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a b s t r a c t

This paper explores the behavior of present-biased agents, that is, agents who erroneously anticipate
the costs of future actions compared to their real costs. Specifically, we extend the original framework
proposed by Akerlof (1991) for studying various aspects of human behavior related to time-inconsistent
planning, including procrastination, and abandonment, as well as the elegant graph-theoretic model
encapsulating this framework recently proposed by Kleinberg and Oren (2014). The benefit of this
extension is twofold. First, it enables to perform fine-grained analysis of the behavior of present-
biased agents depending on the optimization task they have to perform. In particular, we study
covering tasks vs. hitting tasks and show that the ratio between the cost of the solutions computed
by present-biased agents and the cost of the optimal solutions may differ significantly depending on
the problem constraints. Second, it enables us to study not only the underestimation of future costs,
coupled with minimization problems, but also all combinations of minimization/maximization, and
underestimation/overestimation. We study the four scenarios, and establish upper bounds on the cost
ratio for three of them (the cost ratio for the original scenario was known to be unbounded), providing
a complete global picture of the behavior of present-biased agents, as far as optimization tasks are
concerned.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. The framework

Present bias is the term used in behavioral economics to de-
cribe the gap between the anticipated costs of future actions and
heir real costs. A simple mathematical model of present bias was
uggested by Akerlof (1991). In this model the cost of an action
hat will be perceived in the future is assumed to be β times
maller than its actual cost, for some constant β < 1, called the
egree of present bias. The model was used for studying various
spects of human behavior related to time-inconsistent planning,
ncluding procrastination, and abandonment.

Kleinberg and Oren (2014, 2018) introduced an elegant graph-
heoretic model encapsulating Akerlof’s model. The approach is
ased on analyzing how an agent navigates from a source s to a

target t in a directed edge-weighted graph G, called task graph.
At any step, the agent chooses the next edge to traverse from

✩ A preliminary version of this paper was presented at AAAI 2021. The
research received funding from the Research Council of Norway via the project
BWCA (grant no. 314528) and from the French National Research Agency (ANR)
via the project ‘‘DESCARTES’’.
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the current vertex v thanks to an estimation of the length of the
shortest path from v to t passing through each edge outgoing
from v. A crucial characteristic of the model is that the estimation
of the path lengths is present-biased. More specifically, the model
of Kleinberg and Oren includes a positive parameter β < 1,
the degree of present bias, and the length of a path x0, . . . , xk
rom x0 = v to xk = t in G is evaluated as ω0 + β

∑k−1
i=1 ωi

here ωi denotes the weight of edge (xi, xi+1), for every i ∈

0, . . . , k − 1}. As a result, the agent may choose an outgoing
dge that is not on any shortest path from v to t , modeling
rocrastination by underestimating the cost of future actions to
e performed whenever acting now in some given way. With
his effect cumulating along its way from s to t , the agent may
ignificantly diverge from shortest s-t paths, which demonstrates
he negative impact of procrastination. Moreover, the cost ratio,
hich is the ratio between the cost of the path traversed by
n agent with present bias and the cost of a shortest path,
ould be arbitrarily large. An illustrating example is depicted on
ig. 1, borrowed from Kleinberg and Oren (2018), and originally
ue to Akerlof (1991). Among many results, Kleinberg and Oren
howed that any graph in which a present-biased agent incurs
ignificantly more cost than an optimal agent must contain a large
pecific structure as a minor. This structure, called procrastination
structure, is specifically the one depicted on Fig. 1.

There also could be situations when a researcher might want
to design artificially intelligent agents intentionally with a β
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Procrastination structure as displayed in Kleinberg and Oren (2018);
Assuming x + βc < c, the path followed by the agent is s, v1, . . . , v5, t; The
atio between the length of the path followed by the agent and the shortest s-t
ath can be made arbitrarily large by adding more nodes vk with k ≥ 5.

hat is different from 1. Let us consider young male adults who
end to adopt conduct with risk, whether in extreme sports or
imply driving vehicles. They exhibit overconfidence, which can
e viewed as underestimating the probability of bad events. An
I driving a car must not show the same overconfidence. Such
n AI’s cost function must instead reflect one of prudent and
xperienced drivers, that is, be based on a relatively high value of
he probability of bad events. However, it can be beneficial that
I driving an emergency vehicle (fire trucks, ambulances, etc.)
e modified, by biasing the estimation of future actions, e.g., by
orcing an underestimation of the probability of bad events, so
hat such vehicles do not remain stuck in long lines of cars
ecause the AI driver is too careful and does not want to pass
he cars in front.

In this paper, we are interested in understanding what kind of
asks performed by the agent result in a significant cost ratio. Let
s take the concrete example of an agent willing to acquire the
nowledge of a set of scientific concepts by reading books. Each
ook covers a certain number of these concepts, and the agent’s
bjective is to read as few books as possible. More generally, each
ook could also be weighted according to, say, its accessibility
o a general reader or its length. The agent’s objective is then
o read a collection of books with minimum total weight. Both
he weight and the collection of concepts covered by each book
re known to the agent a priori. This scenario is obviously an
nstance of the (weighted) set-cover problem. Let us assume, for
implicity, that the agent has access to a present-biased oracle
roviding it with the following information. Given the subset
f concepts already acquired by the agent when it queries the
racle, the latter returns to the agent a set {b0, . . . , bk−1} of books
inimizing

0 + β

k−1∑
i=1

ωi

mong all sets of books covering the concepts yet to be acquired
y the agent, where ω0 ≤ ω1 ≤ · · · ≤ ωk−1 are the respective

weights of the books b0, . . . , bk−1. This corresponds to the pro-
crastination scenario in which the agent picks the easiest book to
read now and underestimates the cost of reading the remaining
books later. Then the agent moves on by reading b0 and querying
the oracle for figuring out the next book to read for covering
the remaining uncovered concepts after having read book b0. The
question is: by how much the agent eventually diverges from
the optimal set of books to be read? This set-cover example fits
with the framework of Kleinberg and Oren, by defining the vertex
set of the task graph as the set of all subsets of concepts, and
placing an edge (u, v) of weight ω from u to v if there exists a
book b of weight ω such that v is the union of u and the concepts
covered by b. In this setting, the agent needs to move from the
57
source s = ∅ to the target t corresponding to the set of all
the concepts to be acquired by the agent. Under this setting, the
question can be reformulated as: under which circumstances the
set-cover problem yields a large cost ratio?

More generally, let us consider a minimization problem where,
for every feasible solution S of every instance of the problem, the
cost c(S) of S can be expressed as c(S) =

∑
x∈S ω(x) for some

eight function ω. This includes, e.g., set-cover, min-cut, mini-
um dominating set, feedback-vertex set, etc. We then define the
iased cost cβ as

β (S) = ω(x∗) + β c(S \ {x∗
}), (1)

here x∗
= argminx∈S ω(x). Given an instance I of the mini-

ization problem at hand, the agent aims at finding a feasible
olution S ∈ I minimizing c(S). It does so using the following
resent-biased planning, where I0 = I .

inimization scenario. For k ≥ 0, given an instance Ik, the
gent computes the feasible solution Sk with minimum cost cβ (Sk)
mong all feasible solutions for Ik. Let x∗

k = argminx∈Sk w(x). The
gent stops whenever {x∗

0, x
∗

1, . . . , x
∗

k} is a feasible solution for I .
therwise, the agent moves to Ik+1 = Ik \ {x∗

k}, that is, to the
nstance obtained from Ik when one assumes x∗

k selected in the
olution.

xample. Let us consider the following concrete example, pre-
iously sketched above, namely set-cover. An agent is aiming
t acquiring a collection of concepts related to algorithm de-
ign and analysis, like greedy algorithms, dynamic programming,
ecursive algorithms, flow, linear programs, approximation algo-
ithms, parameterized algorithms, parallel algorithms, distributed
lgorithms, online algorithms, streaming algorithms, etc. For this
urpose, the agent has several options, corresponding to the ex-
sting textbooks on these matters. Let us assume that the agent’s
ibrary offers the following textbooks: xall, a book covering all
he aforementioned types of algorithms; xseq, a book covering
equential (centralized) algorithms; xpar and xdist covering parallel
omputing and distributed computing, respectively; And finally,
ext covering all topics related to streaming, on line, etc., dealing
ith external inputs. (There are many other types of algorithms,
ut let us ignore them for the sake of simplicity).
We first describe the instance I0. There are two feasible solu-

ions: S0 = {xall}, and S ′

0 = {xseq, xpar , xdist , xext}. The weight ω(x)
of a book x is impacted by various aspects such as writeup,
pedagogy, length (i.e., number of pages), price, etc. Price is not
an issue here, from the perspective of the agent, as the textbooks
are accessed for free via a library. For simplicity, let us assume
that the length of a book is the main criteria governing its weight,
and is reflecting the effort required from the agent to read the
book. Now, let us set ω(xall) = 16, and ω(xseq) = ω(xpar ) =

ω(xdist ) = ω(xext ) = 5. The fact that ω(xall) < ω(xseq) +

ω(xpar ) + ω(xdist ) + ω(xext ) is motivated from the assumption
that each book must contain a section on notations and basic
concepts (e.g., asymptotic analysis, big-O notations, etc.) which
are common to all topics. While this section is present once in xall,
it is repeated in each book xseq, xpar , xdist , and xext . The fact that
ω(xseq) = ω(xpar ) = ω(xdist ) = ω(xext ) follows from the rough as-
sumption that there is an identical amount of knowledge related
to each subfield, whether it be sequential, parallel, distributed, or
external algorithms.

