . Therefore, as k > 0 and | V (C)| \geq 2| A| + k,
V (C) \setminus T \not = \emptyset . Let P1, . . . , P\ell be the outside segments of C with respect to H, that is,
P1, . . . , P\ell are paths on C such that (\ast ) for every i \in \{ 1, . . . , \ell \} , Pi is an (xi, yi)-path
with at least one internal vertex for some distinct xi, yi \in T and the internal vertices
of Pi are outside T , and (\ast \ast )

\bigcup \ell 
i=1 V (Pi) \setminus T = V (C) \setminus T . If Pi is of length at least

k + 2 for some i \in \{ 1, . . . , \ell \} , then (i) holds. Assume that this is not the case, that
is, the length of each Pi is at most k + 1. Let IA, IB , IAB \subseteq \{ 1, . . . , \ell \} be the subsets
of indices such that Pi is an A-segment for i \in IA, a B-segment for i \in IB , and an
(A,B)-segment for i\in IAB ; note that some of these sets may be empty.

First, we consider IB . Suppose that the paths Pi for i\in IB have at least k - | IB | 
internal vertices. Consider an inclusion minimal subset of indices J \subseteq IB such that
the paths Pi for i\in J have at least k - | J | internal vertices and let S = \{ xiyi | i\in J\} .
Because S is a potentially cyclable set, the pairs of S compose either a linear forest
or a cycle. Suppose that the pairs in S form a cycle. Then every edge of C is outside
H, and we have that C is the concatenation of the paths Pi \in J . Note that | J | \geq 2
in this case. Let j \in J . By the choice of J , the total number of internal vertices on
the paths Pi for i\in J \setminus \{ j\} is at most k - | J |  - 1. Because the length of Pj is at most
k+1, we have that | V (C)| \leq (k - | J |  - 1)+ | J | +k= 2k - 1< 2| A| +k, a contradiction.
Therefore, S forms a linear forest. We obtain that \scrP = \{ Pi | i \in J\} is a system of T
segments and | \scrP | \leq k. To see that the total number of internal vertices on the paths
in \scrP is at most 2k, let j \in J . Because the total number of internal vertices on the
paths Pi for i \in J \setminus \{ j\} is at most k  - | J |  - 1 and the length of Pj is at most k + 1,
the number of internal vertices on the paths in \scrP is at most (k - | J |  - 1)+k\leq 3k - 2.
We conclude that (ii) is fulfilled.

Assume from now on that the paths Pi for i\in IB have at most k - | IB |  - 1 internal
vertices. Then we analyze IAB in a similar way. Let t= | IB | . Suppose that the paths
Pi for i\in IAB \cup IB have at least k - t internal vertices. Consider an inclusion minimal
subset of indices J \subseteq IAB such that the paths Pi for i \in J \cup IB have at least k  - t
internal vertices and let S = \{ xiyi | i \in J \cup IB\} . Notice that | S| \leq k. Again, we have
that the pairs of S compose either a linear forest or a cycle. Then we exclude the
possibility that S forms a cycle. If we have a cycle, then C is the concatenation of the
paths Pi \in J \cup IB . Pick an arbitrary j \in J . We have that the total number of internal
vertices on the paths Pi for i\in (J \setminus \{ j\} )\cup IB is at most k - t - 1. Because the length
of Pj is at most k + 1, | V (C)| \leq (k  - t - 1) + (| J | + t) + k = 2k + | J |  - 1 < 2| A| + k
and we get a contradiction. Hence, S forms a linear forest and \scrP = \{ Pi | i \in J \cup IB\} 
is a system of T segments and | \scrP | \leq k. To upper bound the total number of internal
vertices on the paths in \scrP , let j \in J . Because the total number of internal vertices on
the paths Pi for i\in (J \setminus \{ j\} )\cup IB is at most k - t - 1 and the length of Pj is at most
k+1, the number of internal vertices on the paths in \scrP is at most 2k - t - 1\leq 3k - 2.
We obtain that (ii) holds.

