
Discrete & Computational Geometry (2024) 72:1596–1629
https://doi.org/10.1007/s00454-024-00633-1

(Re)packing Equal Disks into Rectangle

Fedor V. Fomin1 · Petr A. Golovach1 · Tanmay Inamdar2 · Saket Saurabh1,3 ·
Meirav Zehavi4

Received: 29 September 2022 / Revised: 18 January 2024 / Accepted: 19 January 2024 /
Published online: 12 March 2024
© The Author(s) 2024

Abstract
The problem of packing of equal disks (or circles) into a rectangle is a fundamental
geometric problem. (By a packing here wemean an arrangement of disks in a rectangle
without overlapping.) We consider the following algorithmic generalization of the
equal disk packing problem. In this problem, for a given packing of equal disks into a
rectangle, the question is whether by changing positions of a small number of disks, we
can allocate space for packing more disks. More formally, in the repacking problem,
for a given set of n equal disks packed into a rectangle and integers k and h, we
ask whether it is possible by changing positions of at most h disks to pack n + k
disks. Thus the problem of packing equal disks is the special case of our problem
with n = h = 0. While the computational complexity of packing equal disks into a
rectangle remains open, we prove that the repacking problem is NP-hard already for
h = 0. Our main algorithmic contribution is an algorithm that solves the repacking
problem in time (h+k)O(h+k) · |I |O(1), where |I | is the input size. That is, the problem
is fixed-parameter tractable parameterized by k and h.

Keywords Computational geometry · Parameterized algorithms · Circle packing ·
Unit disks

Mathematics Subject Classification 51E23: Spreads and packing problems · 68Q25:
Analysis of algorithms and problem complexity · 68W40: Analysis of algorithms

Editor in Charge: Csaba D. Tóth

A preliminary version of this article [15] appears in the proceedings of the 49th International Colloquium
on Automata, Languages, and Programming, ICALP 2022.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-024-00633-1&domain=pdf

Discrete & Computational Geometry (2024) 72:1596–1629 1597

1 Introduction

Packing of equal circles inside a rectangle or a square is one of the oldest packing
problems. In addition to many common-life applications, like packing bottles or cans
in a box [19], packings of circles have a variety of industrial applications, including
circular cutting problems, communication networks, facility location, and dashboard
layout [24]. We refer to the survey of Castillo et al. [7] for an interesting overview of
industrial applications of circle packings.

The mathematical study of packing equal circles can be traced back to Kepler [23].
Packing of circles also poses exciting mathematical and algorithmic challenges. Sig-
nificant efforts have been spent on variants of circle packing for several decades [26,
27, 30–32, 34, 35]. However, even in the simple setting of packing equal circles inside
a square, the optimal bounds are known only for instances of up to tens of circles
[33], and proving such optimal bounds remains a major problem in the area [10]. The
computational complexity of packing of equal circles (NP-hardness or membership in
NP) remains elusive. For packing circles with different radii, Demaine et al. claimed
NP-hardness [12]. See also the work of Abrahamsen et al. [1] for a generic frame-
work for establishing ∃R-completeness for packing problems. There are also some
recent results on packing circles (of possibly different radii) inside different contain-
ers achieving (near) optimal densities, based on the combined area of the circles—see
[14, 33] and references therein.

Our paper establishes several results on computational and parameterized complex-
ity of a natural generalization of packing equal circles inside a rectangle. A remark in
the terminology is in order. In the literature on packing, both terms, circles and disks,
could be found. While the term circle is much more popular than disk, we decided to
use disks for the following reason: in our results (especially the NP-hardness result),
it is more convenient to operate with open disks. Thus all disks we consider are open
and unit (that is, of radius one). Let us remind, that a family of disks forms a packing
if they are pairwise nonintersecting.1 In our problem, we have a packing of disks in
a rectangle, and the question is whether we can allocate some space for more disks
by relocating a small amount of disks. More precisely, we consider the following
problem. See Fig. 1 for an example.

Input: ApackingP of n unit disks inside a rectangle R and two integers
h, k ≥ 0.

Task: Decide whether there is a packing P∗ of n + k unit disks inside
R obtained fromP by adding k new disks and relocating at most
h disks of P to new positions.

Disk Repacking

Thus when n = 0, that is, initially there are no disks inside the rectangle, this is the
classical problem of packing equal circles inside a rectangle.

1 In the literature, it is often required for geometric packings that a packing should bemaximal. In particular,
for disk packing, every disk should touch either the bounding rectangle or another disk. However, in our
problem, the task is to add a specified number of new disks to a given family and this makes the maximality
condition in our case very artificial.

123

1598 Discrete & Computational Geometry (2024) 72:1596–1629

G A B

D E F

H

C

G A B

D
F

H E

C

Fig. 1 For a packing P of disks A–F , integers h = 2, and k = 2, the repacking P∗ of P is obtained by
relocating disks C and F , and by adding disks G and H

Related Work on Geometric Packing. Packing problems have received significant
attention from the viewpoint of approximation algorithms. For the sake of illustration,
let us mention a few examples. In 2D Geometric Bin Packing, which is a variant of
classical Bin Packing, the goal is to pack a given collection of rectangles into the
minimum number of unit square bins. Typically, it is required that the rectangles be
packed in an axis-parallel manner. There has been a long series of results on this
problem, culminating in the currently known best approximation given by Bansal and
Khan [5]. A related problem is that of 2D Strip Packing problem, where the task is
to pack a given set of rectangles into an infinite strip of the given width, so as to
minimize the height of packing. This problem has been studied from the context of
approximation [20, 22] as well as parameterized [3] algorithms. Finally, we mention
the Geometric Knapsack problem, which is also closely related to Geometric Bin
Packing. In Geometric Knapsack, we are given a collection of rectangles, where each
rectangle has an associated profit. The goal is to pack a subset of the given rectangles
(without rotation) in an axis-aligned square knapsack, so as to maximize the total
profit of the packed rectangles. Currently, the best approximation is given by Galvez
et al. [17]. A detailed survey of the literature on the results of these problems is
beyond the scope of this work—we direct an interested reader to the cited works and
references therein and the survey paper of Christensen et al. [8]. However, we would
like to highlight an important difficulty in Disk Repacking—which is the focus of
this work—as compared to the aforementioned geometric packing problems, namely,
that packing disks in a rectangle requires the use of intricate geometric arguments as
compared to packing rectilinear objects (such as rectangles) in a rectilinear container
(such as a unit square, or an infinite strip).

Our Results. We show that Disk Repacking is NP-hard even if the parameter
h = 0—we call this special case of problem Disk Appending.

Theorem 1.1 Disk Appending is NP-hard when constrained to the instances
(R,P, k) where R = [0, a] × [0, b] for positive integers a and b and the centers
of all disks in P have rational coordinates. Furthermore, the problem remains NP-
hard when it is only allowed to add new disks to P with rational coordinates of their
centers.

From the positive side, we show that Disk Repacking is FPT when parameterized
by k and h. As it is common in Computational Geometry, we assume the real RAM
computational model, that is, we are working with real numbers and assume that basic
operations on these numbers can be executed in unit time. We use |I | to denote the
input size of an instance I .

123

Discrete & Computational Geometry (2024) 72:1596–1629 1599

Theorem 1.2 The Disk Repacking problem is FPT when parameterized by k + h.
Specifically, it is solvable in time (h + k)O(h+k) · |I |O(1).

Theorem 1.2 also appears to be handy for approximating the maximum number of
disks that can be added to a packing. In the optimization variant of Disk Repacking,
called Max Disk Repacking, we are given a packing P of n disks in a rectangle
R and an integer h, and the task is to maximize the number of new disks that can be
added to the packing if we are allowed to relocate at most h disks of P . By combining
Theorem 1.2 with the approach of Hochbaum and Maass [21], we prove that the
optimization variant of Disk Repacking admits the parameterized analog of EPTAS
for the parameterization by h. More precisely, we prove the following theorem.

Theorem 1.3 For any 0 < ε < 1, there exists an algorithm that, given an instance
(P, R, h) of Max Disk Repacking, returns a packing P∗ into R with at least
n + (1 − ε) · OPTh disks in time

max

{(
h + 1

ε

)O(h/ε)

,

(
1

ε

)O(1/ε2)
}

· |I |O(1) ≤ (h + 1

ε

)O(h/ε+1/ε2) · |I |O(1),

where OPTh is the maximum number of disks that can be added to the input packing
if we can relocate at most h disks.

2 Preliminaries

Disks and rectangles. For two points A and B on the plane, we use AB to denote
the line segment with endpoints in A and B. The distance between A = (x1, y1) and
B = (x2, y2) or the length of AB, is |AB| = ‖A− B‖2 = √

(x1 − x2)2 + (y1 − y2)2.
The (open unit) disk with a center C = (c1, c2) on the plane is the set of points (x, y)
satisfying the inequality (x − c1)2 + (y − c2)2 < 1. Whenever we write “disk” we
mean an open unit disk, unless explicitly specified otherwise. Throughout the paper,
we assume that the input rectangle R is of the form [0, a] × [0, b] for some a, b > 0.

Parameterized Complexity. We refer to the book of Cygan et al. [11] for an intro-
duction to the area and undefined notions. A parameterized problem is a language
L ⊆ �∗ × N, where �∗ is a set of strings over a finite alphabet �. An input of a
parameterized problem is a pair (x, k), where x ∈ �∗ and k ∈ N is a parameter. A
parameterized problem is fixed-parameter tractable (or FPT) if it can be solved in
time f (k) · |x |O(1) for some computable function f .

Systems of Polynomial Inequalities. We use the following result from the book of
Basu et al. [6]. We refer to the same book [6] for the background on terminology and
the basic tools.

Proposition 2.1 ([6, Thm. 13.13]) Let R be a real closed field, and let P ⊆
R[X1, . . . , X�] be a finite set of s polynomials, each of degree at most d, and let

(∃X1)(∃X2) . . . (∃X�)F(X1, X2, . . . , X�)

123

1600 Discrete & Computational Geometry (2024) 72:1596–1629

be a sentence, where F(X1, . . . , X�) is a quantifier-free boolean formula involving
P-atoms of type P 	 0, where 	 ∈ {=,
=,>,<}, and P is a polynomial in P . Then,
there exists an algorithm to decide the truth of the sentence with complexity s�+1dO(�)

in D, where D is the ring generated by the coefficients of the polynomials in P .

Furthermore, a point (X∗
1, . . . , X

∗
�) satisfying F(X1, . . . , X�) can be computed in

the same time by Algorithm 13.2 (sampling algorithm) of [6] (see Theorem 13.11 of
[6]). Note that because we are using the real RAM model in our algorithms, the basic
operations on real numbers can be performed in unit time. Thus, the complexity of
our algorithms is stated with respect to the natural parameters, i.e., the input size, as
well as, additional parameters such as h, k, ε.

3 Hardness of DISK APPENDING

In this section, we prove Theorem 1.1 on the hardness of Disk Appending. Recall,
that Disk Appending is the special case of Disk Repacking with h = 0. We use
the following auxiliary notation in this section.