It follows from our setting that c(S0) = 16, c(S ′

0) = 20, and
thus S0 is the optimal solution, which should lead the agent to
pick xall. However, the agent is biased, by believing that being
familiar with the notations and basic concepts read in one book
enables saving a fraction 1

3 of the time required to read another
book on a related matter. Its degree of present-bias is therefore
β =

2 . As a result, the agent evaluates c (S ) = 16 correctly, but
3 β 0
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nderestimates the cost of the collection of the other four books,
y computing cβ (S ′

0) = ω(xseq) +
2
3

(
ω(xpar ) + ω(xdist ) + ω(xext )

)
=

15. It follows that the agent will grab x∗

0 = xseq instead of xall.
After having consumed 5 units of time for reading xseq, the

agent puts that book back on the shelf, and examines what
remains to be done. The instance I1 involves the original books
xpar , xdist , and xext , plus the ‘‘sub-book’’ xall \ xseq including all the
material of xall not covered by xseq. The weights of the books
xpar , xdist , and xext remain 5, because the intersection between the
set of topics covered by xseq, and the set of topics covered by
xpar ∪ xdist ∪ xext is null. The weight of xall \ xseq however decreases
to ω(xall \ xseq) =

3
4 ω(xall) = 12. There are two feasible solutions

or I1, namely S1 = {xall\xseq}, and S ′

1 = {xpar , xdist , xext}. Again, the
agent is biased, and evaluates the cost of these feasible solutions
erroneously1 as cβ (S1) = 12 and cβ (S ′

1) = ω(xpar ) +
2
3

(
ω(xdist ) +

(xext )
)

=
35
3 < 12. It follows that the agent grabs x∗

1 = xpar as
the next book to read.

After the agent has read xpar , which takes 5 additional units of
time, we consider the instance I2. The books xdist and xext remain
with weight 5, while the sub-book xall \ (xseq ∪ xpar ) obtained
from xall by removing all chapters dedicated to sequential or
parallel algorithms has weight ω(xall\(xseq∪xpar )) =

1
2 ω(xall) = 8.

There are two feasible solutions for I2, namely, S2 = {xall \ (xseq ∪

xpar )}, and S ′

2 = {xdist , xext}. The agent evaluates the cost of these
feasible solutions as cβ (S2) = 8 and cβ (S ′

2) = ω(xdist )+ 2
3 ω(xext ) =

25
3 > 8. It follows that the agent eventually grabs x∗

2 = xall \(xseq∪
par ) as the next book to read (i.e., xall, but skipping the chapters
edicated to sequential and parallel computing).
After reading x∗

0 = xseq, x∗

1 = xpar , and x∗

2 = xall \ (xseq ∪ xpar ),
the agent has completed its task. The agent eventually incurred
a total cost of ω(x∗

0) + ω(x∗

1) + ω(x∗

2) = 5 + 5 + 8 = 18, while
the optimal solution was S0 with a cost of 16. Thus, the present-
biased agent incurred 18−16

16 = 12.5% more time than an optimal
gent for acquiring all basic concepts in algorithm design and
nalysis. Note that this additional cost may even lead the agent to
bandonment. This could typically happen if the agent’s resources
willing to learn algorithms, issues related to the cost of leaving,
tc.) are not sufficient to afford an extra 12.5% cost.

.2. Our objectives

The minimization scenario is captured by the Kleinberg and
ren model, by defining the vertex set of the graph task graph as
he set of all ‘‘sub-instances’’ of the instance I at hand, and placing
n edge (u, v) of weight w from u to v if there exists an element x
f weight ω such that v results from u by adding x to the current
olution. The issue is to analyze how far the solution computed
y the present-biased agent is from the optimal solution. The first
uestion addressed in this paper is therefore the following.

uestion 1. For which minimization tasks a large cost ratio may
ppear?

In the models of Akerlof (1991) and Kleinberg and Oren (2018)
he degree β of present bias is assumed to be less than one.
owever, there are natural situations where underestimating
he future costs does not hold. For example, in their influential
aper, Loewenstein et al. (2003) gave a number of examples from
variety of domains demonstrating the prevalence of projection
ias. In particular, they reported an experiment by Jepson et al.
2001) who ‘‘asked people waiting for a kidney transplant to pre-
ict what their quality of life would be one year later if they did

1 Note that the agent does not learn from his or her previous mistake.
cenarios in which the agent is changing attitude towards estimating the cost of
uture actions, based on the outcomes of previous actions, is beyond the scope
f this paper.
 p

58
or did not receive a transplant, and then asked those same people
one year later to report their quality of life. Patients who received
transplants predicted a higher quality of life than they ended
up reporting, and those who did not predicted a lower quality
of life than they ended up reporting’’. In other words, there are
situations in which people may also overestimate the future costs.
In the model of Kleinberg and Oren (2018) overestimation bias
corresponds to the situation of putting the degree of present bias
β > 1. This brings us to the second question.

Question 2. Could a large cost ratio appear for minimization
problems when the degree of present bias β is more than 1?

Reformulating the analysis of procrastination, as stated in
Question 1, inspires tackling related problems. In Kleinberg and
Oren’s original framework, procrastination is a priori associated
to minimization problems. We also investigate maximization prob-
lems. A present-biased agent aims to maximize its revenue by
making a sequence of actions, each providing some immediate
gain that the agent maximizes while underestimating the in-
comes resulting from future actions. As a concrete example, let us
consider an instance of Knapsack. The agent constructs a solution
gradually by picking the item x0 of highest value ω(x0) in a
feasible set {x0, . . . , xk−1} of items that is maximizing ω(x0) +

β
∑k−1

i=1 ω(xi) for the current sub-instance of Knapsack. In general,
given an instance I of a maximization problem, we assume that
the agent applies the following present-biased planning, with
I0 = I:

Maximization scenario. Given an instance Ik for k ≥ 0, the
agent computes the feasible solution Sk with maximum cost
cβ (Sk) among all feasible solutions for Ik — where the definition
of x∗ in Eq. (1) is replaced by x∗

= argmaxx∈S w(x). With x∗

k =

argmaxx∈Sk w(x), the agent stops whenever {x∗

0, x∗

1, . . . , x∗

k} is
an inclusion-wise maximal feasible solution for I , and moves to
Ik+1 = Ik \ {x∗

k} otherwise.
We are interested in analyzing how far the solution computed

by the present-biased agent is from the optimal solution. More
generally even, we aim at revisiting time-inconsistent planning
by considering both cases β < 1 and β > 1, that is, not only
scenarios in which the agent underestimates the cost of future
actions, but also scenarios in which the agent overestimates the
cost of future actions. The last, more general question addressed
in this paper is therefore the following.

Question 3. For which optimization tasks, and for which time-
inconsistency planning (underestimation, or overestimation of the
future actions), the solutions computed by a present-biased agent
are far from optimal, and for which they are close?

For all these problems, we study the cost ratio ϱ =
c(S)
opt (resp.,

ϱ =
opt
c(S) ) where S is the solution returned by the present-

iased agent, and opt = c(Sopt) is the cost of an optimal solution
or the same instance of the considered minimization (resp.,
aximization) problem.

.3. Our results

Focusing on agents aiming at solving tasks, and not just on
gents aiming at reaching targets in abstract graphs, as in the
eneric model in Kleinberg and Oren (2018), allows us not only to
efine the worst-case analysis of present-biased agents, but also
o extend this analysis to scenarios corresponding to overesti-
ating the future costs to be incurred by the agents (by setting

he degree β of present bias larger than 1), and to maximization
roblems.
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Table 1
Upper bounds on the worst case ratio between the solution cost returned by
the present-biased agent and the optimal solution opt. The symbol ∞ means
that the cost ratio can be arbitrarily large, independently of the values of β , and
opt.

Minimization Maximization

β < 1 ∞ (Kleinberg and Oren, 2018) 1/β [Theorem 5(i)]
β > 1 β [Theorem 4] (1 + logβ) opt

log opt [Cor 1]

Minimization & underestimation. In the original setting of
minimization problems, with underestimation of future costs
(i.e., β < 1), we show that the cost ratio ϱ of an agent per-
forming k steps, that is, computes a feasible solution {x∗

1, . . . , x
∗

k},
satisfies ϱ ≤ k. This is in contrast to the general model in Klein-
berg and Oren (2018), in which an agent can incur a cost ratio
exponential in k when returning a k-edge path from the source to
the target. Hence, in particular, our minimization scenarios do not
produce the worst cases examples constructed in Kleinberg and
Oren (2018), i.e., obtained by considering travels from sources to
targets in arbitrary weighted graphs.