It remains to consider the case where the paths Pi for i \in IAB \cup IB have at
most k  - t - 1 internal vertices. For this, we analyze IA. Let I \prime A \subseteq IA be the set of
indices i \in IA such that Pi has at least two internal vertices. Let r be the number of
internal vertices on the paths Pi with i \in I \prime A \cup IB \cup IAB . Observe that because B is
an independent set, | V (C)| \leq r + t+ 2| A|  - | I \prime A| . Hence, r + t - | I \prime A| \geq k. We select
an inclusion minimal set of indices J \subseteq I \prime A such that the paths Pi for i\in J \cup IB \cup IAB

have at least k  - t+ | J | internal vertices and let S = \{ xiyi | i \in J \cup IB \cup IAB\} . Let
also s = | J | . Observe that because Pi has at least two internal vertices for every
i \in I \prime A, | S| \leq k. In the same way as above, the pairs of S compose either a linear
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forest or a cycle, and we show that it should be a linear forest. If the pairs of S
form a cycle, then C is the concatenation of the paths Pi \in J \cup IA \cup IAB . Let j \in J .
By the minimality of J , the total number of internal vertices on the paths Pi for
i \in (J \setminus \{ j\} ) \cup IB \cup IAB is at most k + (s - 1) - t - 1. Because the length of Pj is at
most k+ 1, | V (C)| \leq (k+ (s - 1) - t - 1) + (s+ t+ | IAB | ) + k = 2k+ | IAB | + 2s - 2.
Observe that t+ s+ | IAB | \leq k, because if t+ s+ | IAB | \geq k + 1, the total number of
the internal vertices on the paths Pi for i \in (J \setminus \{ j\} ) \cup IB \cup IAB would be at least
k + s. Therefore, | V (C)| \leq 2k + | IAB | + 2s - 2 \leq 4k  - 2 < 2| A| + k, a contradiction.
We obtain that S forms a linear forest and \scrP = \{ Pi | i \in J \cup IB \cup IAB\} is a system
of T segments, and | \scrP | \leq k. To get the upper bound for the total number of internal
vertices on the paths in \scrP , let j \in J . Because the total number of internal vertices
on the paths Pi for i \in (J \setminus \{ j\} ) \cup IB is at most k + (s  - 1)  - t  - 1 and the length
of Pj is at most k + 1, the number of internal vertices on the paths in \scrP is at most
2k+ s - t - 2\leq 3k - 2. We conclude that (ii) is fulfilled. This concludes the analysis
of Case 3 and the proof of the lemma.

Fomin et al. [7] proved the following algorithmic result about systems of T -
segments.

Proposition 6.3 (see [7, Lemma 4]). Let G be a graph, T \subseteq V (G), and let p
and r be positive integers. Then it can be decided in 2\scrO (p) \cdot n\scrO (1) time whether there
is a system of T -segments \scrP with r paths having p internal vertices in total.

However, we need an algorithm for constructing a system of T -segments with
additional properties described in Lemma 6.2. For this, we modify the algorithm
from Proposition 6.3 (see [7, Lemma 4]). For simplicity, we show how to solve the
decision problem but the algorithm can be easily modified to produce a required
system of T -segments.

Lemma 6.4. Let G be a graph, T \subseteq V (G), and let \{ A,B\} be a partition of T . Let
also p and r be positive integers and suppose that s and t are nonnegative integers
with s+t\leq r. Then it can be decided in 2\scrO (p) \cdot n\scrO (1) time whether there is a system of
T -segments \scrP with r paths having p internal vertices in total such that (i) \scrP contains
s A-segments, (ii) t B-segments, and (iii) every A-segment has at least two internal
vertices.

Proof. As Lemma 4 in [7], our algorithm is based on the color coding technique
introduced by Alon, Yuster, and Zwick in [1] (see also [3, Chapter 5] for the intro-
duction to the technique). Following [7], we first describe a randomized Monte Carlo
algorithm and then explain how it could be derandomized.

We say that a system of T -segments is feasible if it satisfies the conditions of the
lemma. Notice that if \scrP = \{ P1, . . . , Pr\} is a feasible system of T -segments, then for
the total number of vertices in the paths, we have that | \cup r

i=1V (Pi)| \leq p+2r. If r > p,
then a feasible system of T -segments does not exist, because each path in a solution
should have at least one internal vertex. Hence, we assume without loss of generality
that r \leq p. Let q = p+ 2r \leq 3p. We color the vertices of G with q colors uniformly
at random. Denote by c : V (G)\rightarrow \{ 1, . . . , q\} the constructed coloring. We say that a
feasible system of T -segments \scrP = \{ P1, . . . , Pr\} is colorful if the vertices of

\bigcup r
i=1 V (Pi)

are colored by distinct colors. We show the following claim.