We use standard graph-theoretic terminology and refer to the textbook of Diestel
[13] for missing notions. We consider only finite undirected graphs. For a graph G,
V (G) and E(G) are used to denote its vertex and edge sets, respectively. For a vertex
v ∈ V (G), we denote by NG(v) = {u ∈ V (G) | uv ∈ E(G)} the neighborhood of v,
and dG(v) = |NG(v)| is the degree of v. A graph is cubic if every vertex has degree
three. A graph G is planar if it has a planar embedding, that is, it can be drawn on the
planewithout crossing edges.A rectilinear embedding is a planar embeddingofG such
that vertices are mapped to points with integer coordinates and each edge is mapped
into a broken line (or a piecewise linear curve) consisting of an alternate sequence of
horizontal and vertical line segments. The switches between horizontal and vertical
lines are called bends. The area of an embedding is the minimal (b1 − a1)(b2 − a2)
such that all points of the embedding are in the rectangle [a1, b1] × [a2, b2].

We say that a point X is properly inside of a polygon P if it is inside P but X is not
on the boundary; if we say that X is inside P , we allow it to be on the boundary. A
disk is (properly) inside of a polygon P if every point of the disk is (properly) inside
of P .

We restate the main theorem of the section.

Theorem 3.1 Disk Appending is NP-hard when constrained to the instances
(R,P, k) where R = [0, a] × [0, b] for positive integers a and b and the centers
of all disks in P have rational coordinates. Furthermore, the problem remains NP-
hard when it is only allowed to add new disks to P with rational coordinates of their
centers.

Proof of Theorem 1.1: Overview. We reduce from the Independent Set prob-
lem. Let us recall that in this problem, for a given graph G and a positive integer k,
the task is to decide whether G contains an independent set, that is a set of pairwise
nonadjacent vertices, of size at least k. It is well-known that Independent Set is
NP-complete on cubic planar graphs [18] (see also [28] for an explicit proof).

123

Discrete & Computational Geometry (2024) 72:1596–1629 1601

Before diving into the technical details, let us outline themain ideas of the reduction.
Let G be a graph and assume that �e are positive integers given for all e ∈ E(G).
Suppose that G ′ is obtained from G by subdividing each edge e exactly 2�e times
(the edge subdivision operation for e = uv deletes e and creates a new vertex we

adjacent to both u and v). Then it can be shown that G has an independent set of
size k if and only if G ′ has an independent set of size k + ∑

e∈E(G) �e. We exploit
this observation. Given a rectilinear embedding of a cubic planar graph G, for each
vertex of G, we create a node area formed by surrounding disks. We can place an
additional disk in such an area and this encodes the inclusion of the corresponding
vertex to an independent set. Then we join the areas created for vertices by channels
corresponding to subdivided edges. Similarly to node areas, channels are formed by
surrounding disks. Each channel contains an even number of positionswhere newdisks
can be placed, and these positions are divided into “odd” and “even” in such a way
that we can put disks in either all odd or all even positions but no disks could be placed
in adjacent even and odd positions. Thus node areas and channels are used to encode
a graph, and then we fill the space around them by filler disks that prevent placing
any new disk outside node areas and channels. Then placing new disks corresponds
to the choice of an independent set in a subdivided graph. Further in this section,
we give a formal proof of Theorem 1.1. To avoid unnecessary complications in the
already technical proof, we allow algebraic number parameters in our reduction and
then explain how we can get rid of these constraints.

Proof of Theorem 1.1:Constructing channels and node areas.Our construction
of node areas and channels follows a rectilinear embedding of a planar graph and we
use the fact that rectilinear embeddings can be constructed efficiently. In particular,
the following theorem was shown by Liu, Morgana, and Simeone [25].

Proposition 3.2 [25]Every n-vertex planar graph ofmaximumdegree atmost 4 admits
a rectilinear embedding with at most 3 bends for every edge with the area O(n2).
Furthermore, such an embedding can be constructed in O(n) time.

We use Proposition 3.2 to construct the node areas and channels. Let G be an n-
vertex cubic graph.We assume that we are given a rectilinear embedding ofG with the
properties guaranteed by Proposition 3.2. We also assume without loss of generality
that the length of every segment of a broken line representing an edge is at least three.
This can be achieved by replacing every vertex or bend point (x, y) of the embedding
by the point (3x, 3y) and the corresponding adjustment of the segments in the broken
lines. Notice that every segment in the embedding contains at least two integer points
different from the endpoints of the segment. For each integer point of the rectangle
containing the embedding, we construct a 2c× 2c square tile, where c is a sufficiently
big odd positive integer (the choice of cwill be explained later), of one of the following
four types: (i) node tile containing a node area, (ii) horizontal/vertical channel, (iii)
bend channel tiles to form channels, and (iv) filler tile to fill forbidden areas. Then we
use these tiles to encode a graph as shown in Fig. 2 sticking the tiles together following
the embedding.

Now we describe these tiles. We start with the construction of the filler tile which
is trivial—we simply fill a 2c × 2c square by disks as shown in Fig. 3.

123

1602 Discrete & Computational Geometry (2024) 72:1596–1629

(c)

B C C C C

C

C

C

C

C C C C

C

C

C

C

C

B

B B

N

N

N

N

C

C

C

C

F F F F

FFF F

F F

F F

F F

FF

F F

C C

(a)

(b)

G

Fig. 2 Encoding of the graphG shown in (a). A rectilinear embedding ofG is shown in (b) and the encoding
of G via tiles is shown in (c); the node areas and channels are shown in red, the node, channel, bend, and
filler tiles are labeled by N , C , B, and F , respectively

Fig. 3 The filler tile

Next,we dealwith channel tiles. The construction of these tiles ismore complicated.
In particular, we need three kinds of such tiles because we have to adjust parities and
join them together with other tiles. However, the basic idea is the same for all kinds.
Consider four touching disks with centers A, B, C , and D shown in Fig. 4a. Note that

h = 2 + √
3, � = |AC | = |BC | = 2

√
2 + √

3, and the angle α = π/12. Then we
can make the straightforward observation that, given disks with centers at A, B, and
C , every disk with its center in the triangle ABC has its center at D. Then extending
this, we can make the following observation about the configuration of disks shown
in Fig. 4b. We call such a configuration of disks a basic channel of size r . When we
say that a disk is placed or added, we mean that the disk should be disjoint with other
disks. Also, we say that a disk is inside of a channel if its center is in B1A1Ar Br .

Observation 3.3 Given disks with centers at A1, . . . , Ar and B1, . . . , Br as shown in
Fig.4b, any disk placed properly inside the quadrilateral A1B1Br Ar has its center at
one of the points X1, . . . , Xr−1 or Y2, . . . ,Yr . Furthermore, if a disk with its center

123

Discrete & Computational Geometry (2024) 72:1596–1629 1603

X r−1

α
h

�

A B

C

D 2

2

A 1 A r

B 1

Yr

B r

(a) (b)

X 1

Y2

Fig. 4 The basic channel of size r ; the disks shown in red and blue are not parts of the channel—they show
places where new disks can be inserted

B

h

A

2

4

2

c

c

X

B

Y

2c
(a) (b)

44

h

A

2

4

2

c

c

2c

X Y

Fig. 5 The straight channel tile (a) and the twisted channel tile (b). The disks shown in red and blue are
not parts of the gadgets, the disks shown in magenta are used to fill space

at Xi (Yi , respectively) is placed in the quadrilateral then no other disk can have its
center at Yi or Yi+1 (Xi−1 or Xi , respectively).

We use basic channels to construct channel, bend, and node tiles. In particular, we
construct the straight channel tile from the basic channel of size c by deleting the
left bottom disk and filling the space outside the channel in the 2c × 2c square by
additional disks as shown in Fig. 5a. The disks with the centers at A and B are called
poles. They are identified with poles of other tiles to join them together. We refer to
the basic channel inside the tile as the channel of the tile.

However, we need some further configurations of disks because we have to adjust
parities anddistances in tiles, and alsowehave to join tileswith eachother. In particular,
to join channel tiles with other tiles, we have to twist basic channels in some of them
as shown in Fig. 6a. Then we can make the following observation.

Observation 3.4 Given disks with centers at A1, A2 and B1, B2 as shown in Fig.6a,
the following holds:

123

1604 Discrete & Computational Geometry (2024) 72:1596–1629

(b)

B 1

X 1

X 2

Y1 Y2

Z 1 Z 2

A 1 A 2

B 2

3

3

A 1 A 2

B 1 B 2

X 1 X 2

Y1 Y2

(a)

Fig. 6 Twisting (a) and level adjustment (b)

• if two disks with their centers at X1 and X2 are placed as shown in Fig.6a then at
most two disks with their centers inside A1B1B2A2 can be added, and if two disks
are placed in A1B1B2A2 they have centers at Y1 and Y2, respectively,

• if two disks with their centers at Z1 and Z2 are placed as shown in Fig.6a then
it is possible to place one disk with its center inside A1B1B2A2 but at most one
such a disk can be added.

Proof To see the first claim, notice thatY1 andY2 compose a unique pair of points in the
quadrilateral A1B1B2A1 such that |Y1Y2| ≥ 2 and |AiY j |, |BiY j | ≥ 2 for i, j ∈ {1, 2}
(in fact, |Y1Y2| = 2 and |AiY j |, |BiY j | = 2). For the second claim, note that if there
are two disks with their centers in Z1 and Z2, respectively, then for any disk with its
center Y inside A1B1B2A2, it must hold that |ZiY |, |AiY |, |BiY | ≥ 2 for i ∈ {1, 2}.
Then we can only choose Y to be the middle point between Y1 and Y2 and place a disk
having its center in Y . However, we cannot place two such disks because for any Y
and Y ′ in A1B1B2A2 at distance at least two from A1, A2, B1, B2, Z1, Z2, |YY ′| < 2.

�
We construct the twisted channel tile (see Fig. 5b) similarly to the straight channel

tile—the difference is that we insert one twist using Observation 3.4. The crucial
properties of straight and twisted channel tiles are given in the following lemma. We
say that a point is inside a tile if it is inside of the 2c × 2c square in the tile.

Lemma 3.5 At most c + 1 new disks having their centers in the (straight, twisted)
channel tile can be added and it is possible to place c + 1 disks. Moreover, the
following holds:

• only disks inside channels can be added,
• if exactly c + 1 disks are placed then two of them have their centers at X and Y
(see Fig.5),

• it is possible to place c disks that have no centers at X and Y but then they are
completely inside the tile and it is impossible to place an additional disk having
its center inside the tile.