On the other hand, we also show that a ‘‘minor structure’’
bearing similarities with the one identified in Kleinberg and Oren
(2018) can be identified. Namely, if an agent incurs a large cost
ratio, then the minimization problem addressed by the agent
includes a large instance of a specific form of minimization prob-
lem.

We also study what realistic strategies could reduce the cost
of inconsistent planning. We say that an agent is making a su-
perfluous choice by selecting an element x of a feasible solution
S, if the set S \ {x} is also a feasible solution. Thus avoiding
superfluous choices guarantees the minimality of the resulting
solution. However, the strategy of the agent avoiding superfluous
choices does not result in a bounded cost of planning.

We identify another natural class of strategies such that the
agent following such a strategy consistently achieves a bounded
cost ratio. Recall, that the agent constructs a feasible solution
S = {x0, . . . , xk} by computing for each i ∈ {1, . . . , k} a feasible
solution Si and then selecting xi ∈ Si minimizing the biased
cost. We say that the agent’s choice of xi is compatible with the
agent’s previous actions if xi also belongs to all previous feasible
solutions S0, . . . , Si+1. We prove in Theorem 3 that when the
agent makes the choices compatible with his previous actions,
even if these choices are superfluous, the cost of inconsistent
planning is bounded by a constant.

Min/maximization & under/overestimation. Interestingly, the
original setting of minimization problems, with underestimation
of future costs, is far from reflecting the whole nature of the
behavior of present-biased agents. Indeed, while minimization
problems with underestimation of future costs may result in
unbounded cost ratios, the worst-case cost ratios corresponding
to the three other settings can be upper bounded, some by a
constant independent of the task at hand. Specifically, we show
that:

• For any minimization problem with β > 1, the cost ratio is
at most β;

• For any maximization problem with β < 1, the cost ratio is
at most 1

β
;

• For any maximization problem with β > 1, the cost ratio
is at most βc , where c ≤ opt is the cost of a solution
constructed by the agent.

Our results are summarized in Table 1.
Let us remark that, for minimization problems with β > 1, as

well as for maximization problems with β < 1, we have that the
59
cost ratio is bounded by a constant. However, for maximization
problems with β > 1, the cost ratio can be exponential in the cost
of the computed solution. We show that this exponential upper
bound is essentially tight.

Abandonment. One of the motivations of the original work on
procrastination is abandonment. We do not put much emphasis on
abandonment here. In the ‘‘classical’’ scenario, the abandonment
occurs if the agent’s budget is finite (it does not depend on
the number of steps). For minimization with overestimation, and
maximization with underestimation, our results show that, with
a budget of at least β · opt, abandonment does not occur.

Approximated evaluations. In many settings, discrete optimiza-
tion problems are hard. Therefore, for evaluating the best feasible
solution according to the biased cost function cβ , an agent may
have to solve computationally intractable problems. Thus, in a
more realistic scenario, we assume that, instead of computing
an optimal solution for cβ at every step, the agent computes an
α-approximate solution.

Fine-grained analysis. In contrast to the model of Kleinberg
and Oren (2018), our model enables fine-grained analysis of the
agents’ strategies, that is, it enables identifying different behav-
iors of the agents as a function of the considered optimization
problems. Specifically, there are natural minimization problems
for which specific bounds on the cost ratio can be established.

To illustrate the interest of focusing on optimization tasks,
we study two tasks in detail, namely set-cover and hitting set,
nd show that they appear to behave quite differently. For set-
over, we show that the cost ratio is at most d · opt, where d
s the maximum size of the sets. For hitting set, we show that
he cost ratio is at most d! ( 1

β
opt)d, again for d equal to the

maximum size of the sets. The proofs of these results build on the
Sunflower Lemma of Erdős and Rado (1960), the classical result
from extremal set theory.

Finally, in Theorem 9, we identify a large class of optimization
problems where present-biased agents could obtain an optimum
solution. This is the class of problems that can be encoded as
the problem of computing a maximum-weight base of a matroid.
Due to the expressive power of matroids, this class of problems
include the problem of finding a maximum spanning tree in a
graph (for graphic matroids), the problem of finding the set of
independent vectors of maximum weight (for vector matroids),
or the problem of computing the maximum number of disjoint
paths connecting two sets in a graph (for gammoids).

1.4. Related work

Our work is directly inspired by Kleinberg and Oren (2014),
which was itself motivated by the earlier work by Akerlof (1991).
We refer to Kleinberg and Oren (2014, 2018) for a survey of
earlier work on time-inconsistent planning, with connections to
procrastination, abandonment, and choice reduction. Hereafter,
we discuss solely (Kleinberg and Oren, 2014), and the subsequent
work. Using their graph-theoretic framework, Kleinberg and Oren
reasoned about time-inconsistency effects. In particular, they pro-
vided a characterization of the graphs yielding the worst-case
cost-ratio, and they showed that, despite the fact that the degree
β of present bias can take all possible values in [0, 1], it remains
that, for any given digraph, the collection of distinct s-t paths
omputed by present-biased agents for all degrees of present bias
s of size at most polynomial in the number of nodes. They also
howed how to improve the behavior of present-biased agents by
eleting edges and nodes, and they provided a characterization of
he subgraphs supporting efficient agent’s behavior. Finally, they
nalyzed the case of a collection of agents with different degrees
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f present bias, and showed how to divide the global task to
e performed by the agents into ‘‘easier’’ sub-tasks, so that each
gent performs efficiently her sub-tasks.
As far as we are aware of, all contributions subsequent to

leinberg and Oren (2014), and related to our paper, essentially
emain within the same graph theoretic framework as Kleinberg
nd Oren (2014), and focus on algorithmic problems related to
his framework. In particular, Albers and Kraft (2019) studied
he ability to place rewards at nodes for motivating and guiding
he agent. They show hardness and inapproximability results,
nd provide an approximation algorithm whose performances
atch the inapproximability bound. The same authors considered
nother approach in Albers and Kraft (2017a) for overcoming
hese hardness issues, by allowing not to remove edges but to in-
rease their weight. They were able to design a 2-approximation
lgorithm in this context. Tang et al. (2017) also proved hardness
esults related to the placement of rewards, and showed that
inding a motivating subgraph is NP-hard. Gravin et al. (2016a)
see Gravin et al., 2016b for the full paper) extended the model
y considering the case where the degree of present bias may
ary over time, drawn independently at each step from a fixed
istribution. In particular, they described the structure of the
orst-case graph for any distribution, and derived conditions
n this distribution under which the worst-case cost ratio is
xponential or constant.
In the same paper, Gravin et al. described two natural condi-

ions on the task graph that lead to smaller procrastination cost
atios. Their first property is the bounded distance property, when
he weight of the shortest path in the task graph from any node v
o the target t is at most the weight of the shortest path from the
nitial node s to t . Their second property is the monotone distance
roperty. Informally, the task graph has a monotone distance
roperty if, for any s-t path (s = v0, v1, . . . , vk−1, t = vk), the
hortest path from vi to t is decreasing in i. These properties are
ncomparable to the properties we introduce in this paper. First,
he property we consider in Section 2.2 (absence of superfluous
hoices) and in Section 2.3 (choices compatible with previous
ctions) are the properties of the agent’s strategy. In contrast, the
ounded and the monotone distance properties of Gravin et al.
re the properties of the task graph. Second, the properties of the
ptimization problems (and hence of the task graph) that we use
n Section 4, like d-set cover, or an independent set of a matroid,
re also incomparable to the distance properties of Gravin et al.
or example, it is easy to construct instances of d-set cover that
re not distance monotone and vice versa.
Kleinberg et al. (2016, 2017) revisited the model in Kleinberg

nd Oren (2014). In Kleinberg et al. (2016), they were considering
gents estimating erroneously the degree β of present bias, either
nderestimating or overestimating that degree, and compared
he behavior of such agents with the behavior of ‘‘sophisticated’’
gents who are aware of their present-biased behavior in fu-
ure and take this into account in their strategies. In Kleinberg
t al. (2017), they extended the model by considering not only
gents suffering from present-biases, but also from sunk-cost bias,
.e., the tendency to incorporate costs experienced in the past into
ne’s plans for the future. Albers and Kraft (2017b) considered
model with uncertainty, bearing similarities with (Kleinberg

t al., 2016), in which the agent is solely aware that the degree
f present bias belongs to some set B ⊂ (0, 1], and may or
ay not vary over time. Fomin and Strømme (2020) studied the
arameterized complexity of computing a motivating subgraph.