Claim 6.1. The existence of a colorful feasible system of T -segments \scrP can be
verified in 2\scrO (p) \cdot n\scrO (1) time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

29
.1

77
.1

46
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2743

Proof of Claim 6.1. We design a dynamic programming algorithm that decides
whether there is a colorful feasible system of T -segments.

The algorithm works in two stages. In the first stage, for every two distinct
vertices x, y \in T and every set of colors X \subseteq \{ 1, . . . , q\} of size at least three, we
compute the Boolean function \alpha (x, y,X) such that \alpha (x, y,X) = \sanst \sansr \sansu \sanse if and only if there
is a T -segment P whose end-vertices are x and y, V (P ) \cap T = \{ x, y\} , | V (P )| = | X| ,
and the vertices of P are colored by distinct colors from X. Computing \alpha (x, y,X) is
standard (see [3, Chapter 5]), because we just find an (x, y)-path in G - (T \setminus \{ x, y\} )
whose vertices are colored by the colors from X, and the table of values of the function
can be computed in 2\scrO (p) \cdot n\scrO (1) time.

To simplify further computations, we define

\alpha \ast (x, y,X) =

\left\{     
\sansf \sansa \sansl \sanss \sanse if x, y \in A and | X| = 3,

\sansf \sansa \sansl \sanss \sanse if | X| \leq 2,

\alpha (x, y,X) otherwise.

In the second stage, for every x \in T , all integers p\prime , r\prime , s\prime , and t\prime such that
r\prime \leq p\prime \leq p, 1 \leq r\prime \leq r, 0 \leq s\prime \leq s, 0 \leq t\prime \leq t, and s\prime + t\prime \leq r\prime , and every set of
colors X \subseteq \{ 1, . . . , q\} with 3 \leq | X| \leq p\prime + 2r\prime , the algorithm computes the value of
the Boolean function \beta (x,p\prime , r\prime , s\prime , t\prime ,X), where \beta (x,p\prime , r\prime , s\prime , t\prime ,X) = \sanst \sansr \sansu \sanse if and only
if there is a system of T -segments \scrP \prime = \{ P \prime 

1, . . . , P
\prime 
r\prime \} with r\prime paths having p\prime internal

vertices in total such that
(i) \scrP \prime contains s\prime A-segments and t\prime B-segments'
(ii) every A-segment has at least two internal vertices;

(iii) for U =
\bigcup r\prime 

i=1 V (P \prime 
i ), | U | = | X| and the vertices of U are colored by distinct

colors from X by the coloring c;
(iv) x is an end-vertex of exactly one path of \scrP \prime .

We are interested in the values of \beta (x,p\prime , r\prime , s\prime , t\prime ,X) for r\prime \leq p\prime \leq p, 1 \leq r\prime \leq r,
0 \leq s\prime \leq s, 0 \leq t\prime \leq t, and s\prime + t\prime \leq r\prime , and 3 \leq | X| \leq p\prime + 2r\prime , but to simplify
computations, we extend the domain and assume that \beta (x,p\prime , r\prime , s\prime , t\prime ,X) = \sansf \sansa \sansl \sanss \sanse if one
of these constraints is broken. Observe that a colorful feasible system of T segments
exists if and only if \beta (x,p, r, s, t,X) = \sanst \sansr \sansu \sanse for some x\in T and X \subseteq \{ 1, . . . , q\} .

We consecutively compute the tables of values of \beta (x,p\prime , r\prime , s\prime , t\prime ,X) for r\prime =
1,2, . . . , r starting with r\prime = 1. For this, we use the computed tables of values of
\alpha (x, y,X).

For r\prime = 1, by the definition of \beta (x,p\prime , r\prime , s\prime , t\prime ,X), we have that

\beta (x,p\prime , r\prime , s\prime , t\prime ,X) =

\left\{               

\bigvee 
y\in A\setminus \{ x\} \alpha 

\ast (x, y,X) if x\in A, s\prime = 1, t\prime = 0, p\prime = | X|  - 2,\bigvee 
y\in B \alpha \ast (x, y,X) if x\in A, s\prime = 0, t\prime = 0, p\prime = | X|  - 2,\bigvee 
y\in B\setminus \{ x\} \alpha 

\ast (x, y,X) if x\in B, s\prime = 0, t\prime = 1, p\prime = | X|  - 2,\bigvee 
y\in A\alpha \ast (x, y,X) if x\in B, s\prime = 0, t\prime = 0, p\prime = | X|  - 2,

\sansf \sansa \sansl \sanss \sanse otherwise;

(6.1)

here and further we assume that
\bigvee 

z\in Z \varphi (z) = \sansf \sansa \sansl \sanss \sanse for any Boolean function \varphi (z) if
Z = \emptyset .