Proof The claims for the straight channel tile immediately follow from Observation
3.3 and the construction of the tile. In particular, to see the last claim, notice that if

123

Discrete & Computational Geometry (2024) 72:1596–1629 1605

B 2

Y

B 1

(b)

Z
Z ′X

Y

A 1 A 2

B 1 B 2

s

s
(a)

A 1

X

A 2

Fig. 7 Gap insertion

there are no disks with their centers at X and Y then only disks colored blue in Fig. 5
can have their centers in the tile. For the twisted channel tile, we combine Observation
3.3 and Observation 3.4. �

Our channel gadget (see Fig. 4) ensures that we have two options for the placements
of disks within the channels. It is also important to ensure that the number of disks of
each type that can be placed in a channel is exactly the same. However, if we construct
a channel by joining straight and twisted channel tiles, we obtain that the number of
disks colored red in Fig. 5 is bigger than the number of blue disks. To fix this, we add
one special tile, called the parity adjustment channel tile, in each channel. To construct
such a tile, we have to take into account that disks placed inside a basic channel may
be on different levels (see the red and blue disks in Fig. 4b with their centers on the
red and blue line, respectively). Hence, we need to adjust levels as shown in Fig. 6b.
Then we observe the following.

Observation 3.6 Suppose that we are given disks with centers at A1, A2 and B1, B2
as shown in Fig.6b. Then if there are two disks with their centers at X1 and X2 (Y1
and Y2, respectively), at most one disjoint disk with its center at A1B1B2A2 can be
added.

To fix parity, we also have to adjust distances. For this, we observe that we can

insert gaps of length s <
√
4
√
3 − 3− 1 between disks in basic channels as shown in

Fig. 7a.

Observation 3.7 Given disks with centers at A1, A2 and B1, B2 as shown in Fig.7a,
at most one disk with its center inside the quadrilateral A1B1B2A2 can be added.
Furthermore, if a disk has a center inside A1B1B2A2 then this disk intersects the disk
with its center at X or the disk with its center at Y .

Proof The claim follows from the following geometrical observation illustrated in

Fig. 7b. Suppose that the gap is exactly
√
4
√
3 − 3−1 and there are disks with centers

at A1, A2, B1, B2, X and Y . Then any disk with its center inside A1B1B2A2 either
has its center in the triangle XY A2 or the triangle XY B1. In the first case, the only
possible center is Z and the disk with its center in Z touches the disks with centers X ,
Y , and A2—the point Z is uniquely defined by this touching conditions. Similarly, if

123

1606 Discrete & Computational Geometry (2024) 72:1596–1629

2

h

A

2

4

2

c

c

X

4

2c

Y

B

1
2

1
2

1
2

1
2

c

c

2

h

Fig. 8 The parity adjustment channel tile. The disks shown in red and blue are not parts of the gadgets, the
disks shown in magenta are used to fill space

the center is in XY B1 then this disk has its center in the unique point Z ′ at distance
exactly two from X , Y , and B1. This implies that if s <

√
4
√
3 − 3 − 1 then no new

disk can be inserted in A1B1B2A2. �
Now we construct the parity adjustment channel tile from the basic channel of size

c− 1 by introducing two gaps of size 1/2 <
√
4
√
3 − 3− 1 and one level adjustment

as it is shown in Fig. 8. For the parity adjustment channel tile, we have the following
properties.

Lemma 3.8 At most c new disks having their centers in the parity adjustment channel
tile can be added and it is possible to place c disks. Moreover, only disks inside the
channel of the tile can be added, and if c disks are added then either one of them has
its center at X (see Fig.8) and it is impossible to add the disk having its center at Y
or, symmetrically, one disk has its center at Y and the disk centered at X cannot be
inserted.

Proof Theproof is very similar to the proof ofLemma3.5 and is obtained by combining
Observations 3.3, 3.6, and 3.7. �

We use basic channels and apply gap insertions to construct the bend tile. Addi-
tionally, we observe that we can “bend” basic channels (see Fig. 9a). Consider five
touching disks with centers A, B, C , D, and O shown in Fig. 9a; h = 2 + √

3,

|OA| = |OD| = � = 2
√
2 + √

3, |OB| = |OC | = 2
√
2 + √

2, and the angles
α = π/12 and β = π/8. Then we can make the following observation.

123

Discrete & Computational Geometry (2024) 72:1596–1629 1607

1
2

c c

c

c

A

X

B Y

(b)

h

A B

C

D

X
Y

Z
β

O

h

(a)
Left channel

Bottom channel

α

1
2

1
2

1
2

Fig. 9 The bend tile. The disks shown in red and blue are not parts of the gadgets, the disks shown in
magenta are used to fill space

Observation 3.9 Given disks with their centers at A, B, C, D and O, only disks with
centers at X, Y and Z can have their centers in ABCDO. Moreover, if there is a disk
with its center at X or Z then the disk with its center at Y cannot be added, and if there
is a disk with its center at Y then no disk having its center if X or Z can be added.

Observation 3.9 allows to construct the bend tile (see Fig. 9b). We use the con-
figuration of disks from Fig. 9a and attach two basic channels called left and bottom
channels, respectively. To adjust distances, we insert two gaps of size 1/2 into each
channel. Then the remaining space if filled by disks. The disks with their centers at A
and B are poles of the tile. For the bend tile, we have the following properties.

Lemma 3.10 At most c−1 new disks having their centers in the bend tile can be added
and it is possible to place c − 1 disks. Moreover, the following holds:

• disks can be placed only inside the channel,
• if exactly c − 1 disks are placed then two of them have their centers at X and Y
(see Fig.9a),

• it is possible to place c− 2 disks that have no centers at X and Y but then they are
completely inside the tile and it is impossible to place an additional disk having
its center inside the tile.

Proof The proof immediately follows from Observations 3.3, 3.7, and 3.9. �

123

1608 Discrete & Computational Geometry (2024) 72:1596–1629

F

B

X Y

ZA C

h′

O

YX

ZA C

B D
E

αγ
U W

h

(a) (b)

Fig. 10 Node area (a) and the attachment of a basic channel to the node area

The construction of the node tile is based on the following geometric observations.
Consider an equilateral triangle ABC with sides of length two as shown in Fig. 10a,
h′ = 2

√
3. Suppose that there are disks with centers at A, B, and C . Then it is

possible to place at most three disks with centers in the triangle ABC , and if exactly
three disks are placed then they have their centers at X , Y and Z and touch each
other. Furthermore, if a disk having its center properly inside ABC is placed then no
other disk with its center inside the triangle can be added. We exploit this property
and add a basic channel as shown in Fig. 10b. The point O is the center of ABC ,
that is, |OA| = |OB| = |OC |. Recall that h = 2 + √

3 and α = π/12. We set
γ = π/3 − π/12 = π/4. This gives us the configuration of disks with the following
properties summarized in the next observation.

Observation 3.11 Given disks with centers at A, B, C, D, E and F as shown in
Fig.10b, the following is fulfilled:

• at most one disk with its center in BCD can be added,
• if there is a disk with its center either at Y or U then no other disk can have its
center properly in BCD,

• if there are disks with their centers at O and W then a disk with its center in BCD
can be added,

• if there is a disk having its center properly inside ABC then no other disk with its
center inside ABC can be added.

Proof To see the first claim, notice that |CB| = 4, |BD| < 4, and |CD| < 4. Then for
any two points P1 and P2 in BCD such that |Pi B|, |PiC |, |Pi D| ≥ 2 for i ∈ {1, 2},
we have that |P1P2| < 2.

For the second claim, notice that if there is a disk with its center at Y then no other
disk can have its center in BCD by the first claim. Suppose that there is a disk with its
center at U . Notice that |BU | < 4 and the disk centered at Y touches the disks with
their centers at B, C , and U . This implies that no disk can have its center properly
inside BCD.

The third claim follows from the observation that the disk that touches the disks
with the centers at C , D, and W does not intersect the disk with its center at O .

The final claim immediately follows from the observation that |AB| = |BC | =
|AC | = 4 and the disks with the centers at X , Y , and Z touch each other and touch
the disks with the centers at A, B, and C (see Fig. 10a). �

123

Discrete & Computational Geometry (2024) 72:1596–1629 1609

Y3

π/6

π/3

(a) (b)

A 1 A 2

X 1
X 2

X 3

X 4

Y1
Y2

Y3

A 3

A 4

B 4

B 3B 2B 1

B 5

A 1 A 2

A 3

A 4

A 5B 1 B 2

B 3

X 1 X 2

X 3

Y1

Y2

Fig. 11 Bending of basic channels

We also use an easy observation that the basic channel construction allows us to
bend them by π/6 or π/3 as shown in Fig. 11.

Observation 3.12 Given disks with centers at A1, . . . , A4 and B1, . . . , B5 as shown in
Fig.11a, any disk with its center inside the quadrilaterals A1A2B3B1 or A2A4B5B3
has its center at one of the points X1, . . . , X4 or Y1,Y2,Y3. Similarly, if disks with
centers A1, . . . , A5 and B1, . . . , B3 are placed as shown in Fig.11b then any disk with
its center inside the quadrilaterals A1A2B2B1 or A3A5B3B2, or the triangle A2A3B2
has its center at one of the points X1, X2, X3 or Y1,Y2,Y3. Furthermore, if a disk with
its center at Xi (Yi , respectively) is placed then no other disk can have its center at
Yi−1 or Yi (Xi or Xi+1, respectively).

Now we are ready to construct the node tile (see Fig. 12).

• We construct the node area formed by an equilateral triangle as shown in Fig. 10a.
• We attach three basic channels to the node area as shown in Fig. 10b; the channels
are called left, right and bottom, respectively, as shown in Fig. 12.

• To construct the left (right, respectively) channel, we use a basic channel with π/6
bend as is it is shown in Fig. 11a. Notice that |PR| = 4 + √

3, where P is the
center of the tile and R is the point in the channel after the bend (see Fig. 12). To
make the distances integer, we insert 2−√

3 gap in the basic channel (see Fig. 7a).
Then we insert two gaps of length 1/2 to adjust distances.

• To construct the bottom channel, we bend the basic channel as shown in Fig. 11b
to adjust the direction. Then we make the level adjustment (see Fig. 6b). Note that
|PQ| = 2

√
3 + 11, where Q is the point in the channel after the bending and

level adjustment (see Fig. 12). We introduce 4− 2
√
3 gap and then we add 6 gaps

of length 1/2 between parts of the basic channel to ensure that exactly the same
number of disks could be placed in the bottom channel as in the left and right (this
is due to the bend in the channel).

• The remaining space around the node area and the channel is filled by disks as
shown in Fig. 12.

The disks with their centers at A, B, and C are called poles of the node tile.
The properties of the node tile are summarized in the next lemma.

123

1610 Discrete & Computational Geometry (2024) 72:1596–1629

Gap

O
P

Q

R

B

YX

A

Z C

c c

c

c
Left channel Right channel

Bottom channel

Node area

U V

W

Gap Gap

Fig. 12 The node tile. The disks shown in red and blue are not parts of the gadgets, the disks shown in
magenta are used to fill space. The point P is the center of the tile and the attachment of the left, right, and
bottom channels is shown by black lines

Lemma 3.13 At most (c − 1)/2 disks can be placed inside each channel and it is
possible to place (c− 1)/2 disks. Also at most one disk with its center inside the node
area can be placed but one disk may be placed and in this case, it is possible to place
the disk with its center at O.2 Furthermore, the following holds.