. Procrastination under minimization problems

This section includes a formal definition of inconsistent plan-
ing by present-biased agents, and describes two extreme sce-
arios: one in which a present-biased agent constructs worst
ase plannings, and one in which the plannings generated by a
resent-biased agent are close to optimal.
60
2.1. Model and definition

We consider minimization problems defined as triples
(I, F , c), where I is the set of instances (e.g., the set of all graphs),
F is a function that returns the set F (I) of feasible solutions for
every instance I ∈ I (e.g., the set of all edge-cuts of any given
graph), and c is a non-negative function returning the cost c(I, S)
f every feasible solution S ∈ F (I) of every instance I ∈ I (e.g., the
umber of edges in a cut). We focus solely on optimization
roblems, where the task is to find a subset of minimum weight,
or which

(i) a finite ground set SI ̸= ∅ is associated to every instance I ,
(ii) every feasible solution for I is a set S ⊆ SI , and
(iii) c(I, S) =

∑
x∈S ω(x) where ω : SI → N is a weight function.

oreover, we enforce two properties that are satisfied by classical
inimization problems. Specifically we assume that:

• All considered problems are closed downward, that is, for
every considered minimization problem (I, F , c), every I ∈

I, and every x ∈ SI , the instance I\{x} defined by the feasible
solutions S \ {x}, for every S ∈ F (I), is in I with the same
weight function ω as for I . This guarantees that an agent
cannot be stuck after having performed some task x, as the
sub-problem I \ {x} remains solvable for every x.

• All considered feasible solutions are closed upward, that is,
for every minimization problem (I, F , c), and every I ∈ I, SI
is a feasible solution, and, for every S ∈ F (I), if S ⊆ S ′

⊆ SI
then S ′

∈ F (I). This guarantees that an agent performing a
sequence of tasks x0, x1, . . . eventually computes a feasible
solution.

nconsistent planning can be rephrased in this framework as
ollows.

nconsistent planning. Let β < 1 be a positive constant. Given
minimization problem (I, F , c), the biased cost cβ satisfies

β (S) = ω(x) + β c(S \ {x})

or every feasible solution S of every instance I ∈ I, where

= argmin
y∈S

ω(y).

iven an instance I , the agent aims at finding a feasible solution
S ∈ I by applying a present-biased planning defined inductively
as follows. Let I0 = I . For every k ≥ 0, given the instance Ik,
he agent computes a feasible solution Sk with minimum cost
cβ (Sk) among all feasible solutions for Ik. Let xk = argminy∈Sk ω(y).
The agent stops whenever {x0, x1, . . . , xk} is a feasible solution
for I . Otherwise, it carries on the construction of the solution by
considering Ik+1 = Ik \ {xk}.

Observe that inconsistent planning terminates. Indeed, since
instances of the considered problem (I, F , c) are downward-
closed, we have Ik = I \ {x0, . . . , xk−1} ∈ I for every k ≥

0. Hence inconsistent planning is well defined. Moreover, since
feasible solutions are upward-closed, there exists k ≥ 0 such that
{x0, x1, . . . , xk} is a feasible solution for I .

Definition 1 (Cost of Inconsistent Planning). The cost of inconsis-
tent planning is defined as the ratio

ϱ =
c(S)
opt

,

where S = {x0, x1, . . . , xk} is the solution returned by the agent,
and opt = c(Sopt) is the cost of an optimal solution Sopt for the
same instance of the considered minimization problem.
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pproximated evaluation. It can happen that the considered
minimization problem is computationally hard, say NP-hard, and
the agent is unable to compute a feasible solution S of minimum
cost cβ (S) exactly. Then the agent can pick an approximate solu-
tion instead. For this situation, we modify the above strategy of
the agent as follows. Assume that the agent has access to an α-
approximation algorithm A that, given an instance I , computes a
feasible solution S∗ to the instance such that cβ (S∗) ≤ α min cβ (S),
where minimum is taken over all feasible solution S to I . For
simplicity, we assume throughout the paper that α ≥ 1 is a
onstant, but our results can be generalized for the case, where
is a function of the input size or opt.
Again, the agent uses an inductive scheme to construct a

olution. Initially, I0 = I . For every k ≥ 0, given the in-
tance Ik, the agent computes a feasible solution Sk of cost at
ost α min cβ (S), where the minimum is taken over all feasible

solutions S of Ik. Then, exactly as before, the agent finds xk =

rgminy∈Sk ω(y). If {x0, x1, . . . , xk} is a feasible solution for I , then
he agent stops. Otherwise, we set Ik+1 = Ik \ {xk} and proceed.
The α-approximative cost of inconsistent planning is defined as
the ratio ϱα =

c(S)
opt where S = {x0, x1, . . . , xk}. Clearly, the

1-approximative cost coincides with ϱ.

2.2. Worst-case present-biased planning

We start with a simple observation. Given a feasible solution
S for an instance I of a minimization problem, we say that x ∈ S
is superfluous in S if S \ {x} is also feasible for I . The ability for
the agent to make superfluous choices yields trivial scenarios in
which the cost ratio ϱ can be arbitrarily large. This is for instance
the case of an instance of Set Cover, defined as one set y =

1, . . . , n} of weight c > 1 covering all elements, and n sets xi =

{i}, each of weight 1, for i = 1, . . . , n. Every solution Si = {xi, y} is
feasible, for i = 1, . . . , n, and satisfies cβ (Si) = 1+βc. As a result,
whenever 1 + βc < c , the present-biased agent constructs the
solution S = {x1, . . . , xn}, which yields a cost ratio ϱ = n/c , which
can be made arbitrarily large as n grows. Instead, if the agent
avoids superfluous choices, that is, he systematically chooses only
minimal feasible solutions, then the only feasible solutions {y} and
{x1, . . . , xn} can be considered. As a result, the agent will compute
the optimal solution Sopt = {y} if c < 1 + β(n − 1).

However, enforcing the agent to systematically choose min-
imal feasible solutions, i.e., solutions with no superfluous el-
ements, is not sufficient to avoid procrastination. That is, the
strategy of avoiding superfluous choices does not guarantee the
agent a solution with a low cost ratio.

Example: Set cover instance I (n)SC . We denote by I (n)SC the following
special instance of the Set Cover problem. The instance of I (n)SC
consists of n elements {x1, . . . , xn} and the following 2n subsets
of {1, . . . , n}. Each subset is either a singleton set {xi} of weight 1
or yi = {xi, . . . , xn} of weight c > 1, for i ∈ {1, . . . , n}.

Every minimal feasible solutions of I (n)SC has one of the following
forms

• {y1} of weight c ,
• {{x1}, . . . , {xi}, yi+1} of weight i + c for i ∈ {1, . . . , n − 1},

and
• {{x1}, . . . , {xn}} of weight n.

Whenever 1 + βc < c , a present-biased agent bounded
to make only non-superfluous choices constructs the solution
{{x1}, . . . , {xn}}. This is a solution of the cost ratio ϱ = n/c , and
it grows to infinity with n.

We need the following lemma about biased solutions for min-
imization problems.
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Lemma 1. Let α ≥ 1 and let S∗ be a feasible solution for a
minimization problem, satisfying cβ (S∗) ≤ α min cβ (S), where the
minimum is taken over all feasible solutions. Then

(i) ω(x) ≤ α · opt for x = argminy∈S∗ ω(y), and
(ii) c(S∗) ≤

α
β
opt.

Proof. Let S be an optimum solution. As β < 1, it follows that
ω(x) ≤ ω(x)+β ·ω(S∗

\{x}) = cβ (S∗) ≤ α ·cβ (S) ≤ α ·c(S) = α ·opt,
and this proves (i). To show (ii), note that c(S∗) = ω(x) + ω(S∗

\

x}) =
1
β
(βω(x)+βω(S∗

\{x})), from which it follows that c(S∗) ≤

1
β
(ω(x) + βω(S∗

\ {x})) =
1
β
cβ (S∗) ≤

α
β
cβ (S) ≤

α
β
c(S) =

α
β
opt,

hich completes the proof. □

Lemma 1 has a simple consequence that also can be derived
rom the results of Gravin et al. (2016b, Claim 5.1). We state it
s a theorem despite its simplicity, as it illustrates one major
ifference between our model and the model in Kleinberg and
ren (2018).

heorem 1. For every α ≥ 1 and every minimization problem,
he α-approximative cost ratio ϱα cannot exceed α · k, where k
s the number of steps performed by the agent who is construct-
ng a feasible solution {x1, . . . , xk} by following the present-biased
trategy.