For r\prime \geq 2, we use the following recurrences. If x\in A, we have
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2744 F. FOMIN, P. GOLOVACH, D. SAGUNOV, AND K. SIMONOV

\beta (x,p\prime , r\prime , s\prime , t\prime ,X)

=
\bigvee 

y\in A\setminus \{ x\} 
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime  - 1, t\prime , (X \setminus Y )\cup \{ c(y)\} )

\bigr) 
\vee 

\bigvee 
y\in B
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime , (X \setminus Y )\cup \{ c(y)\} )

\bigr) 
(6.2)

\vee 
\bigvee 

y\in A\setminus \{ x\} 
z\in T\setminus \{ x,y\} 

Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (z, p\prime  - | Y | + 2, r\prime  - 1, s\prime  - 1, t\prime ,X \setminus Y )

\bigr) 

\vee 
\bigvee 
y\in B

z\in T\setminus \{ x,y\} 
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (z, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime ,X \setminus Y )

\bigr) 
.

Symmetrically, if x\in B,

\beta (x,p\prime , r\prime , s\prime , t\prime ,X)

=
\bigvee 

y\in B\setminus \{ x\} ,
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime  - 1, (X \setminus Y )\cup \{ c(y)\} )

\bigr) 
\vee 

\bigvee 
y\in A
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime , (X \setminus Y )\cup \{ c(y)\} )

\bigr) 
(6.3)

\vee 
\bigvee 

y\in B\setminus \{ x\} 
z\in T\setminus \{ x,y\} 

Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (z, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime  - 1,X \setminus Y )

\bigr) 

\vee 
\bigvee 
y\in A

z\in T\setminus \{ x,y\} 
Y\subset X

\bigl( 
\alpha \ast (x, y,Y )\wedge \beta (z, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime ,X \setminus Y )

\bigr) 
.

Correctness of (6.2) and (6.3) is proved by standard arguments. Hence, we only
sketch the correctness proof for (6.2) (the proof for (6.3) is done by the same argu-
ments).

Suppose that x \in A and \beta (x,p\prime , r\prime , s\prime , t\prime ,X) = \sanst \sansr \sansu \sanse . By the definition, there is a
system of T -segments \scrP \prime = \{ P \prime 

1, . . . , P
\prime 
r\prime \} with r\prime paths having p\prime internal vertices in

total that satisfies conditions (i)--(iv). We assume without loss of generality that x is
an end-vertex of P \prime 

1. Let y be the other end-vertex of P \prime 
1. Let also Y = c - 1(V (P \prime 

1))
and \scrP \prime \prime = \{ P \prime 

2, . . . , P
\prime 
r\prime \} . Then \alpha \ast (x, y,Y ) = \sanst \sansr \sansu \sanse . We have four cases depending on

whether y \in A or y \in B and on whether y is a shared end-vertex or not. Suppose that
y \in A and y is an end-vertex of another path, say, P2. Then \beta (y, p\prime  - | Y | + 2, r\prime  - 
1, s\prime  - 1, t\prime , (X \setminus Y ) \cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse . Therefore, the value of the right part of (6.2) is
\sanst \sansr \sansu \sanse . The other cases are similar. If y \in B and y is an end-vertex of another path,
then \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime , t\prime , (X \setminus Y ) \cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse . If y \in A and y is not an
end-vertex of P \prime 

2, . . . , P
\prime 
r, then \beta (z, p\prime  - | Y | +2, r\prime  - 1, s\prime  - 1, t\prime ,X \setminus Y ) = \sanst \sansr \sansu \sanse . If y \in B

and y not an end-vertex of P \prime 
2, . . . , P

\prime 
r, then \beta (z, p\prime  - | Y | +2, r\prime  - 1, s\prime , t\prime ,X \setminus Y ) = \sanst \sansr \sansu \sanse .

In all these cases, the value of the right part of (6.2) is \sanst \sansr \sansu \sanse .
For the opposite direction, assume that the value of the right part of (6.2) is \sanst \sansr \sansu \sanse .