• Only disks inside the channels and the node area can be added.
• If there is a diskwhose center is properly inside the node area then atmost (c−1)/2
disks can be placed in the left (right and bottom, respectively) channel. If exactly

2 Placing a disk with it center at O corresponds to selecting the vertex to be included in an independent set.

123

Discrete & Computational Geometry (2024) 72:1596–1629 1611

(c − 1)/2 disks are placed, then one of the disks has its center at X (Y and Z,
respectively).

• If there is a disk with its center at U (V and W, respectively) then at most (c−1)/2
disks (including the diskwith its center atU (V andW, respectively)) can be placed
in the left (right and bottom, respectively) channel, and if exactly (c − 1)/2 disks
are placed then they are completely inside the tile and it is impossible to place an
additional disk having its center inside the tile except disks that may be placed in
other channels.

Proof The proof immediately follows from Observations 3.6, 3.7, 3.11, and 3.12. �

The construction of the node tile limits the choice of the constant c because for
other tiles we need less space.

Observation 3.14 The (straight, twisted, parity adjustment) channel, bend, and node
tiles can be constructed for c = 47.

Proof To construct the bottom channel in the node tile, we insert 7 gaps and a gap
may be inserted between basic channels of size at least 2 (see Fig. 7a and Observation
3.7). Then taking into account the distance between the points O and Q in Fig. 12 and
the number of gaps, we obtain that the bottom channel can be constructed for c = 47.
As for constructing the left and right channels in the node tile, we insert 3 gaps, we
also have that they can be constructed for c = 47. By similar arguments, we also
can construct the (straight, twisted, parity adjustment) channel tile and the bend tile if
c = 47. �

Proof of Theorem 1.1: The final step. Now we have all the ingredients to finish
the hardness proof for Disk Appending.

Recall that we prove NP-hardness by reducing from Independent Set on planar
cubic graphs [18, 28]. Let (G, k) be an instance of Independent Set where G is an
n-vertex planar cubic graph. We would like to remind the reader of the initial steps.
By Proposition 3.2, we can construct a rectilinear embedding of G with area O(n2)
in linear time. Further, we modify the embedding to ensure that the length of every
segment of a broken line representing an edge in the embedding is at least three. As
we already pointed out, this can be done by replacing every vertex or bend point (x, y)
of the embedding with the point (3x, 3y) and the corresponding adjustment of the
segments in the broken lines. After this modification, we still have an embedding with
O(n2) area. We assume that R = [0, a] × [0, b] for a, b ∈ N is the minimum area
rectangle containing the embedding (note that a, b > 0 because G is cubic and cannot
be embedded on the line).

We define a′ = 2ca and b′ = 2cb, where c = 47, and set R′ = [0, a′] × [0, b′]
defining the rectangle in the output instance of Disk Appending. Then we put tiles
into R′ as follows.

• For every (x, y) ∈ R such that the point (x, y) is not a point of the embedding of
G, put a copy of the filler tile whose bottom left corner in (2cx, 2cy).

123

1612 Discrete & Computational Geometry (2024) 72:1596–1629

• For every (x, y) ∈ R such that (x, y) is a vertex of G in the embedding, put a copy
of the node tile with the bottom left corner in (2cx, 2cy). We rotate the node tile in
such a way that the directions of the left, right, and bottom channels coincide with
the directions of line segments of the embedding with the endpoints in (x, y); note
that because the distance between any two vertices in the embedding is at least
three, the poles of distinct node tiles do not interfere with each other.

• For every (x, y) ∈ R such that (x, y) is a bend node in the embedding of an edge,
put a copy of the bend tile with the bottom left corner in (2cx, 2cy). We rotate
the tile in such a way that the directions of the left and bottom channels coincide
with the directions of line segments of the embedding with the endpoints in (x, y).
Again we note that because the distance between a bend point and another bend
point or a vertex in the embedding is at least three, there are no intersections
between the poles of constructed tiles.

• For every edge e ∈ E(G), let Pe be the set of internal non-bending integer points
of the embedding of e.
We select an arbitrary point (x, y) ∈ Pe and insert a copy T of the parity adjustment
channel tile with the bottom left corner in (2cx, 2cy). We rotate T in such a way
that the direction of its channel coincides with the direction of line segments of
the embedding containing (x, y). Notice that because the length of every segment
of a broken line representing an edge in the embedding is at least three, T may
be adjacent to at most one already placed tile T ′ whose pole intersects T . If such
a pole of T ′ has the same center as the corresponding pole of T , we unify these
disks. Otherwise, if the poles have distinct centers, we mirror T to ensure that the
poles have the same centers and unify them.
For every other point (x, y) ∈ Pe, we insert a tile T which is a copy of either
the straight or twisted channel tile. We rotate T to have the same direction of
the channel as the direction of the segment of the line containing (x, y) in the
embedding. Observe that T can have either one or two adjacent already placed
tiles whose poles intersect T . If T is not adjacent to any such a tile, we select T
to be a copy of the straight tile. If T is adjacent to one such tile T ′ then we select
T to be a copy of the straight channel tile. Then we either identify the interfering
poles of T and T ′ if they have the same centers or reflect T and identify the poles
afterward. Suppose that T is adjacent to two tiles T ′ and T ′′ with interfering poles.
If the poles are on the same side with respect to the channel then we choose T
to be a copy of the straight channel tile. Then we either identify the interfering
poles of T and T ′ if they have the same centers or reflect T and identify the poles
afterward. Otherwise, we select T to be a copy of the twisted channel tile and
reflect T if necessary to identify the poles.
The construction of the tiles for (x, y) ∈ Pe is shown in Fig. 13a.

We define P to be the set of all disks in the tiles (taking into account identifications
of poles). By the construction, P is a packing of disks inside R′.

Clearly, we have n node tiles. Denote by nb the number of bend tiles, by n p =
|E(G)| the number of parity adjustment channel tiles, and by nc the number of straight
and twisted channel tiles. We set k′ = k+3n(c−1)/2+ (c−2)nb + (c−1)n p + cnc.

123

Discrete & Computational Geometry (2024) 72:1596–1629 1613

Tu

(a)

Node tile

Node tile

Bend tile

Parity adjustment tile

Straight tile

Straight tile Twisted tile

Straight tile

Bend tile

Twisted tile

(c − 1)/2

c c c − 2

c − 1

c − 2 c c

(c − 1)/2

c − 1

(b)

Tv

Fig. 13 The construction of tiles for an edge and placement of tiles. The node areas and channels are shown
in red and the poles are shown by black bullets. The placement of the disks in tiles associated with the edge
is shown in blue and the disk that may be placed in the center of Tu is shown in magenta

We claim that G has an independent set of size of size at least k if and only if
(R′,P, k′) is a yes-instance of Disk Appending.

For every edge e of G, denote by neb the number of bend tiles and by nec the number
of straight and twisted tiles in the set of tiles corresponding to the embedding of e.

For the forward direction, assume that G has an independent set S of size k. For
every vertex v ∈ S, we consider the node tile Tv corresponding to v and place a disk
having its center at the center of the tile (pointO in Fig. 12). Consider an edge e = uv of
G. Because S is an independent set u /∈ S or v /∈ S. Assume without loss of generality
that v /∈ S and it may happen that u ∈ S. Then we can insert (c − 1)/2 disks in the
channels of Tv and Tu corresponding to e by Lemma 3.13, c − 2 disks per each bend
tile by Lemma 3.10, c−1 disks in the unique parity adjustment channel tile by Lemma
3.8, and c disks per each straight or twisted channel tile by Lemma 3.5 as shown in
Fig. 13b (we associate a pole disk shared by tiles with the first tile containing it along e
if moving from u to v). Thus, we placed 2(c−1)/2+ (c−2)neb + (c−1)+ cnec disks.
Summarizing over all edges and taking into account the disks corresponding to the
vertices of S, we obtain thatweplaced k′ = k+3n(c−1)/2+(c−2)nb+(c−1)n p+cnc
disks.

For the opposite direction, assume that at least k′ disk can be placed in R′ to
complement the packing P ′. By Lemmas 3.5 and 3.13, new disks can be only placed
inside channels and node areas of the tiles. Let S be a packing of k′ disks in R′ disjoint
with the disks of P such that the number of disks in S whose centers are properly
inside of the node areas of node tiles is minimum.

Consider an edge e = uv of G. By Lemmas 3.5 and 3.13, at most 2(c−1)/2+ (c−
2)neb + (c − 1) + cnec disks can be placed in the channels of Tv and Tu corresponding
to e, the bend tiles, the unique parity adjustment channel tile and all straight or twisted
channel tiles (see Fig. 13b for an illustration). Moreover, for each w ∈ V (G), at most
one disk of S can have its center properly inside of the node area of Tw. Summarizing
over all edges, we conclude that at least k disks of S have their centers in the node

123

1614 Discrete & Computational Geometry (2024) 72:1596–1629

C

ĥ

A B

D

(a)

δ

A

B

C

X Y

Z
(b)

ĥ′

Fig. 14 Rounding for the basic channels and node areas

areas of node tiles, and for every w ∈ V (G), at most one of these disks has its center
inside of the node area of Tw.

Suppose that there are two disks in S such that their centers are inside of the
node areas of Tu and Tv . Then by Lemmas 3.5 and 3.13, we conclude that at most
2(c− 1)/2+ (c− 2)neb + (c− 1)+ cnec − 1 disks are placed in the channels of Tv and
Tu corresponding to e and other tiles associated with e. Then by Observation 3.11, we
can relocate the disk with its center in the node area of Tv and move it to the channel
of Tv associated with e. Then we still would be able to place 2(c−1)/2+ (c−2)neb +
(c − 1) + cnec disks by the same arguments as in the proof for the forward direction.
This means that the relocation does not decrease the number of added disks. However,
this contradicts our assumption about the choice of S, as we decrease the number of
disks with centers that are properly inside the node areas of node tiles. Hence, for
every e = uv, there is no disk with its center in the node area of Tu or Tv .

Let S ⊆ V (G) be the set of all vertices w such that the node tile Tw has a disk of
S with its center inside of the node area. We obtain that S is an independent set G of
size at least k. This concludes the proof of our claim.

This completes the description of the reduction and the correctness proof. However,
we used disks with algebraic coordinates of their centers in the construction of the
tiles. To fix this, we can observe that our construction is robust enough to allow
rounding of coordinates. In particular, we can choose a sufficiently small constant
δ > 0 and use rational parameters ĥ and ĥ′ such that 2 + √

3 = h < ĥ ≤ h + δ and
2
√
3 = h′ < ĥ′ ≤ h′ + δ in the construction of the basic channels (see Fig. 4) and the

node areas (see Fig. 10a) instead of h and h′, respectively. Then for the crucial element
of the construction of the basic channel, we can make the following observation. If the
disks with their centers at A, B, and C are placed as shown in Fig. 14a then every disk
with its center in the triangle ABC has its center at distance at most δ from a certain
point D. For the node area, we can claim that if the disk with their centers at A, B, and
C are placed as shown in Fig. 14b then it holds that if three other disks have centers
in the triangle ABC then their centers are at distances at most δ from the centers of
the sides of the triangle. These observations allow us to adjust the basic gadgets used
in our reduction.