roof. By Lemma 1(i), at any step i ≥ 1 of the construction, the
gent adds an element xi ∈ SI in the current partial solution, and
his element satisfies ω(xi) ≤ α cβ (Sopt) ≤ α c(Sopt) = α · opt.
herefore, if the agent computes a solution {x1, . . . , xk}, then
he α-approximative cost ratio for this solution satisfies ϱα =

k
i=1 ω(xi)/opt ≤ α k, as claimed. □

emark. Theorem 1 exhibit the contrast between our model and
he model of Kleinberg and Oren (2018), in which an agent
erforming k steps can incur a cost ratio exponential in k. This
s because the model in Kleinberg and Oren (2018) enables to
onstruct graphs with arbitrary weights. In particular, in a graph
uch as the one depicted on Fig. 1, one can set up weights such
hat the weight of (v1, t) is a constant time larger than the weight
f (s, t), the weight of (v2, t) is in turn a constant time larger
han the weight of (v1, t), etc., and still a present-biased agent
tarting from s would travel via v1, v2, . . . , vk before reaching t .
n this way, the sum of the weights of the edges traversed by the
gent may become exponential in the number of traversed edges.
his phenomenon does not occur when focusing on minimization
asks. Indeed, given a partial solution, the cost of completing this
olution into a global feasible solution cannot exceed the cost of
onstructing a global feasible solution from scratch.
It follows from Theorem 1 that I (n)SC is the worst-case instance.

his instance fits with realistic procrastination scenarios in which
he agent has to perform a task (e.g., learning a scientific topic T )
by either energetically embracing the task (e.g., by reading a
single thick book on topic T ), or starting first by an easier subtask
(e.g., by first reading a digest of a subtopic of topic T ), with the
objective of working harder later, but underestimating the cost
of this postponed hard work. The latter strategy may result in
procrastination, by performing a very long sequence of subtasks
x1, x2, . . . , xn.

In fact, I (n)SC appears to be the essence of procrastination in the
ramework of minimization problems. Indeed, we show that if
he cost ratio is large, then the considered instance I contains
n instance of the form I (n)SC with large n. More precisely, we say
hat an instance I contains an instance J as a minor if the ground
et SJ associated to J is a collection of subsets of the ground
set S associated to I , that is S ⊆ 2SI , and, for every S̄ ⊆ S ,
I J J
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¯ is feasible for J if and only if S =
⋃

x̄∈S̄ x̄ is feasible for I .
oreover, the weight function ω̄ for the elements of SJ must be

nduced by the one for SI as ω̄(x̄) =
∑

x∈x̄ ω(x) for every x̄ ∈ SJ .
et J (n) be any instance of a minimization problem such that its
ssociated ground set is SJ(n) = {x1, . . . , xn} ∪ {y1, . . . , yn}, and
he set of feasible solutions for J (n) is

(J (n)) =
{

{y1}, {x1, y2}, {x1, x2, y3}, . . . ,

{x1, . . . , xn−1, yn}, {x1, . . . , xn}
}

.

he following result sheds some light on why the procrastination
tructure of Fig. 1 pops up.

heorem 2. Let I be an instance of a minimization problem for which
he present-biased agent with parameter β ∈ (0, 1) computes a
olution for I with cost α ·opt(I) for some α > 1. Then I contains J (n)
s a minor for some n ≥ α, and the present-biased agent with
arameter β computes a solution for J (n) with cost α · opt(J (n)).

roof. Let S = {x1, . . . , xn} be the final solution selected by the
resent-biased agent for I , and let ω be the weight function on
he set SI associated to I . We have

∑n
i=1 ω(xi) = α opt(I). For

very i ∈ {1, . . . , n}, let us denote by opt(I \ {x1, . . . , xi}) the
ost of an optimal solution for the instance I \ {x1, . . . , xi}, and by
opt(I \ {x1, . . . , xi}) a corresponding optimal solution. For i = 0,
opt(I \ {x1, . . . , xi}) is an optimal solution for I . For i ∈ {1, . . . , n},
e define

¯i = {xi}, and ȳi = Sopt(I \ {x1, . . . , xi−1}).

et J be the instance with ground set {x̄1, . . . , x̄n} ∪ {ȳ1, . . . , ȳn},
nd feasible solutions

ȳ1}, {x̄1, ȳ2}, . . . , {x̄1, . . . , x̄n−1, ȳn}, {x̄1, . . . , x̄n}.

Note that x̄i ̸= x̄j for every i ̸= j, because xi ̸= xj for every
i ̸= j. Also, for every i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n},
x̄i ̸= ȳj, because otherwise the sequence constructed by the
present-biased agent for I would stop at xk with k < n. Therefore,
we have J = J (n), and, since ω(xi) ≤ opt(I) for every i = 1, . . . , n,
n ≥ α holds.

For analyzing the behavior of a present-biased agent with
parameter β acting on J , let us assume that k steps were already
performed by the agent, with 0 ≤ k < n, resulting in constructing
the partial solution {x̄1, . . . , x̄k}. (For k = 0, this partial solution
is empty). The feasible solutions for Jk = J \ {x̄1, . . . , x̄k} are

{ȳ1}, . . . , {ȳk+1}, {x̄k+1, ȳk+2}, . . . , {x̄k+1, . . . , x̄n−1, ȳn},
{x̄k+1, . . . , x̄n}.

Note that, for every i ∈ {1, . . . , n}, ω̄(x̄i) = ω(xi), and ω̄(ȳi) =

opt(I \ {x1, . . . , xi−1}). We claim that x̄k+1 is the next element
chosen by the agent. Indeed, note first that ω̄(x̄k+1) ≤ ω̄(ȳk+2),
as, otherwise, we would get ω(xk+1) > opt(I \ {x1, . . . , xk+1}),
contradicting the choice of xk+1 by the agent performing on I . As
a consequence,

cβ ({x̄k+1, ȳk+2}) = ω̄(x̄k+1) + β ω̄(ȳk+2).

It follows from the above that, for every j = 1, . . . , k + 1,
cβ ({ȳj}) ≥ cβ ({x̄k+1, ȳk+2}), as the reverse inequality would con-
tradict the choice of xk+1 by the agent performing on I . For the
same reason, for every ℓ ∈ {k + 1, . . . , n − 1}, and every i ∈

{k + 1, . . . , ℓ}, we have

cβ ({x̄k+1, ȳk+2}) ≤ ω̄(x̄i) + β

( ∑
j∈{k+1,...,ℓ}\{i}

ω̄(x̄j) + ω̄(ȳℓ+1)
)

and

cβ ({x̄k+1, ȳk+2}) ≤ ω̄(ȳℓ+1) + β
∑

ω̄(x̄j).

j∈{k+1,...,ℓ}
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As a consequence, the present-biased agent performing on J picks
x̄k+1 at step k + 1, as claimed. The cost of the solution computed
by the agent is

∑n
i=1 ω̄(x̄i) =

∑n
i=1 w(xi) = α opt(I). On the

other hand, by construction, opt(J) = ω̄(ȳ1) = opt(I). The cost
ratio of the solution computed by the agent for J is thus α, which
completes the proof. □

2.3. Quasi-optimal present-biased planning

In the previous section, we have observed that forcing the
agent to avoid superfluous choices, by picking minimal feasible
solutions only. Such a strategy does not prevent the agent from
constructing solutions that are arbitrarily far from the optimal. In
this section, we show that, by enforcing the consistency in the
sequence of partial solutions constructed by the agent, such a
bad behavior does not occur. More specifically, given a feasible
solution S for I , we say that the agent makes a choice incompatible
with S, if he selects an object x /∈ S. The following result shows
that incompatible choices are the reason of a high-cost ratio.

Theorem 3. An agent using an α-approximation algorithm and
who is bounded to avoid incompatible choices with respect to the
feasible solutions used in the past for constructing the current partial
solution, returns an α/β-approximation of the optimal solution.
This holds independently from whether the agent makes superfluous
choices or not.

Proof. Let I be an instance of a minimization problem (I, F , c).
Let S = {x0, . . . , xk} be the solution constructed by the agent
for I , where xi is the element computed by the agent at step i, for
i = 0, . . . , k. Let Si be the feasible solution of Ii = I \{x0, . . . , xi−1}

considered by the agent at step i. Since the agent is bounded to
avoid incompatible choices with respect to the past, we have xi ∈

∩
i
j=0Sj for every i = 0, . . . , k because xi /∈ Sj for some j < i would

be an incompatible choice. It follows that S ⊆ S0. Therefore,
c(S) ≤ c(S0). Since the agent uses an α-approximation algorithm,
by Lemma 1(ii), c(S0) ≤

α
β
opt and the claim follows. □

At first glance, the assumption about compatible choices that
we use in Theorem 3 does not look realistic. It implies that after
the agent selects the first feasible solution S, he will be selecting
only elements from S in his further actions. However, as we show
n Section 4.2, for a generic optimization problem of finding a
aximum-weight base in a matroid, the present-biased agent
akes compatible choices.