Then either there is y \in A \setminus \{ x\} and Y \subset X such that \alpha \ast (x, y,Y ) \wedge \beta (y, p\prime  - | Y | +
2, r\prime  - 1, s\prime  - 1, t\prime , (X \setminus Y ) \cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse , or there is y \in B and Y \subset X such that
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2745

\alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | +2, r\prime  - 1, s\prime , t\prime , (X\setminus Y )\cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse , or there are y \in A\setminus \{ x\} ,
z \in T \setminus \{ x, y\} , and Y \subset X such that \alpha \ast (x, y,Y )\wedge \beta (z, p\prime  - | Y | +2, r\prime  - 1, s\prime  - 1, t\prime ,X\setminus Y ) =
\sanst \sansr \sansu \sanse , or there are y \in B, z \in T \setminus \{ x, y\} , and Y \subset X such that \alpha \ast (x, y,Y ) \wedge \beta (z, p\prime  - 
| Y | +2, r\prime  - 1, s\prime , t\prime ,X \setminus Y ) = \sanst \sansr \sansu \sanse . The arguments for these four cases are very similar.
Therefore, we consider only the first case when there is y \in A \setminus \{ x\} and Y \subset X such
that \alpha \ast (x, y,Y )\wedge \beta (y, p\prime  - | Y | + 2, r\prime  - 1, s\prime  - 1, t\prime , (X \setminus Y )\cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse .

Because \alpha \ast (x, y,Y ) = \sanst \sansr \sansu \sanse , G has an (x, y)-path P with | Y |  - 2 \geq 2 internal
vertices and the vertices of P are colored by distinct colors from X. Note that
P is an A-segment. Since \beta (y, p\prime  - | Y | + 2, s\prime  - 1, t\prime , (X \setminus Y ) \cup \{ c(y)\} ) = \sanst \sansr \sansu \sanse , we
have that is a system of T -segments \scrP \prime \prime = \{ P \prime 

1, . . . , P
\prime 
r\prime  - 1\} with r\prime  - 1 paths having

p\prime  - | Y | + 2 internal vertices such that (i\ast )\scrP \prime \prime contains s\prime  - 1 A-segments and t\prime 

B-segments, (ii\ast ) every A-segment has at least two internal vertices, (iii\ast ) for U =\bigcup r\prime  - 1
i=1 V (P \prime 

i ), | U | = | (X \setminus Y ) \cup \{ c(y)\} | and the vertices of U are colored by distinct
colors from (X \setminus Y )\cup \{ c(y)\} by the coloring c, and (iv\ast ) y is an end-vertex of exactly
one path of \scrP \prime \prime . Let \scrP \prime = \{ P,P \prime 

1, . . . , P
\prime 
r\prime  - 1\} . Then \scrP \prime is a system of T -segments with

r\prime path having p\prime internal vertices and conditions (i)--(iv) are fulfilled. Therefore,
\beta (x,p\prime , r\prime , s\prime , t\prime ,X) = \sanst \sansr \sansu \sanse . This completes the correction proof.

To evaluate the running time, note that the values of \beta (x,p\prime , r\prime , s\prime , t\prime ,X) are com-
puted for at most n vertices x, at most n4 4-tuples of integers p\prime , r\prime , s\prime , t\prime , and at
most 2q = 2\scrO (p) sets X. Because the table of values of \alpha (x, y,X) can be computed
in 2\scrO (p) \cdot n\scrO (1) time, the initial table of values of \beta (x,p\prime , r\prime , s\prime , t\prime ,X) for r\prime = 1 is
computed in 2\scrO (p) \cdot n\scrO (1) time. To compute the value of \beta (x,p\prime , r\prime , s\prime , t\prime ,X), we
use either (6.2) or (6.3). In these recurrences, we go through at most n choices
of y and z, and consider at most 2q subsets Y . This means, that for each r\prime \geq 2,
\beta (x,p\prime , r\prime , s\prime , t\prime ,X) is computed in 2\scrO (p) \cdot n\scrO (1) from the previously computed tables.
We conclude that overall running time is 2\scrO (p) \cdot n\scrO (1). This concludes the proof of
the claim.

Assume that there is a feasible system of T -segments. We upper bound the
probability that there is no colorful system. Let \scrP = \{ P1, . . . , Pr\} be a feasible system
of T -segments. Since the paths of \scrP have at most q vertices in total, the probability
that the vertices of paths are colored by distinct colors if we assign the colors uniformly
at random is at least q!

qq \geq e - q \geq e - 3p. Then the probability that there are two vertices

with the same colors is at most 1 - e - 3p.
This observation leads us to a Monte Carlo algorithm. We consequently con-

struct at most e3p random colorings c : V (G)\rightarrow \{ 1, . . . , q\} . For each coloring, we use
Claim 6.1 to verify whether there is a colorful feasible system of T -segments \scrP . If we
find such a system, we return the yes answer and stop. Otherwise, if we fail to find
a colorful system for e3p random colorings, we return the no answer. The probability
that this negative answer is false is at most (1 - e - 3p)3p \leq e - 1 < 1. This means, that
the probability of the false negative answer is upper bounded by a constant e - 1 < 1,
The running time of the algorithm is 2\scrO (p) \cdot n\scrO (1).