Similarly, we can round the parameters in the construction of the bend tiles (see
Fig. 9a) and the node tiles (see Figs. 10a and 11). Furthermore, the construction of tiles
(see Figs. 5, 9, and 12) allows us to accommodate the adjustments without changing
the size of the tiles. For this, we may need to modify placing of the filler disks. We

123

Discrete & Computational Geometry (2024) 72:1596–1629 1615

underline that all these adjustments are done for each type of tile and every tile contains
at most c2 disk. Therefore, each tile can be constructed in constant time.

To finish the proof of Theorem 1.1, note that the area of the rectilinear embedding of
G constructed by the algorithm fromProposition 3.2 isO(n2). Therefore, we construct
O(n2) tiles. Since the algorithm from Proposition 3.2 is polynomial, we conclude that
the instance (R′,P, k′) of Disk Appending is constructed in polynomial time. This
completes the proof of Theorem 1.1.

4 An FPT Algorithm for DISK REPACKING

In this section, we give our algorithmic result on Disk Repacking. Recall that in an
instance I of Disk Repacking, we are given a packing P of n unit disks inside a
rectangle R, and two integers h, k ≥ 0, and the task is to decide whether there exists a
packingP∗ of n+k unit disks that is obtained fromP by adding k new unit disks, and
relocating at most h disks of P to new positions inside R. We show in the following
(restated) theorem that Disk Repacking is FPT when parameterized by k + h.

Theorem 4.1 The Disk Repacking problem is FPT when parameterized by k + h.
Specifically, it is solvable in time (h + k)O(h+k) · |I |O(1).

We first give an overview of the proof before giving the formal details.
Proof of Theorem 1.2:Overview. On a high-level, the idea behind the algorithm

is as follows (in parentheses we also give relevant forward references to parts of the
formal proof). We first perform a greedy procedure to ensure that all “free” areas to
place disks can be intersected by a setH of at most k disks (Lemma 4.5). At this point,
we want to use color coding to find a coloring function of P , with the objective to
color all disks in P that are repacked by a solution (if one exists) blue, and all disks
in P that “closely surround” them by red. We need to ensure that, while relying on
the initial greedy procedure, it would suffice to correctly color only O(h + k) disks.
Indeed, this gives rise to the usage of a universal set, which is a “small” family of
coloring functions ensured to contain, if there exists a solution, at least one coloring
function that correctly colors allO(h+k) disks we care about (Lemma 4.9). Note that
although color coding is a classical tool in the design of parameterized algorithms [2,
11]; the novelty of our algorithm is in coming up with the correct geometric definitions
and objects that are suitable for the application of this tool.

Considering some coloring function (which is expected to be “compatible” with
some hypothetical solution), we identify “slots” and, more generally, “containers” in
its coloring pattern. In simple words, a slot is just a disk in R that does not intersect
any red disk (from P), and a container is a maximally connected region consisting
of slots. We are able to prove that, if the coloring is compatible with some solution,
then, for any container, either all or none of the disks in P that are contained in the
container are repacked (Lemma 4.12). This gives rise to a reduction from the problem
of finding a solution compatible with a given coloring to the Knapsack problem
(more precisely, an extended version of it), where each container corresponds to an
item whose weight is the number of disks in P that it contains (and thus, need to be
repacked, as mentioned in the previous sentence), and whose value is the number of

123

1616 Discrete & Computational Geometry (2024) 72:1596–1629

Fig. 15 An instance (P, R, h = 2, k = 7) of Disk Repacking. The disks in P are colored black. The
disks in some hole coverH are colored green (using dashed lines)

disks that can be packedwithin it. The goal of theExtended Knapsack problem is to
find a subset of containers, whose total weight is someW ′ ∈ {0, 1, . . . , h}, and whose
total value is at least W ′ + k (Lemma 4.23). Note that this corresponds to W ′ disks
in P contained in this subset being repacked (i.e., moved) within these containers,
such that we can pack at least W ′ + k disks within these containers – note that W ′ out
of these are the disks being moved within the containers, whereas k disks are being
newly added.

To execute the reduction described above, we need to be able to compute the value
of each container. For this purpose, we first prove that a container can be “described”
by onlyO(h+k)many disks fromP∪H; more precisely, we show that each container
is the union of disks contained in R that intersect at least one out ofO(h + k) disks in
P∪H, fromwhichwe subtract the union of some otherO(h+k) disks fromP (Lemma
4.16). Having this at hand, to compute the value of a container, we first “guess”, for
each disk packed by a (hypothetical) optimal packing of disks in the container, a disk
from P ∪ H contained in the container (making use of its description) with whom it
intersects. After that, we seek the corresponding optimal packing by solving systems
of polynomial inequalities of degree 2, with O(h + k) variables, and O((h + k)2)
equations (Lemma 4.17).

Proof of Theorem 1.2:Free Areas. To execute the plan above, we start with the
task of handling the “free” areas. For this, we have the following definition and an
immediate observation.

Definition 4.2 [Holes and Hole Cover] Let (P, R, h, k) be an instance of Disk
Repacking. The set of holes, denoted by Holes, is the set of all unit disks contained
in R that are disjoint from all unit disks in P . A set H of unit disks contained in R
such that the set of holes of (P ∪ H, R, h, k) is empty is called a hole cover.

Observation 4.3 Let (P, R, h, k) be an instance of Disk Repacking. Let H be a
hole cover. Then, every disk contained in R intersects at least one disk in P ∪ H.

Next, we present a definition and a lemma that will allow us to assume that there is
always a hole cover of small size at hand.

123

Discrete & Computational Geometry (2024) 72:1596–1629 1617

Fig. 16 A solution P∗ for the instance on the left. The disks in P∗ \ P are drawn in purple (using dashed
lines).The set of (H,P∗)-critical disks is the set of green disks from the figure on the left and the purple
disks from the figure on the right

Fig. 17 With respect to the instance and solution described in Figs. 15 and 16, the disks (H,P∗)-forced
to be blue are colored blue, and the disks (H,P∗)-forced to be red are colored red. Note that each of the
disks colored black can be colored either blue or red by an (H,P∗)-compatible coloring

Fig. 18 Consider an (H,P∗)-compatible coloring that colors blue all of the disks colored black in Fig. 17.
Then, we have four c-Containers, which roughly correspond to the areas colored by grey

Definition 4.4 [Dense instance] Let (P, R, h, k) be an instance of Disk Repacking.
We say that the instance is dense if it has a hole cover of size smaller than k.

Lemma 4.5 There exists a polynomial-time algorithm that, given an instance (P, R,

h, k) of Disk Repacking, either correctly determines that (P, R, h, k) is a yes-
instance or correctly determines that (P, R, h, k) is dense and returns a hole cover of
size smaller than k.

123

1618 Discrete & Computational Geometry (2024) 72:1596–1629

Proof We perform a simple greedy procedure. Initially,H = ∅. Then, as long as there
exists a disk D contained in R that is disjoint from all disks inP∪H, we add such a disk
D toH. The test for the existence of such a D can be performed by using a system of
polynomial equations of degree 2with two variables denoting the x- and y-coordinates
of the center of D. For each disk in P ∪ H, we have an equation enforcing that the
distance between its center and the center of D is at least 2, and additionally we have
two linear equations to enforce that D is contained in R. By Proposition 2.1, testing
whether this system has a solution (which corresponds to the sought disk D) can be
done is polynomial time. Once the process terminates, the algorithm checks whether
|H| ≥ k. If the answer is positive, then adding H (or, more precisely, any subset of
size k of it) to P is a solution, and so the algorithm answers yes, and otherwise the
instance is dense and the algorithm returnsH (which witnesses that). �

In the two following definitions, we identify the coloring functions that will be
useful.

Definition 4.6 [(H,P∗)-Critical Disks] Let (P, R, h, k) be a yes-instance of Disk
Repacking. Let H be a hole cover. Let P∗ be a solution to (P, R, h, k). The set of
(H,P∗)-critical disks, denoted by CritH,P∗ , is (P∗\P) ∪ H.

Definition 4.7 [(H,P∗)-Compatible Colorings] Let (P, R, h, k) be a yes-instance
of Disk Repacking. LetH be a hole cover. Let P∗ be a solution to (P, R, h, k). Let
c : P → {blue, red}. We say that c is (H,P∗)-compatible if:

1. For every D ∈ P \P∗, we have that c(D) = blue. We say that the disks in P \P∗
are (H,P∗)-forced to be blue.

2. For every D ∈ P ∩ P∗ whose center is at distance at most 4 from the center of
some disk in CritH,P∗ , we have that c(D) = red. We say that the disks in P ∩P∗
whose center is at distance at most 4 from the center of some disk in CritH,P∗ are
(H,P∗)-forced to be red.

We proceed to show that the number of disks inP that should be colored “correctly”
is only O(h + k). This is done using the following easy observation, in the following
lemma.

Observation 4.8 The number of pairwise disjoint disks inside a circle of radius r is
at most r2.

Lemma 4.9 Let (P, R, h, k) be a dense yes-instance of Disk Repacking. Let H be
a hole cover of size smaller than k. Let P∗ be a solution to (P, R, h, k). Then, the
number of disks (H,P∗)-forced to be either blue or red is altogether bounded by
O(h + k).

Proof Because P∗ is a solution and |H| < k, we have that |P \ P∗| ≤ h. So, at most
h disks are (H,P∗)-forced to be blue. Further, |CritH,P∗ | = |(P∗\P)∪H| < h+2k.
Observe that every disk in P ∩ P∗ whose center is at distance at most 4 from the
center of some disk in CritH,P∗ is contained inside a circle of radius 5 whose center is
the center of some disk in CritH,P∗ . So, due to Observation 4.8 and since the disks in

123

Discrete & Computational Geometry (2024) 72:1596–1629 1619

P ∩P∗ are pairwise disjoint, there exist at most π · 52 · (h + 2k) = O(h + k) disks in
P ∩P∗ whose center is at distance at most 4 from the center of some disk in CritH,P∗ .
In particular, this means that at most O(h + k) disks are (H,P∗)-forced to be red.

This completes the proof. �
Proof of Theorem 1.2:Values of Containers. Next, we present the definition of

slots and containers, in which we will aim to (re)pack disks. The definition is followed
by an observation and a lemma, which, in particular, state that if we try to repack at
least one disk in a container, we can just repack all disks in that container.

Definition 4.10 [c-Slots and c-Containers] Let (P, R, h, k) be an instance of Disk
Repacking. Let c : P → {blue, red}. The set of c-slots, denoted by Slotsc, is the set
of disks contained in R that are disjoint from all disks in P that are colored red by c.
The set of c-containers, denoted by Containersc, is the set of maximally connected
regions in the union of all disks in Slotsc.