. Min/maximization with under/overestimation

.1. Minimization with overestimation

We first investigate the cost ratio for minimization problems
or the case when β > 1. Again, given a minimization problem
I, F , c), the biased cost cβ satisfies

cβ (S) = ω(x) + β c(S \ {x})

for every feasible solution S of every instance I ∈ I. However,
ow we have

= argmax
y∈S

ω(y).

iven an instance I , the agent aims at finding a feasible solution
S ∈ I by applying a present-based planning defined inductively
as follows. Let I0 = I . For every k ≥ 0, given the instance Ik, the
agent computes a feasible solution Sk with minimum cost cβ (Sk)
among all feasible solutions for Ik. Let xk = argmaxy∈Sk ω(y).
The agent stops whenever {x , x , . . . , x } is a feasible solution
0 1 k
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or I . Otherwise, it carries on the construction of the solution by
onsidering Ik+1 = Ik \ {xk}.
The following theorem gives bound on the quality of the

solution computed by a present-biased agent. Similar bound was
obtained by Kleinberg et al. (see Kleinberg et al., 2016, Theo-
rem 2.1). However, their theorem is about sophisticated agents
and cannot be applied in our case directly.

Theorem 4. Solutions computed by present-biased agents satisfy the
following: For any minimization problem with β > 1, the cost ratio
s at most β .

roof. For the proof of the theorem it is convenient to switch to
he original graph-theoretic model of Kleinberg and Oren (2018).
ote that the task graphs corresponding to optimization prob-
ems are, in fact, directed acyclic graphs. Hence, we only consider
ask graphs of this type to avoid dealing with paths of maximum
ength in the presence of cycles.

Let G be a directed acyclic graph (DAG) with a source s. Let
lso ω : E(G) → N be a weight function. The aim of the agent is
o go from the source s to a sink t of G making present-biased
ecisions on each step. We assume that G has an s-t path. Let β

be a positive constant distinct from 1. Let cmin(x) be the minimum
length of an x-t path.

We suppose that the agent is equipped with an algorithm A
hat, given a vertex v ∈ V (G), finds a vertex x∗

∈ N+

G (v) such that

(vx∗) + β · cmin(x∗) = min
x∈N+

G (v)
(ω(vx) + β · cmin(x)).

The agent constructs an s-t path as follows: if the agent occupies
a vertex v ̸= t , then he makes the present-biased α-approximate
estimation of the length of a shortest v-t path and moves to x∗.
Note that since G is a DAG, the agent would eventually arrive to
t .

We denote by costmin(v) the length of a v-t path constructed
by the agent from v. Notice that this value is not uniquely defined
as the agent may be able to choose distinct vertices that provide
α-approximate present-biased evaluations but could give distinct
lengths for the constructed paths. Then the proof of the theorem
is implied by the following claim.

Claim 3.1. Let G be a weighted DAG with a weigh function ω : E(G)
→ N and a sink t. Then for every v ∈ V (G), if β > 1, then
costmin(v) ≤ β · cmin(v).

The claim is trivial if v = t . Assume that v ̸= t , and that the
claim holds for every out-neighbor x of v. Assume that x∗

∈ N+

G (v)
is computed by A, and let

y = argmin
x∈N+

G (v)
(ω(vx) + cmin(x)).

That is, there is a shortest v-t path that goes through y.
By induction, we have that

costmin(x∗) ≤ β · cmin(x∗).

It follows that

costmin(v) = ω(vx∗) + costmin(x∗) ≤ ω(vx∗) + β · cmin(x∗)

= min
x∈N+

G (v)
(ω(vx) + β · cmin(x)) ≤ ω(vy) + β · cmin(y)

≤β · ω(vy) + β · cmin(y) ≤ β · cmin(v).

The last inequality completes the proof of the claim, and of the
theorem. □
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3.2. Maximization problems

Next, we consider maximization problems. As for minimiza-
tion problems, given a maximization problem (I, F , c), the biased
cost cβ satisfies

cβ (S) = ω(x) + β c(S \ {x})

for every feasible solution S of every instance I ∈ I. However, for
maximization problems, the element x satisfies{

x = argmaxy∈S ω(y) if β < 1,
x = argminy∈S ω(y) if β > 1.

Given an instance I , the agent aims at finding a feasible solution
S ∈ I by applying a present-based planning defined inductively as
follows. Let I0 = I . For every k ≥ 0, given the instance Ik, the agent
computes a feasible solution Sk with maximum cost cβ (Sk) among
all feasible solutions for Ik. Let xk = argmaxy∈Sk ω(y) if β < 1,
and xk = argminy∈Sk ω(y) if β > 1. The agent stops whenever
{x0, x1, . . . , xk} is a feasible solution for I . Otherwise, it carries on
the construction of the solution by considering Ik+1 = Ik \ {xk}.

We establish the following worst-case bounds.

Theorem 5. Solutions computed by present-biased agents satisfy the
following:

(i) For any maximization problem with β < 1, the cost ratio is at
most 1

β
;

(ii) For any maximization problem with β > 1, the cost ratio is at
most βc , where c ≤ opt is the cost of a solution constructed
by the agent.

Proof. As in the proof of Theorem 4, we switch to the graph-
theoretic model from Kleinberg and Oren (2018). Let G be a
directed acyclic graph (DAG) with a source s and weight function
ω : E(G) → N. The agent aims to go from the source s to a sink
t of G making present-biased decisions on each step. We assume
that G has an s-t path. Let β be a positive constant distinct from 1,
and let cmax(x) be the maximum length of an x-t path.

Let α ∈ (0, 1]. As in Theorem 4, we assume that the agent is
equipped with an algorithm A that, given a vertex v ∈ V (G), finds
a vertex x∗

∈ N+

G (v) such that

ω(vx∗) + β · cmax(x∗) = max
x∈N+

G (v)
(ω(vx) + β cmax(x)).

sing A, the agent located in vertex v ̸= t constructs an s-t path
as follows: the agent computes the present-biased α-approximate
estimation of the length of a longest v-t and moves to x∗. We
denote by costmax(v) the length of a v-t path constructed by the
agent from v.

Claim 3.2. Let G be a weighted DAG with a weigh function ω : E(G)
N and a sink t. Then for every v ∈ V (G),

(i) if β < 1, then costmax(v) ≥ β cmax(v),
(ii) if β > 1, then cmax(v) ≤ costmax(v)βcostmax(v).

As in Theorem 4, we prove the claim by induction. The claim
s trivial if v = t . Assume that v ̸= t , and that the claim holds
or every out-neighbor x of v. Let x∗ be the vertex computed by
and let

= argmax
x∈N+

G (v)
(ω(vx) + cmax(x)).

hat is, there is a longest v-t path that goes through y.
To show (i), we use the inductive assumption that

ostmax(x∗) ≥ β cmax(x∗).
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e have

ostmax(v) = ω(vx∗) + costmax(x∗) ≥ ω(vx∗) + β cmax(x∗)
= max

x∈N+

G (v)
(ω(vx) + β cmax(x)) ≥ ω(vy) + β cmax(y)

≥ β ω(vy) + β cmax(y) ≥ β cmax(v).

To prove (ii), we assume that the following inductive assump-
ion holds:
max(x∗) ≤ costmax(x∗)βcostmax(x∗).

t follows that
max(v) = ω(vy) + cmax(y) ≤ ω(vy) + β · cmax(y)

≤ max
x∈NG(v)

(ω(vx) + β · cmax(x)) ≤ ω(vx∗) + β · cmax(x∗)

≤ ω(vx∗) + β · costmax(x∗)βcostmax(x∗)

≤ βcostmax(x∗)+1(ω(vx∗) + costmax(x∗))

= costmax(v)βcostmax(x∗)+1

≤ costmax(v)βcostmax(v).

This last inequality completes the proof of Claim 3.2, which
immediately gives the bounds for the α-approximate cost ratio
claimed in the statement of the theorem. □

We also can write the bound for the cost ratio for β > 1 in
the following form to obtain the upper bound that depends only
on the value of opt.

Corollary 1. For any maximization problem with β > 1, the cost
ratio is at most (1 + logβ) opt

log opt .

roof. Let c be the cost of a solution constructed by the agent.
y Theorem 5, opt ≤ cβc . Therefore, log opt ≤ log c + c logβ ≤

1 + logβ)c , and opt
c ≤ (1 + logβ) opt

log opt . □

For minimization problems with β > 1, and maximization
roblems with β < 1, we have that the cost ratio is bounded by
constant. This differs drastically with the case of maximization
roblems with β > 1, when the cost ratio is still bounded
ut the bound is exponential. This exponential upper bound is
owever essentially tight, in the sense that the exponent cannot
e avoided.

heorem 6. There are maximization problems for which a present-
iased agent with β > 1 returns a solution whose cost ratio is at
east 1

c βc−1, where c is the cost of the solution constructed by the
gent.

roof. Let us consider the maximum independent set problem. In
this problem, we are given a weighted graph G, and the task is to
ind an independent set of maximum weight. Let k be a positive
nteger. We construct the graph Gk as follows (see Fig. 2):

• construct k+ 1 vertices x0, . . . , xk, and make them pairwise
adjacent,

• construct k vertices y1, . . . , yk,
• for each i ∈ {1, . . . , k}, make yi adjacent to xi, xi+1, . . . , xk.