This algorithm can be derandomized using standard tools (see [1] and [3, Chapter
5]). This is done by using perfect hash functions (we refer to [3, Chapter 5] for the
definition) instead of random colorings. The currently best explicit construction of
such families was done by Naor, Schulman, and Srinivasan in [18]. The family of
perfect hash functions in our case has size e3p \cdot pO(log p) \cdot logn and can be constructed
in time e3p \cdot pO(log p) \cdot n logn [18]. This allows us to obtain a deterministic algorithm
that runs in 2\scrO (p) \cdot n\scrO (1) time.
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7. Proof of the main result. Now we have all the ingredients to prove our
main result. We restate it here for the reader's convenience.

Theorem 1.2. Longest Cycle Above MAD can be solved in time 2\scrO (k) \cdot n\scrO (1)

on 2-connected graphs.

Proof. Let (G,k) be an instance of Longest Cycle Above MAD, where G is a
2-connected graph. We use the algorithm from Proposition 3.1 and compute \sansm \sansa \sansd (G)
in polynomial time. If k= 0, the problem is trivial, because a cycle of length at least
\sansm \sansa \sansd (G) exists by Theorem 1. Hence, we can assume that k\geq 1. If k > 1

88\sansm \sansa \sansd (G) - 1,
we use Proposition 3.4 and solve the problem in 2\scrO (k) \cdot n\scrO (1) time. From now, we
assume that 0 < k \leq 1

88\sansm \sansa \sansd (G)  - 1. In particular, k \leq 1
80\sansm \sansa \sansd (G)  - 1. We apply

Lemma 4.4, and in polynomial time either
(i) find a cycle of length at least \sansm \sansa \sansd (G) + k in G, or
(ii) find an induced subgraph H of G with \sansa \sansd (H)\geq \sansm \sansa \sansd (G) - 1 such that \delta (H)\geq 

1
2\sansa \sansd (H) and | V (H)| < \sansa \sansd (H) + k+ 1, or

(iii) find an induced subgraph H of G such that there is a partition \{ A,B\} of
V (H) with the following properties:
-- B is an independent set;
-- 1

2\sansm \sansa \sansd (G) - 4k\leq | A| ;
-- for every v \in A, | NH(v)\cap B| \geq 2| A| ;
-- for every v \in B, \sansd H(v)\geq | A|  - 2k - 2.

If the algorithm finds a cycle of length at least \sansm \sansa \sansd (G)+k, then we return it and
stop. In cases (ii) and (iii), we get a dense induced subgraph H that can be used to
find a solution if it exists.

Case (ii). The algorithm from Lemma 4.4 returns an induced subgraph H of G
with \sansa \sansd (H) \geq \sansm \sansa \sansd (G) - 1 such that \delta (H) \geq 1

2\sansa \sansd (H) and | V (H)| < \sansa \sansd (H) + k + 1.
Let k\prime = \lceil \sansm \sansa \sansd (G)\rceil + k  - | V (H)| . We have that G has a cycle of length at least
\sansm \sansa \sansd (G) + k if and only if G has a cycle of length at least | V (H)| + k\prime . Because k\geq 1
and k \leq 1

88\sansm \sansa \sansd (G)  - 1, \sansm \sansa \sansd (G) \geq 176. Since \sansa \sansd (G) \geq \sansm \sansa \sansd (G)  - 1, we have that
\sansa \sansd (G) \geq 176 and it holds that k\prime \leq k + 1 \leq 1

88\sansm \sansa \sansd (G) \leq 1
88 (\sansa \sansd (H) + 1) \leq 1

60\sansa \sansd (H).
By Lemma 5.1, for every potentially cyclable set S of at most k + 1 pairs of distinct
vertices of H, H + S has a Hamiltonian cycle containing every edge of S.