Observation 4.11 Let (P, R, h, k) be an instance of Disk Repacking. Let c : P →
{blue, red}. Then, the regions in Containersc are pairwise disjoint.
Lemma 4.12 Let (P, R, h, k) be a yes-instance of Disk Repacking. LetH be a hole
cover. Let P∗ be a solution to (P, R, h, k). Let c : P → {blue, red} be (H,P∗)-
compatible. Then, for every region X ∈ Containersc, either all disks in P contained
in X belong to P \ P∗ or none of the disks in P ∪ P∗ contained in X belongs to
(P \ P∗) ∪ (P∗ \ P). 3

Proof Aiming for a contradiction, suppose that there exists a disk D contained in X
that belongs to (P\P∗)∪(P∗\P) and a disk D′ contained in X that belongs toP∩P∗.
Let γ be a curve connecting the centers of these disks that lies entirely inside X . By
the definition of a c-container and due to Observation 4.3, every point of this curve
contained in a disk that belongs to X and intersects a disk in P colored blue by c or a
disk inH. So, there must exist a point on γ that is the center of a disk D∗ that intersects
both a disk A contained in X that belongs to (P\P∗) ∪ H and a disk A′ contained in
X that belongs to P ∩ P∗. From the definition of a c-container, A′ is colored blue by
c. Moreover, note that the center of A′ is at distance at most 4 from the center of A,
since each of the centers of A and A′ is at distance at most 2 from the center of D∗.
However, since c is (H,P∗)-compatible, A′ is (H,P∗)-forced to be red and hence it
is colored red by c. Since c cannot color a disk both blue and red, we have reached a
contradiction. This completes the proof. �

We proceed to define the weight and value of a c-container, which will be required
for the reduction of our problem to Knapsack.

Definition 4.13 [Weight, Validity and Value of Containers] Let (P, R, h, k) be an
instance of Disk Repacking. Let c : P → {blue, red}. Let X ∈ Containersc. The
weight of X is the number of disks in P that it contains.

We say that X is valid if its weight is at most h. The value of X is the maximum
number of disks that can be packed inside X .

3 Note that (P\P∗)∪ (P∗\P) are essentially the (unit) disks that are moved by the solution plus the disks
that are newly added by the solution.

123

1620 Discrete & Computational Geometry (2024) 72:1596–1629

The following is a corollary of Lemma 4.12.

Corollary 4.14 Let (P, R, h, k) be a yes-instance of Disk Repacking. Let P∗ be a
solution to (P, R, h, k). Let c : P → {blue, red} be (H,P∗)-compatible. Then, every
disk in (P\P∗) ∪ (P∗\P) is a c-slot, and it is contained in a valid c-container.

Now, we define how to “easily” describe a container, and then prove that this
description be encoded compactly.

Definition 4.15 [Descriptions of Containers] Let (P, R, h, k) be an instance of Disk
Repacking. Let H be a hole cover. Let c : P → {blue, red}. An H-description (or,
for short, description) of a region X ∈ Containersc is a pair (D1,D2) of a subset
D1 ⊆ P ∪H and a minimal subset D2 ⊆ P such that X equals the set of all points in
R at distance less than 2 from at least one disk in D1 and at least 2 from all disks in
D2.

Lemma 4.16 Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole
cover. Let c : P → {blue, red}. Let X ∈ Containersc. Then, X has at least one
description (D1,D2). Moreover, every description (D1,D2) of X satisfies |D1| +
|D2| = O(h′ + k′) where h′ is the weight of X, and k′ is the number of disks in H
contained in X.

Proof ByObservation 4.3, every c-slot intersects at least one disk in {D ∈ P : c(D) =
blue}∪H and is disjoint from all disks in {D ∈ P : c(D) = red}. Further, every point
in every disk in {D ∈ P : c(D) = blue}∪H is contained in a c-slot. So, it is immediate
that X has a description (D1,D2), and that |D1| = O(h′ + k′). Due to Observation
4.8 and since the disks in P ∪ H are pairwise disjoint, any circle of radius 5 whose
center is a center of some disk in {D ∈ P : c(D) = blue} ∪ H can contain inside at
most 52 disks from {D ∈ P : c(D) = red}. Due to the minimality of D2 (which is a
subset of {D ∈ P : c(D) = red}), every disk in it must be contained inside a circle
of radius 5 whose center is a center of some disk in {D ∈ P : c(D) = blue} ∪ H.
Hence, |D2| ≤ |D1| · 52 = O(h′ + k′). �

Next, we use a description in order to efficiently compute the value of a c-container.

Lemma 4.17 There is an (h + k)O(h+k) · |I |O(1)-time algorithm that, given a dense
instance I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than
k, c : P → {blue, red} and a valid region X with a description (D1,D2), computes
the value of X.

Proof Given I = (P, R, h, k),H, c, X and (D1,D2), the algorithm works as follows.
For � = h + k, h + k − 1, . . . , 1, and for every vector (D1, D2, . . . , D�) ∈ D1 ×
D1 × · · · × D1, it tests whether there exist � disks S1, S2, . . . , S� such that, for every
i ∈ {1, 2, . . . , �}, Si intersects Di , is contained in R and is disjoint from all disks in
D2. The test is done by constructing a system of polynomial equations of degree 2 with
2� variables and � · (|D2| + 2) equations as follows. For every i ∈ {1, 2, . . . , �}, we
have two variables, denoting the x- and y-coordinates of the center of Si , one equation
enforcing that the distance between the center of Si and the center of Di is smaller than

123

Discrete & Computational Geometry (2024) 72:1596–1629 1621

2, |D2| equations enforcing that the distance between the center of Si and the center
of each of the disks in D2 is at least 2, and two linear equations enforcing that Si is
contained inside R. If the answer is positive, then the algorithm returns that the value
of X is � and terminates; else, it proceeds to the next iteration. Observe that, when
� = 1, the algorithm necessarily terminates (since X contains at least one c-slot).

The correctness of the algorithm is immediate from the definition of a description
and the exhaustive search that it performs. As for the running time, first observe that,
by Lemma 4.16 and since X is valid and |H| < k, |D1| + |D2| ≤ O(h + k). So,
for a given �, we have |D1|O(�) = (h + k)O(h+k) choices of vectors. Now, consider
the iteration corresponding to some � and some vector. Then, we solve a system of
polynomial equations of degree 2 withO(h+k) variables andO((h+k)2) equations.
By Proposition 2.1, this can be done in time (h+k)O(h+k) ·|I |O(1). Thus, the algorithm
indeed runs in time (h + k)O(h+k) · |I |O(1). �

The following definition captures the set of all descriptions.

Definition 4.18 [Blueprint] Let (P, R, h, k) be an instance of Disk Repacking. Let
H be a hole cover. Let c : P → {blue, red}. An (H, c)-blueprint is

a collection of pairs of sets Blueprint ⊆ 2P∪H × 2P , where the first elements of
the pair are pairwise-disjoint subsets of P ∪ H, such that each region in Containersc
has exactly one description in Blueprint, and every pair in Blueprint is a description
of a region in Containersc.

Next, we show how to compute blueprints.

Lemma 4.19 There exists a polynomial-time algorithm that, given an instance
(P, R, h, k) of Disk Repacking,

a hole cover H, and c : P → {blue, red}, outputs an (H, c)-blueprint.

Proof We will perform a simple greedy procedure to identify, for each disk in {D ∈
P : c(D) = blue} ∪ H, the description of the region that contains it. Observe that
every c-container contains at least one disk in {D ∈ P : c(D) = blue} ∪ H (due to
Observation 4.3 and the definition of a c-container). So, for every disk D ∈ {D ∈ P :
c(D) = blue} ∪ H such that we have not already taken a description of a region that
contains it„4 we will take exactly one description (D1,D2) among the descriptions we
identified such that D is contained in D1. Thus, we will obtain an (H, c)-blueprint.

To describe the greedy procedure, consider some D ∈ {D ∈ P : c(D) = blue}∪H.
Let us first show how to attain D1. For this purpose, we initialize D1 = {D}. Then,
for every pair of disks A ∈ D1 and B ∈ ({D ∈ P : c(D) = blue} ∪ H)\D1, we test
whether there exists a pair of disks C and C ′ that are contained in R, intersect each
other, are disjoint from all disks in {D ∈ P : c(D) = red}, and such that C intersects
A and C ′ intersects B. The test for the existence of such a C is performed by using a
system of polynomial equations of degree 2 with four variables denoting the x- and
y-coordinates of the centers of C and C ′. For each disk in {D ∈ P : c(D) = red},
we have two equations enforcing that the distances between its center and the centers
of C and C ′ are each at least 2. Additionally, we have three equations to enforce that

4 Whether a region contains a specific disk or not can be directly tested by the definition of its description.

123

1622 Discrete & Computational Geometry (2024) 72:1596–1629

the distance between the centers of C and C ′ is smaller than 2, the distance between
the centers of C and A is smaller than 2, and the distance between the centers of C ′
and B is smaller than 2, as well as four linear equations to enforce that C and C ′
are contained in R. By Proposition 2.1, testing whether this system has a solution
(which corresponds to the sought disks C and C ′) can be done is polynomial time. If
the answer is positive, then we add B to D1. In case at least one pair (A, B) resulted
in the addition of B to D1, then we repeat the entire loop, iterating again over all
pairs (A, B) (where the domain from which they are taken is updated as a new disk
was added to D1). Notice that we can perform at most |P| repetitions, and that each
repetition results in at most |P ∪ H|2 many iterations, each taking polynomial time.
Hence, the procedure, so far, runs in polynomial time.

Now, let us show how to attain D2. For this purpose, we initialize D2 = {D ∈ P :
c(D) = red}. Now, for every A ∈ {D ∈ P : c(D) = red}, we test whether there
exists a disk C that is contained in R and intersects both A and at least one disk in
D1, and is disjoint from all disks in D2 \ {A}. The test can be performed by iterating
over every disk B ∈ D1, and using a system of polynomial equations of degree 2 with
two variables denoting the x- and y-coordinates of the center of C . For each disk in
D2 \ {A}, we have an equation enforcing that the distance between its center and the
center of C is at least 2, and additionally we have two equations to enforce that the
distance between the center of C and each of the centers of A and B is smaller than 2,
as well as two linear equations to enforce that C is contained in R. By Proposition 2.1,
testing whether this system has a solution (which corresponds to the sought disk C)
can be done is polynomial time. If the answer is positive, then we remove A fromD2.
Notice that this phase of the procedure also runs in polynomial time. Moreover, the
correctness of the entire procedure directly follows from the definitions of a c-container
and a description. �

We proceed to define the (extended version of the) Knapsack problem and the
instances of this problem that our reduction produces.

Definition 4.20 [(Extended)Knapsack] In the (Extended) Knapsack problem,we
are given a collection of n items U , where each item u ∈ U has a weight w(u) ∈ N0
and a value v(u) ∈ N0, and an integer W ∈ N0. The objective is to find, for every
W ′ ∈ {0, 1, . . . ,W }, the maximum VW ′ ∈ N0 for which there exists a subset of
items S ⊆ {1, 2, . . . , n} such that

∑
i∈S w(u) ≤ W ′ and

∑
i∈S v(u) ≥ VW ′ . Such an

instance of Knapsack is denoted by the tuple (U , w, v,W).