To define the weights, let β ≥ 2. We set ω(yi) = 1 for every
i ∈ {1, . . . , k}, and ω(xi) = β i for every i ∈ {0, . . . , k}.

Since X = {x0, . . . , xk} is a clique, any independent set has at
most one vertex in X . Therefore, the family of sets

Si = {xi} ∪ {yi+1, . . . , yk}

for i ∈ {0, . . . , k} form the family of maximal independent sets.
Because β ≥ 2, it is straightforward to verify that the single-
vertex set S = {x } is an independent set of maximum weight
k k s

64
Fig. 2. Construction of Gk for k = 4.

βk, that is, opt = βk. Observe that the biased cost of this set is βk

as well.
From the other side, the biased cost of Sk−1 is

ω(yk) + β · ω(xk−1) = 1 + β · βk−1
= 1 + βk > βk.

Hence, the agent would prefer to select yk at the first iteration. At
the next iteration, the agent considers the graph obtained from Gk
by the deletion of yk and its neighborhood, that is, Gk−1. Applying
the same arguments inductively, we conclude that the agent will
end up with the set S0 = {x0, y1, . . . , yk} with ω(S0) = k + 1.
We obtain that opt = βc−1, where c is the cost of a solution
constructed by the agent. □

Remark. An example similar to the one in the proof of Theorem 6
can be constructed for the knapsack problem. Recall that in this
problem, we are given n objects with positive integer values vi,
and weights wi, for i ∈ {1, . . . , n}, and W ∈ N. The task is to find
a set of objects S ⊆ {1, . . . , n} of maximum value with the total
eight at most W . Let k be a positive integer. We let n = 2k+ 1,

W = n and β ≥ 2. We define

i = βk+1−i,

and

wi = W − (i − 1)

or every i ∈ {1, . . . , k + 1}, and we set vi = 1 and wi = 1 for
∈ {k+2, . . . , n}. Using the same arguments as for the maximum
ndependent set problem, we obtain that the optimum solution
as cost βk while a present-biased agent would select a solution
f cost k + 1.

. Fine-grained analysis of specific problems

In Section 3, we demonstrated upper bounds for the cost
atio, and in Section 2.2, we pointed that the ratio cannot be
ounded by any function of opt in the case of minimization with
nderestimation. However, for some specific problems, we can
mprove these results.

.1. Minimum set-cover and hitting set problems with size con-
traints

In Section 2.2, we have seen instances of the set-cover problem
hose cost ratio cannot be bounded by any function of opt.
he same obviously holds for the hitting-set problem. Recall
hat an instance of hitting-set is defined by a collection Σ of
ubsets of a finite set V , and the objective is to find the subset
⊆ V of minimum size, or minimum weight, which intersects

hits) every set in Σ . However, set-cover problems, and hitting

et problems behave differently when the sizes of the sets are
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ounded. Throughout this subsection we consider the case of
nderestimation, that is, it is assumed that β < 1. First, we
onsider the d-set cover problem.

The d-set cover problem. Let d be a positive integer. The task
f the d-set cover problem is, given a collection Σ of subsets
ith size at most d of a finite set V , and given a weight function
: Σ → N, find a set S ⊆ Σ of minimum weight that covers V ,

hat is,
⋃

X∈S X = V .

heorem 7. Let α ≥ 1. For any instance of the d-set-cover problem,
he α-approximative cost ratio is at most α · d · opt.

roof. Let I = (Σ, V , ω) be an instance of the d-set cover
roblem. Let |V | = n. Denote by S1, . . . , Sp a sequence of solu-
ions computed by the present-biased agent avoiding superfluous
olutions, and let S = {X1, . . . , Xp} be the obtained solution for I .
hat is, S is a set cover such that

i = argmin
Y∈Si

ω(Y )

or i ∈ {1, . . . , p}. Clearly, p ≤ n. Note that for each iteration
∈ {1, . . . , p}, the agent considers the instance Ii = (Σi, Vi, ωi),
here, as superfluous solutions are avoided,

Vi = V \ (
⋃i−1

j=1 Xi),
Σi = {X ∩ Vi | X ∈ Σ \ {X1, . . . , Xi−1}},

ωi = ω|Σi .

e have that, for every i ∈ {1, . . . , p},

pt = opt(I) = opt(I1) ≥ · · · ≥ opt(Ip),

nd, by Lemma 1(ii),

(Xi) ≤ α opt(Ii).

ince each set of Σ covers at most d elements of V , opt(I) ≥ n/d.
herefore

(S) =

p∑
i=1

ω(Xi) ≤ α opt(I)n ≤ αd opt(I)2.

t follows that the cost ratio is at most αd opt. □

he d-hitting set problem. Let d be a positive integer. We are
iven a collection Σ of subsets with size d of a finite set V , a
eight function ω : V → N. The task is to find a set S ⊆ V of
inimum weight that hits every set of Σ .
We use the classical Sunflower Lemma of Erdős and Rado

1960). We state this result in the form given in Cygan et al.
2015). A sunflower with k petals and a core X is a collection of
airwise distinct sets S1, . . . , Sk such that Si ∩ Sj = X for all
istinct i, j ∈ {1, . . . , k}. Note that the core may be empty, that
s, a collection of k pairwise disjoint sets is a sunflower.

emma 2 (Sunflower Lemma, Erdős and Rado, 1960). Let A be a
amily of pairwise distinct sets over a universe U such that for every

∈ A, |A| = d. If |A| > d!(k − 1)d, then A contains a sunflower
ith k petals.

heorem 8. Let α ≥ 1. For any instance of the d-hitting-set problem,
he α-approximative cost ratio is at most αd! ( α

β
opt)d.

roof. Let I = (Σ, V , ω) be an instance of the d-hitting set
roblem. Denote by S1, . . . , Sp a sequence of solutions computed
y the present-biased agent avoiding superfluous solutions, and
et S = {v1, . . . , vp} be the obtained solution for I , that is, S ⊆ V
s a hitting set such that

i = argminω(v)

v∈Si
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for every i ∈ {1, . . . , p}. Since the agent avoids superfluous
solutions, the agent considers the instance Ii = (Σi, Vi, ωi) at each
iteration i ∈ {1, . . . , p}, where

Vi = V \ {v1, . . . , vi−1},

Σi = {X ∈ Σ | X ∩ {v1, . . . , vi−1} = ∅},

ωi = ω|Vi .

Let i ∈ {1, . . . , p}. Since Si is a minimal hitting set for Σi, there is
Xi ∈ Σi such that vi ∈ Xi, and, for every v ∈ Si \ {vi}, v /∈ Xi. We
say that Xi is a private set for vi. Observe that

opt = opt(I) = opt(I1) ≥ · · · ≥ opt(Ip)

by the construction of the instances. The following claim is crucial
for the proof of the theorem.

Claim 4.1. p ≤ d! ( α
β
opt)d.

Let us assume, for the purpose of contradiction, that p >
d! ( α

β
opt)d. Consider the private sets X1, . . . , Xp ∈ Σ for v1, . . . ,

vp, respectively, and let A = {X1, . . . , Xp}. Note that X1, . . . , Xp
are pairwise distinct, since Xh ∈ Σh and Xh /∈ Σh+1 for every
h ∈ {1, . . . , p − 1}. Let

k =

⌊α

β
opt

⌋
+ 1.

We have that |Xh| = d for every Xh ∈ A, and |A| > d! (k − 1)d.
Hence, A contains a sunflower with k petals by the sunflower
lemma. Denote by Xh1 , . . . , Xhk the sets of the sunflower, and let
Y be its core.

Suppose that Y = ∅. Then, Xh1 , . . . , Xhk are pairwise disjoint.
Note also that because α ≥ 1, 0 < β < 1 and opt is an integer,
⌊

α
β
opt⌋ ≥ opt. Therefore,

opt(I) ≥ k =

⌊α

β
opt

⌋
+ 1 > opt,

which is a contradiction. Therefore, Y ̸= ∅.
We show that, for every hitting set R for Σh1 of weight at most

α
β
opt, R∩Y ̸= ∅. Assume that this is not the case, that is, R∩Y = ∅.

Since R is a hitting set, there exists

uℓ ∈ Xhℓ
\ Y

such that uℓ ∈ R for every ℓ ∈ {1, . . . , k}. Because {Xh1 , . . . , Xhk}

is a sunflower, u1, . . . , uk are distinct. It follows that

(R) ≥

k∑
ℓ=1

ω(uℓ) ≥ k =

⌊α

β
opt

⌋
+ 1 >

α

β
opt.

The latter strict inequality is contradicting the fact that the weight
of R is at most α

β
opt. We conclude that R ∩ Y ̸= ∅.

Recall that Sh1 is a feasible solution for Ih1 , and, by Lemma 1
(ii),

ω(Sh1 ) ≤
α

β
opt(Ih1 ) ≤

α

β
opt.