Suppose that k\prime \leq 0. Observe that H has a Hamiltonian cycle as we can use
Lemma 5.1 for S = \{ e\} , where e is an arbitrary edge e \in E(H). Then we conclude
that H has a cycle of length at least \sansm \sansa \sansd (G)+ k and stop. Assume that k\prime > 0. Note
that | V (H)| \geq \sansa \sansd (H)\geq 2k\prime because k\prime \leq 1

66\sansa \sansd (H). Then by Lemma 6.1, G has a cycle
of length at least | V (H)| + k\prime if and only if one of the following holds:

(a) There are two distinct vertices s, t \in V (H) such that H has an (s, t)-path P
of length at least k\prime + 1 whose internal vertices lie in V (G) \setminus V (H).

(b) There is a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) such that
r\leq k\prime and the total number of vertices on the paths in \scrP outside T is at least
k\prime and at most 2k\prime  - 2.

First, we check if (a) can be satisfied. For this, we consider all pairs of distinct
vertices s and t of H. For every pair, we construct G\prime =G[(V (G)\setminus V (H))\cup \{ s, t\} ] and
use Proposition 3.5 to find an (s, t)-path of length at least k\prime +1 in G in 2\scrO (k) \cdot n\scrO (1)

time. If we find such a path for some pair, we report the existence of a cycle of length
at least \sansm \sansa \sansd (G)+k and stop. Otherwise, we verify (b) using Proposition 6.3. We use
the algorithm from Proposition 6.3 for r \in \{ 1, . . . , k\prime \} and for p \in \{ k\prime , . . . ,2k\prime  - 2\} . If
we find a required system of T -segments, then we return that G has a cycle of length
at least \sansm \sansa \sansd (G) + k and stop. If we fail to find such a system for every r and p, we
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LONGEST CYCLE ABOVE ERD\H OS--GALLAI BOUND 2747

conclude that G has no cycle of length at least \sansm \sansa \sansd (G) + k. Note that this can be
done in 2\scrO (k) \cdot n\scrO (1) time. This concludes case (ii).

Case (iii). The algorithm from Lemma 4.4 returns an induced subgraph H of G
such that there is a partition \{ A,B\} of V (H) with the properties

\bullet B is an independent set,
\bullet 1

2\sansm \sansa \sansd (G) - 4k\leq | A| ,
\bullet for every v \in A, | NH(v)\cap B| \geq 2| A| ,
\bullet for every v \in B, \sansd H(v)\geq | A|  - 2k - 2.

Let k\prime = \lceil \sansm \sansa \sansd (G)\rceil +k - 2| A| . Observe thatG has a cycle of length at least\sansm \sansa \sansd (G)+k
if and only if G has a cycle of length at least 2| A| + k\prime . We have that 2| A| \geq 
\lceil \sansm \sansa \sansd (G)\rceil  - 8k and, therefore, k\prime \leq 9k.

Note that | A| \geq 1
2\sansm \sansa \sansd (G) - 4k\geq 40k, since k\leq 1

88\sansm \sansa \sansd (G) - 1. Also, we have that
for every v \in B, \sansd H(v) \geq | A|  - 4k. Therefore, by Lemma 5.2, for every potentially
cyclable set S of at most 9k pairs of distinct vertices, G\prime = G + S has a cycle C
containing every edge of S and the length of C is 2| A|  - s+ t, where s in the number
of edges of S with both end-vertices in A and t is the number of edges in S with both
end-vertices in B.

Suppose that k\prime \leq 0. Then we observe that H has a cycle of length 2| A| because
we can set S = \{ xy\} , where xy \in E(H) with x \in A and y \in B. Then H has a cycle
of length at least 2| A| + k\prime and we conclude that G has a cycle of length at least
\sansm \sansa \sansd (G) + k. Assume that k\prime > 0. Since | A| \geq 40k \geq 3

2k
\prime , we can apply Lemma 6.2.

We obtain that G has a cycle of length at least 2| A| + k\prime if and only if one of the
following holds:

(a) There are two distinct vertices x, y \in V (H) such that H has an (x, y)-path P
of length at least k\prime + 2 whose internal vertices are in V (G) \setminus V (H).