Definition 4.21 [(H, c)-Knapsackinstance] Let (P, R, h, k) be an instance of Disk
Repacking. Let H be a hole cover. Let c : P → {blue, red}. The (H, c)-Knapsack
instance is the instance (U , w, v,W) of Knapsack defined as follows:U is the set of
all valid regions in Containersc; for each X ∈ U , w(X) and v(X) are the weight and
value of X (see Definition 4.13); W = h.

Proposition 4.22 [9] The (Extended) Knapsack problem is solvable in timeO(|U |·
W).

We now to prove the correspondence between our problem when we restrict the
solution set to solutions compatible with a given coloring and theKnapsack problem.

123

Discrete & Computational Geometry (2024) 72:1596–1629 1623

Lemma 4.23 Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole
cover. Let c : P → {blue, red}. Then, there exists a solution P∗ to (P, R, h, k)
such that c is compatible with P∗ if and only if for the (H, c)-Knapsack instance
(U , w, v,W), there exists W ′ ∈ {0, 1, . . . ,W } such that VW ′ ≥ W ′ + k.

Proof In one direction, suppose that there exists a solutionP∗ to (P, R, h, k) such that
c is compatible with P∗. Let X1, X2, . . . , X� be the c-containers that contain at least
one disk from (P\P∗)∪(P∗\P). Observation 4.11 implies that these c-containers are
pairwise disjoint. By Lemma 4.12, and since c is compatible with P∗, all disks in P
contained in X1∪X2∪· · ·∪X� belong toP\P∗. Finally, byCorollary 4.14 and since c is
compatible withP∗, all disks in (P\P∗)∪(P∗\P) are contained in X1∪X2∪· · ·∪X�,
and all of these c-containers are valid. So, because P∗ can repack h disks from P , the
total weight of these c-containers must be some W ′ ∈ {0, 1, . . . , h} = {0, 1, . . . ,W },
and since P∗ also packs k additional disks, the total value of these c-containers must
be at least W ′ + k (to accommodate all of the repacked and k newly packed disks).
Thus, VW ′ ≥ W ′ + k.

In the other direction, suppose that there exists W ′ ∈ {0, 1, . . . ,W } such that
VW ′ ≥ W ′ + k. This means that there exist c-containers X1, X2, . . . , X� whose total
weight is W ′ ∈ {0, 1, . . . , h} and whose total value is at least W ′ + k. However,
because these c-containers are pairwise disjoint (by Observation 4.11), this means
that we can construct a solution P∗ such that c is compatible with P∗ by repacking all
the disks in P that are contained in X1, X2, . . . , X� (there are at most h such disks)
and, additionally, inserting k new disks, within X1, X2, . . . , X�. This completes the
proof. �

The following is a corollary of Lemmas 4.17 and 4.19.

Corollary 4.24 There exists an (h + k)O(h+k) · |I |O(1)-time algorithm that, given a
dense instance I = (P, R, h, k) of Disk Repacking, a hole coverH of size smaller
than k and c : P → {blue, red}, computes the (H, c)-Knapsack instance.

To compute coloring functions,wewill use the following definition and proposition.

Definition 4.25 [(U , k)-Universal Set] For a universeU and k ∈ N, a (U , k)-universal
set is a collection C of functions f : U → {blue, red} such that for every pair of
disjoint sets B, R ⊆ U whose union has size at most k, there exists c ∈ C that colors
all integers in B blue and all integers in R red.

Proposition 4.26 [29] There exists an algorithm that, given a universe U of size
n and k ∈ N, constructs a (U , k)-universal set of size 2k+O(log2 k) log n in time
2k+O(log2 k)n log n.

Based on the definition of a universal set, we define the collection of Knapsack
instances relevant to our reduction.

Definition 4.27 [(H, C)-Knapsack Collection] Let (P, R, h, k) be an instance of
Disk Repacking. Let H be a hole cover. Let C be a (P, q(h + k))-universal set,
where q is the constant hidden in the O-notation in Lemma 4.9. Then, the (H, C)-
Knapsackcollection is the collection of Knapsack instances that includes, for every
c ∈ C, the (H, c)-Knapsack instance.

123

1624 Discrete & Computational Geometry (2024) 72:1596–1629

The following is a corollary of Corollary 4.24.

Corollary 4.28 There exists an (h + k)O(h+k) · |I |O(1)-time algorithm that, given a
dense instance I = (P, R, h, k) of Disk Repacking, a hole coverH of size smaller
than k and a (P, q(h+k))-universal set C, computes the (H, C)-Knapsack collection.

Next, we prove the correspondence between our problem and the collection of
Knapsack instances we have just defined.

Lemma 4.29 Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole
cover. Let C be a (P, q(h + k))-universal set. Then, (P, R, h, k) is a yes-instance of
Disk Repacking if and only if the (H, C)-Knapsack collection contains an instance
(U , w, v,W , V) for which there exists W ′ ∈ {0, 1, . . . ,W } such that VW ′ ≥ W ′ + k.

Proof In one direction, suppose that (P, R, h, k) is a yes-instance. By the definition
of a (P, q(h + k))-universal set and due to Lemma 4.9, there exists c ∈ C that is
compatible with P∗. So, the (H, c)-Knapsack instance is contained in the (H, C)-
Knapsack collection (U , w, v,W , V), and by Lemma 4.23, for this instance there
exists W ′ ∈ {0, 1, . . . ,W } such that VW ′ ≥ W ′ + k.

In the other direction, suppose that the (H, C)-Knapsack collection contains an
instance (U , w, v,W , V) for which there exists W ′ ∈ {0, 1, . . . ,W } such that VW ′ ≥
W ′ + k. This instance is a (H, c)-Knapsack instance for some c ∈ C. So, by Lemma
4.23, (P, R, h, k) is, in particular, a yes-instance of Disk Repacking. �

Proof of Theorem 1.2:Putting It All Together. We are now ready to make the
final step of the proof of Theorem 1.2.

The algorithm works as follows. Given an instance (P, R, h, k) of Disk Repack-
ing, it calls the algorithm in Lemma 4.5 to either correctly determine that (P, R, h, k)
is a yes-instance or correctly determine that (P, R, h, k) is dense and obtain a hole
cover H of size smaller than k. In the first case, the algorithm is done. In the second
case, the algorithm proceeds as follows. First, it calls the algorithm in Proposition 4.26
to obtain a (P, q(h+k))-universal set C. Then, it calls the algorithm in Corollary 4.28
to obtain the (H, C)-Knapsack collection. Afterwards, it uses the algorithm of Propo-
sition 4.22 to determinewhether the (H, C)-Knapsack collection contains an instance
(U , w, v,W , V) for which there exists W ′ ∈ {0, 1, . . . ,W } such that VW ′ ≥ W ′ + k.

The correctness of the algorithm follows from Lemma 4.29. The runtime bound of
(h + k)O(h+k) · |I |O(1) follows from the runtimes bounds of the algorithms that the
algorithm calls, stated inLemma4.5, Proposition 4.26, Corollary 4.28, and Proposition
4.22.

This concludes the proof of Theorem 1.2.

5 An FPT Approximation for MaximumDisk Repacking

In this section, we use Theorem 1.2 to show that the optimization variant of Disk
Repacking, called Max Disk Repacking, admits an FPT-AS (Fixed-Parameter
Tractable Approximation Scheme), when parameterized by h. Let us remind that in

123

Discrete & Computational Geometry (2024) 72:1596–1629 1625

Max Disk Repacking, we are given a packing P of n disks in a rectangle R and
an integer h, and the task is to maximize the number of new disks that can be added
to the packing if we are allowed to relocate at most h disks of P . Given an instance
of Max Disk Repacking, we use OPTh the maximum number of disks that can be
added to the input packing if we can relocate at most h disks.

We first need an algorithm for the special case of Max Disk Repacking when
h = 0, that is, for the optimization version of Disk Appending. Let OPT be the
maximum number of disks that can be added in a rectangle to complement a given
packing P . For a fixed ε > 0, we design an algorithm that returns a packing P∗ ⊇ P
of at least n + (1− ε) ·OPT0 disks. The algorithm is based on the shifting technique,
originally introduced by Hochbaum andMaass [21] (also related to Baker’s technique
[4]).

Lemma 5.1 For any 0 < ε < 1, there exists an algorithm that for a packing of n
disks in a rectangle, returns a packing with at least n + (1 − ε) · OPT0 disks in time(1

ε

)O(1/ε2) · |I |O(1), where |I | is the input size.
Proof For the scope of this proof, we denote OPT := OPT0. Let S∗, |S∗| = OPT,
be the set of newly added disks in an optimal solution. Let � ≥ 1 be a fixed positive
integer. Recall that the instance is contained inside a bounding rectangle R. Let us
assume that the bottom-left corner of R has Cartesian coordinates (0, 0). For every
1 ≤ i, j ≤ 2�, let Gi, j be a grid of side-length �× �, with origin at (−i,− j). We first
prove the following simple observation.

Observation 5.2 There exists a pair (i, j) with 1 ≤ i, j ≤ 2�, such that the number of
disks of S∗ that do not intersect with the boundary of the grid cells in Gi, j is at least
(1 − 1

�
)2 · OPT.

Proof Since the diameter of every disk in S∗ is 2, there exists an index 1 ≤ i ≤ 2�
such that at most 1

�
fraction of disks from S∗, i.e., at most OPT/� disks, intersect the

vertical lines x = a� + i for integers a. Fix this value of index i , and let S∗
i ⊆ S∗

denote the subset of disks that do not intersect the vertical lines x = a� + i . By
previous argument, |S∗

i | ≥ (1− 1
�
) ·OPT). Again, by a similar argument, there exists

an index 1 ≤ j ≤ 2�, such that at most 1
�
fraction of the disks of S∗

i , intersect the
horizontal lines b� + j for integers b. Fix this integer j , and let S∗

i, j ⊆ S∗
i denote the

subset of disks that do not intersect vertical lines x = a�+ i as well as do not intersect
horizontal lines y = b�+ j . It follows that |S∗

i, j | ≥ (1− 1
�
) · |S∗

i | ≥ (1− 1
�
)2 ·OPT. �

For any 1 ≤ i, j ≤ n, and a grid cell C in Gi, j , let
(C) be the following
subproblem.LetP(C) ⊆ P denote the packingof the original disks that are completely
contained in C , or partially intersect with C . The goal is to add the maximum number
of new disks to obtain a packing P∗(C). Note that the number of original disks in P ,
as well as the new disks that can be added inside C , is upper bounded by �2, which is
a constant. Therefore, an optimal solution to
(C) can be found by solving a system
of polynomial equations. Let OPTi, j denote the sum of the optimal values for the
subproblems
(C), over all grid cells C in Gi, j .