Then Sh1 ∩ Y ̸= ∅. The set Xh1 was chosen to be a private set for
vh1 , that is, Sh1 ∩ Xh1 = {vh1}. Note that vh1 /∈ Xh2 . Hence, vh1 /∈ Y ,
and thus Sh1 ∩ Y = ∅. This is a contradiction, which completes
the proof of the claim.

By Claim 4.1, p ≤ d! ( α
β
opt)d. By Lemma 1(i),

ω(vi) ≤ α opt(Ii) ≤ α opt

for every i ∈ {1, . . . , p}. Therefore,

c(S) =

p∑
i=1

ω(vi) ≤ α opt p ≤ α opt d! (
α

β
opt)d.

It follows that c(S)
≤ αd! ( α opt)d. □
opt β
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.2. Independent sets in matroids of maximum and minimum
eights

In this subsection, we identify a large class of optimization
roblems for which the present-biased agent obtains an optimum
olution for both β < 1 and β > 1. These are the optimiza-
ion problems solvable exactly by greedy algorithms. The main
ntuition why the present-biased agent is able to find an optimal
olution is that for such problems the greedy algorithm makes
n optimal selection at each step. In particular, this means that
he present-biased agent does not make incompatible choices. We
how that the choice is compatible with an optimum solution.
To define the problem of finding a maximum-weight base of
matroid, we need some definitions. We refer to the textbook
f Oxley (2011) for the introduction to matroid theory, and we
nly recall the basics of matroids. A pair M = (E, I), where E is

a set called ground set, and I is a family of subsets of E, called
independent sets of M , is a matroid if it satisfies the following
conditions, called independence axioms:

(I1) ∅ ∈ I,
(I2) if A ⊆ B and B ∈ I then A ∈ I,
(I3) if A, B ∈ I and |A| < |B|, then there is e ∈ B \ A such that

A ∪ {e} ∈ I.

A set of I that is maximal for the inclusion is called a base. All
bases of M have the same cardinality, which is called the rank of
M . As it is common, we assume that matroids are given by their
independence oracles, where, given a set X ⊆ E, the independence
oracle for M answers the query whether X is independent or not
in unit time.

The task of the maximum-weight base problem is, given a
matroid M = (E, I) and a weight function ω : E → Z, find a
base of the maximumweight. Similarly, the task of the minimum-
weight base problem is, given a matroid M = (E, I) and a weight
function ω : E → Z, find a base of the minimum weight.

The greedy algorithm for this problem constructs a base of
the input matroid by the iterative addition of a new element
to the independent set X which is initially defined as X := ∅.
In each iteration, the algorithm finds an element e ∈ E \ X of
maximum weights such that X ∪ {e} ∈ I and updates X :=

X ∪ {e}. The algorithm stops when it is unable to find an element
which can be included in X . Then it returns X . By the classical
result of Edmonds (1971), the greedy algorithms compute a base
of maximum weight. We show that the present-biased agents
obtains an optimal solution in both under and overestimation
cases.

Theorem 9. For every positive β , the present-biased agent obtains
an optimal solution for the problem of finding a maximum-weight
base of a matroid.

Proof. Let (M, ω) with M = (E, I) be an instance of the problem
of finding a maximum-weight base of a matroid. Observe that the
present-biased agent constructs a solution S as follows. Initially,
S := ∅. Then on each iteration, the agent finds a set X∗

⊆ E\S and
element e∗

∈ X∗ such that the maximum value of ω(e) + β ω(X \

{e}) is achieved for X∗
= X and e∗

= e, where the maximum is
taken over all X ⊆ E \ S such that S ∪ X ∈ I. The algorithm stops
when the agent fails to find a nonempty X ⊆ E \ S satisfying the
condition that S ∪ X is independent. By axioms (I1)–(I3), S is a
base of M . We claim that S is a base of the maximum weight.
The claim is straightforward if β = 1, because the algorithm of
the agent is exactly the greedy algorithm. We prove the claim for

β ̸= 1.
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Underestimation. If β < 1, then the agent’s solution is also
constructed by the greedy algorithm. Indeed, given the already
constructed partial solution S and X ⊆ E \ S such that S ∪ X ∈

I, the maximum value of ω(e) + β ω(X \ {e}) is achieved for
e = argmaxe′∈X ω(e′). Now, if e∗

∈ E \ S is an element of
maximum weight such that S∪{e∗

} ∈ I, then, thanks to the result
of Edmonds (1971), the following holds. If Y ⊆ E \ (S ∪ {e∗

})
is a set of maximum weight such that S ∪ {e∗

} ∪ Y ∈ I, then
X = {e∗

} ∪ Y ⊆ E \ S is a set of maximum weight such that
S ∪ X ∈ I. This means that the agent chooses e∗ for inclusion in
S.

Overestimation. The case β > 1 is more complicated due to the
fact that for S and X ⊆ E \ S, the maximum value of ω(e) +

β ω(X \ {e}) is achieved for e = argmine′∈X ω(e′). Suppose that
S is a partial solution of the agent such that S is not a base of M ,
but S ⊂ B for some maximum-weight base B. Moreover, assume
that the agent chooses e∗

∈ E \ S for inclusion in the solution.

Claim 4.2. S ∪ {e∗
} is a subset of a base of maximum weight.

To establish the claim, suppose, for the purpose of contradic-
tion, that S ∪ {e∗

} is not a subset of a base of maximum weight.
Then for X∗

⊆ E \ S such that S ∪ X∗
∈ I chosen by the

agent, ω(S ∪ X∗) < W where W is the maximum weight of
a base. Also we have that |X∗

| ≥ 2 because, for singleton sets
X = {e}, the agent would merely choose an element e∗

= {X∗
}

with ω(S∪{e∗
}) = W . By Edmonds (1971), there is Y ⊆ E \S such

that S∪Y is a base of maximumweightW , where Y is constructed
by the greedy algorithm. Since ω(S ∪ X∗) < W , we have ω(Y ) >
ω(X∗). Let Y = {e1, . . . , ek}, where the elements are ordered by
their inclusion in Y during the execution of the greedy algorithm
(ei is included before ei+1). Note that ω(e1) ≥ · · · ≥ ω(ek), that is,
ek is an element of minimum weight in Y . Since |X∗

| ≥ 2, we have
k ≥ 2. By the properties of the greedy algorithm (see Edmonds,
1971), the set Z = {e1, . . . , ek−1} is a subset of maximum weight
among of all subsets Z ′

⊆ E\S such that S∪Z ′
∈ I and |Z ′

| = k−1.
Since |X∗

\ {e∗
}| = k − 1, we have ω(X∗

\ {e∗
}) ≤ ω(Z). It follows

that

ω(e∗) + β ω(X∗
\ {e∗

}) = ω(X∗) − ω(X∗
\ {e∗

}) + β ω(X∗
\ {e∗

})
= ω(X∗) + (β − 1)ω(X∗

\ {e∗
})

< ω(Y ) + (β − 1)ω(Z)
= ω(Y ) + (β − 1)ω(Y \ {ek})
= ω(ek) + β ω(Y \ {ek}).

This strict inequality contradicts the strategy of the agent who
should prefer Y and ek over X∗ and e∗. This proves the claim.

Applying the claim iteratively, we conclude that the agent
should select a base of maximum weight. □

Finally, let us remark that because we assume that the weights
of the elements of the matroid are from Z, Theorem 9 (by mul-
tiplying all weights by −1) also implies that the present-biased
agent obtains an optimal solution for the problem of finding a
minimum-weight base of a matroid.

5. Conclusion

We introduced a framework for time-inconsistent planning.
Such a framework enables to perform fine-grained analysis of
the behavior of present-biased agents depending on the opti-
mization problem they have to solve. Our case study concerns
two optimization problems: set cover and hitting set. It would
be fascinating to provide a fine-grained analysis for other fun-
damental optimization problems (NP-hard and polynomial-time
solvable). The incomplete list of open questions includes: match-
ings (perfect, maximum, stable, etc.), integer linear programming,
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ax-flow, knapsack, traveling salesman, and max-cut. More gen-
rally, it would be fascinating to obtain a deeper understanding
f the impact of optimization problems on the worst case ratio of
resent-biased agents.
When an agent is required to solve an NP-hard problem,

t is natural to assume that some heuristics or approximation
lgorithms are used due to computational limitations. Thus, an-
ther exciting direction for further research is to investigate the
nfluence of approximation on present-biased agents’ behavior. In
ur work, we made only the first steps in this direction. A very
oncrete example: one can adapt the upper bound on the cost
atio in Theorem 4 to the assumption that the agent uses an α-
approximation algorithm. However, the bound blows-up by the
factor αs, where s is the size of the solution obtained by the agent
(informally, we pay the factor α on each iteration). However, the
examples in Section 4 show that this is not always the case. Are
there cases when this exponential blow-up unavoidable?
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