(b) There is a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) with s
A-segments and t B-segments such that
-- r\leq k\prime \leq 9k,
-- every A-segment has at least two internal vertices,
-- the total number of internal vertices on the paths in \scrP is at least k\prime +s - t

and at most 3k\prime  - 2\leq 27k - 2.
To verify (a), we use the same approach as in case (ii), that is, we consider all

pairs of distinct vertices x and y of H. For every pair, we construct G\prime =G[(V (G) \setminus 
V (H))\cup \{ x, y\} ] and use Proposition 3.5 to find an (x, y)-path of length at least k\prime +2 in
G in 2\scrO (k) \cdot n\scrO (1) time. If we find such a path for some pair, we report the existence
of a cycle of length at least \sansm \sansa \sansd (G) + k and stop. Otherwise, we verify (b) using
Lemma 6.4. We use the algorithm from this lemma for r \in \{ 1, . . . , k\prime \} , s\in \{ 0, . . . , k\prime \} ,
and t \in \{ 0, . . . , k\prime \} such that s + t \leq r, and for p \in \{ k\prime + s  - t, . . . ,3k\prime  - 2\} . If we
find a system of T -segments \scrP = \{ P1, . . . , Pr\} for T = V (H) with s A-segments and
t B-segments with the required properties, then we conclude that G has a cycle of
length at least 2| A| +k\prime and stop. If such a system does not exist for every choice of r,
s, t, and p, we have that G has no cycle of length at least \sansm \sansa \sansd (G)+k. By Lemma 6.4,
this can be done in 2\scrO (k) \cdot n\scrO (1) time, because k\prime \leq 9k. This concludes case (iii).

Because the algorithm from Lemma 4.4 is polynomial and the other subroutines
used in our algorithm for Longest Cycle Above MAD run in 2\scrO (k) \cdot n\scrO (1), the
overall running time is 2\scrO (k) \cdot n\scrO (1) and this concludes the proof.

Let us remark that since the algorithms for paths in Propositions 6.3 and 3.5 and
Lemma 6.4 are, in fact, constructive, and the same holds for the algorithms for cycles
in Lemmas 6.1 and 6.2 and Proposition 3.4, our algorithm is not only able to solve the
decision problem but also can find a cycle of length at least \sansm \sansa \sansd (G)+ k if it exists.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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We observe that the 2-connectivity condition in Theorem 1.2 is crucial for tractabil-
ity and we cannot drop it even if we consider the problem of finding a cycle whose
length exceeds the bound \ell EG(G) of Erd\H os and Gallai by one or \sansm \sansa \sansd (G) by two.

Theorem 1.7. It is NP-complete to decide whether an n-vertex connected graph
G has a cycle of length at least \ell EG(G) + 1 (\sansm \sansa \sansd (G) + 2, respectively).

Proof. We demonstrate an easy reduction from the Hamiltonian Cycle prob-
lem that is NP-complete (see [13]). Let G be a graph with n\geq 3 vertices and m edges.
We also assume without loss of generality that \ell EG(G)\leq n - 1; otherwise, G is Hamil-
tonian by Theorem 1.1. For every vertex v \in V (G), we construct a cliqueXv with n - 2
vertices and then make the vertices of Xv adjacent to v. Denote by G\prime the obtained
graph. Then n\prime = | V (G\prime )| = n(n - 1) and m\prime = | E(G\prime )| = n

\bigl( 
n - 1
2

\bigr) 
+m. We have that

\ell EG(G
\prime ) =

2m\prime 

n\prime  - 1
=

n(n - 1)(n - 2) + 2m

n(n - 1) - 1
>

n(n - 1)(n - 2)

n(n - 1)
= n - 2.

Because \ell EG(G)\leq n - 1, 2m\leq (n - 1)2 and

\ell EG(G
\prime ) =

2m\prime 

n\prime  - 1
=

n(n - 1)(n - 2) + 2m

n(n - 1) - 1
=

n(n - 1)2  - (n - 1) - (n - 1)2 + 2m

n(n - 1) - 1

\leq n(n - 1)2  - (n - 1)

n(n - 1) - 1
= n - 1.

Then G\prime has a cycle of length at least \ell EG(G
\prime )+1 if and only if it has a cycle of length

at least n. By the construction of G\prime , G\prime has a cycle of length at least n if and only
if G has such a cycle, that is, if and only if G is Hamiltonian.

To prove the claim for the maximum average degree, note that Hamiltonian
Cycle is NP-complete for sparse graphs. In particular, the hardness holds for cubic
graphs [13]. If G is a cubic graph then for the constructed graph G\prime , we have that
\sansm \sansa \sansd (G\prime ) = \sansa \sansd (H) = n - 2, where H = G[Xv \cup \{ v\} ] for arbitrary v \in V (G). Then G\prime 

has a cycle of length at least \sansm \sansa \sansd (G) + 2 = n if and only if G is Hamiltonian. This
concludes the proof.
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