123

1626 Discrete & Computational Geometry (2024) 72:1596–1629

Let P(C) denote the packing of the original disks that are completely contained in
the cell C , or partially intersect with C . Recall that C is a square of size � × �, and
since P(C) is a packing, |P(C)| = O(�2). Furthermore, the number of new disks that
can be added to C to obtain a new packing is also upper bounded by p = O(�2). We
first “guess” the number of new disks, by trying all possible values q between 1 and
p = O(�2). Now, we construct a system of polynomial equations with 2q variables
and q(|P| + 4) equations, as follows. For every new disk Di for 1 ≤ i ≤ q, we have
two variables corresponding to the x and y coordinates of its center in the new packing.
For every new disk Di , we also add 4 linear equations that restrict the center to lie at
a horizontal/vertical distance of at least 1 from the perimeter of the cell, so that the
disk Di lies completely within the cell C . Finally, for every disk D′

j in the original
packing P , we have an equation that enforces that the distance between the center of
Di and that of D′

j must be at least 2. Now, we solve this system of O(�2) variables

and O(�4) equations in time O(�)O(�2) time, using Proposition 2.1.
By Observation 5.2, there exists a pair (i, j) with 1 ≤ i, j ≤ �, such that OPTi, j ≥(

1 − 1
�

)2 · OPT, since S∗
i, j as defined in the proof of Observation 5.2 is a feasible

solution for the corresponding subproblem. Therefore, for every 1 ≤ i, j ≤ 2�, and
for every grid cell C in Gi, j , we solve the subproblem
(C), and return the best
solution. Note that if we are looking for an (1 − ε)-approximation to the number of

newly added disks, then (1 − ε) ≤ (
1 − 1

�

)2 ≤ 1 − 1
�
That is, � = 1/ε. Thus, the

running time of this algorithm is
(1

ε

)O(1/ε2) · |I |O(1). �
Now we design our FPT-AS for Max Disk Repacking using a combination

of Lemma 5.1 and Theorem 1.2. This result is formally (re)stated in the following
theorem.

Theorem 5.3 For any 0 < ε < 1, there exists an algorithm that, given an instance
(P, R, h) of Max Disk Repacking, returns a packingP∗ into R with at least n+(1−
ε) ·OPTh disks in timemax

{(h+1
ε

)O(h/ε)
,
(1

ε

)O(1/ε2)
}

· |I |O(1) ≤ (h+1
ε

)O(h/ε+1/ε2) ·
|I |O(1), where OPTh is the maximum number of disks that can be added to the input
packing if we can relocate at most h disks.

Proof Let 0 < ε < 1. Consider an instance (P, R, h) of Max Disk Repacking.
We find the maximum nonnegative integer k ≤ 10 h/ε such that (P, R, h, k) is a
yes-instance of Disk Repacking using the algorithm from Theorem 1.2. This can

be done in
(h+1

ε

)O(h/ε) · |I |O(1) time. Next, we run the algorithm from Lemma 5.1
for (G, R) for ε′ = 1

2ε, i.e., assuming that relocations of disks are not allowed. The

algorithm runs in
(1

ε

)O(1/ε2) · |I |O(1) time and returns a solution of size k′. We set
k∗ = max{k, k′}. We claim that (1− ε)OPTh ≤ k∗ ≤ OPTh . The second inequality is
trivial. To show that (1 − ε)OPTh ≤ k∗, we consider two cases.

Suppose that OPTh ≤ 10h/ε. Then OPTh = k as the algorithm from Theorem 1.2
is exact and (1 − ε)OPTh ≤ OPTh = k ≤ k∗.

Assume thatOPTh > 10h/ε. Let S be the set of added disks in an optimum solution
for (P, R, h) and letL ⊆ P be the set of relocated disks. Denote byOPT′ themaximum
number of disks that canbe added toP without relocations.Observe that every disk inL

123

Discrete & Computational Geometry (2024) 72:1596–1629 1627

intersects at most 5 disks ofS. Therefore,OPT′ ≥ |S|−5|L| ≥ OPTh−5h. By Lemma
5.1, (1 − ε/2)OPT′ ≤ k′. We obtain that (1 − ε/2)(OPTh − 5h) ≤ k′ ≤ k∗. Because
OPTh > 10 h/ε, k∗ ≥ (1−ε/2)(OPTh−εOPTh/2) = (1−ε/2)2OPTh ≥ (1−ε)OPTh .
This proves the claim.

We conclude that k∗ is the required approximation of OPTh . To conclude the proof,
note that the algorithms from Theorem 1.2 and Lemma 5.1 can be adapted to return
solutions, that is, the sets of added and relocated disks. �

6 Conclusion and Open Questions

Wehave shown in Theorem 1.1 thatDisk Repacking problem is NP-hard even if h =
0. On the other hand, by Theorem 1.2, Disk Repacking is FPT when parameterized
by k and h. Both theorems naturally lead to the question about parameterization by
k only. The difficulty here is that even for adding one disk, one has to relocate many
disks. Already for k = 1, we do not know, whether the problem is in P or is NP-hard.

Another natural question stemming from Theorem 1.2 is about kernelization of
Disk Repacking. DoesDisk Repacking admit a polynomial kernel with parameters
k and h? (We refer to books [11, 16] for an introduction to kernelization).

Finally, approximation of Disk Repacking is an interesting research direction.
In Theorem 1.3 we demonstrated that our FPT algorithm can be used to construct an
FPT-AS with respect to h for Max Disk Repacking. We leave open the question
about polynomial approximation.Another open question concerns the approximability
of the minimum number of relocations h for a given k. Already for k = 1 finding a
good approximation of h is a challenging problem.

Acknowledgements The research leading to these results has received funding from the Research Council
of Norway via the project BWCA (Grant No. 314528), the European Research Council (ERC) via grant
LOPPRE, reference 819416, and Israel Science Foundation (ISF) Grant No. 1176/18. We are grateful to
the anonymous reviewers for careful reading of the paper and helpful suggestions.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Data Availability There is no data associated with the manuscript.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for er-completeness of two-dimensional pack-
ing problems. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
1014–1021. IEEE (2020)

123

http://creativecommons.org/licenses/by/4.0/

1628 Discrete & Computational Geometry (2024) 72:1596–1629

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Ashok, P., Kolay, S., Meesum, S.M., Saurabh, S.: Parameterized complexity of strip packing and

minimum volume packing. Theor. Comput. Sci. 661, 56–64 (2017)
4. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41(1),

153–180 (1994)
5. Bansal,N.,Khan,A.: Improved approximation algorithm for two-dimensional bin packing. In:Chekuri,

C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 13–25. SIAM (2014)

6. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2009)
7. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numer-

ical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)
8. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidi-

mensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)
9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,

New York (2009)
10. Croft, H.T., Falconer, K., Guy, R.K.: Unsolved Problems in Geometry: Unsolved Problems in Intuitive

Mathematics, vol. 2. Springer, Berlin (2012)
11. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer, Berlin (2015)
12. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. CoRR https://arxiv.

org/abs/1008.1224 (2010)
13. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2012)
14. Fekete, S.P., Keldenich, P., Scheffer, C.: Packing disks into disks with optimal worst-case density.

Discrete Comput. Geom. 69(1), 51–90 (2023)
15. Fomin, F.V., Golovach, P.A., Inamdar, T., Zehavi, M.: (re)packing equal disks into rectangle. In:

Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 60–16017.
Schloss Dagstuhl, Leibniz (2022)

16. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization. Theory of Parameterized Prepro-
cessing, p. 515. Cambridge University Press, Cambridge (2019)

17. Gálvez, W., Grandoni, F., Ingala, S., Heydrich, S., Khan, A., Wiese, A.: Approximating geometric
knapsack via l-packings. ACM Trans. Algorithms 17(4), 33–13367 (2021)

18. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W. H. Freeman, New York (1979)

19. Goldberg, M.: The packing of equal circles in a square. Math. Mag. 43(1), 24–30 (1970)
20. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-approximation for strip packing. Comput.

Geom. 47(2), 248–267 (2014)
21. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image

processing and VLSI. J. ACM 32(1), 130–136 (1985)
22. Jansen, K., Rau,M.: Closing the gap for pseudo-polynomial strip packing. In: Bender,M.A., Svensson,

O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11,
2019,Munich/Garching,Germany.LIPIcs, vol. 144, pp. 62–16214. SchlossDagstuhl, Leibniz-Zentrum
für Informatik (2019)

23. Kepler, J.: Strena Seu de Nive Sexangula. Godefrid Tampach, Frankfurt (1611)
24. Litvinchev, I.S., Infante, L., Espinosa, E.L.O.: Approximate circle packing in a rectangular container:

Integer programming formulations and valid inequalities. In:González-Ramírez, R.G., Schulte, F., Voß,
S., Díaz, J.A.C. (eds.) Computational Logistics - 5th International Conference, ICCL 2014, Valparaiso,
Chile, September 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8760, pp. 47–60.
Springer, Berlin (2014)

25. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the
two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998)

26. Locatelli,M., Raber,U.: Packing equal circles in a square: a deterministic global optimization approach.
Discrete Appl. Math. 122(1–3), 139–166 (2002)

27. Maranas, C.D., Floudas, C.A., Pardalos, P.M.: New results in the packing of equal circles in a square.
Discrete Math. 142(1–3), 287–293 (1995)

28. Mohar, B.: Face covers and the genus problem for apex graphs. J. Comb. Theory Ser. B 82(1), 102–117
(2001)

123

https://arxiv.org/abs/1008.1224
https://arxiv.org/abs/1008.1224

Discrete & Computational Geometry (2024) 72:1596–1629 1629

29. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual
Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995,
pp. 182–191. IEEE Computer Society (1995)

30. Nurmela, K.J., Östergård, P.R.J.: Packing up to 50 equal circles in a square. Discrete Comput. Geom.
18(1), 111–120 (1997)

31. Nurmela, K.J., Östergård, P.R.J.: More optimal packings of equal circles in a square. Discrete Comput.
Geom. 22(3), 439–457 (1999)

32. Schaer, J.: The densest packing of 9 circles in a square. Can. Math. Bull. 8(3), 273–277 (1965)
33. Specht, E.: The best known packings of equal circles in a square (up to N= 10000). English (2015).

http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html
34. Szabó, P.G.,Markót,M.C., Csendes, T., Specht, E., Casado, L.G., García, I.: NewApproaches to Circle

Packing in a Square - With Program Codes. Optimization and Its Applications, vol. 6. Springer, Berlin
(2007)

35. Tóth, L.F.: Lagerungen in der Ebene Auf der Kugel und Im Raum. Springer, Berlin (1953)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Fedor V. Fomin1 · Petr A. Golovach1 · Tanmay Inamdar2 · Saket Saurabh1,3 ·
Meirav Zehavi4

Fedor V. Fomin
Fedor.Fomin@uib.no

Petr A. Golovach
Petr.Golovach@uib.no

Tanmay Inamdar
taninamdar@gmail.com

Saket Saurabh
saket@imsc.res.in

Meirav Zehavi
zehavimeirav@gmail.com

1 University of Bergen, Bergen, Norway

2 Indian Institute of Technology, Jodhpur, Jodhpur, India

3 Institute of Mathematical Sciences, Chennai, India

4 Ben-Guiron University, Beer-Sheva, Israel

123

http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html

	(Re)packing Equal Disks into Rectangle
	Abstract
	1 Introduction
	2 Preliminaries
	3 Hardness of Disk Appending
	4 An FPT Algorithm for Disk Repacking
	5 An FPT Approximation for Maximum Disk Repacking
	6 Conclusion and Open Questions
	Acknowledgements
	References

