
Fedor V. Fomin and Dieter Kratsch

Exact Exponential Algorithms

October 12, 2010

Springer

Preface

For a long time computer scientists have distinguished between fast and slow algo-
rithms. Fast (or good) algorithms are the algorithms that run in polynomial time,
which means that the number of steps required for the algorithm to solve a problem
is bounded by some polynomial in the length of the input. All other algorithms are
slow (or bad). The running time of slow algorithms is usually exponential. This book
is about bad algorithms.

There are several reasons why we are interested in exponential time algorithms.
Most of us believe that there are many natural problems which cannot be solved by
polynomial time algorithms. The most famous and oldest family of hard problems
is the family of NP-complete problems. Most likely there are no polynomial time al-
gorithms solving these hard problems and in the worst-case scenario the exponential
running time is unavoidable.

Every combinatorial problem is solvable in finite time by enumerating all possi-
ble solutions, i.e. by brute-force search. But is brute-force search always unavoid-
able? Definitely not. Already in the nineteen sixties and seventies it was known that
some NP-complete problems can be solved significantly faster than by brute-force
search. Three classic examples are the following algorithms for the TRAVELLING
SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING. The algo-
rithm of Bellman [17] and Held and Karp [111] from 1962 solves the TRAVELLING
SALESMAN problem with n cities in time O(2nn2), which is much faster than the
trivial O(n!n) brute-force search. In 1977, Tarjan and Trojanowski [213] gave an
O(2n/3) time algorithm computing a maximum independent set in a graph on n ver-
tices, improving on the brute-force search algorithm which takes O(n2n). In 1976,
Lawler [150] constructed anO(n(1+ 3

√
3)n) time algorithm solving the COLORING

problem for which brute-force solution runs in timeO(nn+1). On the other hand, for
some NP-complete problems, like SATISFIABILITY, regardless of all developments
in algorithmic techniques in the last 50 years, we know of no better algorithm than
the trivial brute-force search that tries all possible solutions. It is a great intellectual

v

vi Preface

challenge to find whether enumeration of solutions is the only approach to solve NP
problems in general.1

With the development of the area of exact algorithms, it has become possible to
improve significantly the running time of the classical algorithms for MAXIMUM
INDEPENDENT SET and GRAPH COLORING. Moreover, very often the techniques
for solving NP problems can be used to solve problems that are presumably harder
than NP-complete problems, like #P and PSPACE-complete problems. On the other
hand, for some problems, like the TRAVELLING SALESMAN problem, no progress
has been made in the last 50 years. To find an explanation of the wide variation in
the worst-case complexities of known exact algorithms is another challenge.

Intellectual curiosity is not the only reason for the study of exponential algo-
rithms. There are certain applications that require exact solutions of NP-hard prob-
lems, although this might only be possible for moderate input sizes. And in some
situations the preference of polynomial time over exponential is debatable. Richard
Lipton in his blog “Gödel’s Lost Letter and P 6= NP”2, attributes the following saying
to Alan Perlis, the first Turing Award winner, “for every polynomial-time algorithm
you have, there is an exponential algorithm that I would rather run”. The point is
simple: n3 > 1.0941n · n for n ≤ 100 and on instances of moderate sizes, the ex-
ponential time algorithm can be preferable to polynomial time algorithms. And a
reduction of the base of the exponential running time, say fromO(1.8n) toO(1.7n),
increases the size of the instances solvable within a given amount of time by a con-
stant multiplicative factor; running a given exponential algorithm on a faster com-
puter can enlarge the size only by a (small) additive factor. Thus “bad” exponential
algorithms are not that bad in many situations!

And the final reason of our interest in exact algorithms is of course that the de-
sign and analysis of exact algorithms leads to a better understanding of NP-hard
problems and initiates interesting new combinatorial and algorithmic challenges.

Our interest in exact algorithms was attracted by an amazing survey by Gerhard
Woeginger [220]. This influential survey fascinated many researchers and, we think,
was one of the main reasons why the area of exact algorithms changed drastically in
the last decade. Still being in a nascent stage, the study of exact algorithms is now a
dynamic and vibrant area. While there are many open problems, and new techniques
to solve these problems are still appearing, we believe it is the right moment to
summarize the work on exact algorithms in a book. The main intention of this book
is to provide an introduction to the area and explain the most common algorithmic

1 The origin of this question can be traced to the famous letter of Gödel to von Neumann from
1956:

“Es wäre interessant zu wissen, wie stark im allgemeinen bei finiten kombinatorischen
Problemen die Anzahl der Schritte gegenüber dem blossen Probieren verringert werden
kann.”

English translation: It would be interesting to know, ... how strongly in general the number of steps
in finite combinatorial problems can be reduced with respect to simple exhaustive search. [205]
2 Weblog post Fast Exponential Algorithms from February 13, 2009, available at
http://rjlipton.wordpress.com/

Preface vii

techniques. We have tried to make the results accessible not only to the specialists
working in the area but to a more general audience of students and researchers in
Computer Science, Operations Research, Optimization, Combinatorics, and other
fields related to algorithmic solutions of hard optimization problems. Therefore,
our preferences in presenting the material were for giving the basic ideas, avoiding
improvements which require significant technical effort.

Bergen, Metz, Fedor V. Fomin
August 2010 Dieter Kratsch

Acknowledgements

We are deeply indebted to Gerhard Woeginger for attracting our attention to Exact
Algorithms in 2002. His survey on exact algorithms for NP-hard problems was a
source of inspiration and triggered our interest in this area.

This work would be impossible without the help and support of many peo-
ple. We are grateful to all our coauthors in the area of exact algorithms: Omid
Amini, Hans Bodlaender, Hajo Broersma, Jianer Chen, Frederic Dorn, Mike Fel-
lows, Henning Fernau, Pierre Fraigniaud, Serge Gaspers, Petr Golovach, Fabrizio
Grandoni, Gregory Gutin, Frédéric Havet, Pinar Heggernes, Pim van ’t Hof, Kjar-
tan Høie, Iyad A. Kanj, Joachim Kneis, Arie M. C. A. Koster, Jan Kratochvı́l,
Alexander Langer, Mathieu Liedloff, Daniel Lokshtanov, Frédéric Mazoit, Nicolas
Nisse, Christophe Paul, Daniel Paulusma, Eelko Penninkx, Artem V. Pyatkin, Daniel
Raible, Venkatesh Raman, Igor Razgon, Frances A. Rosamond, Peter Rossmanith,
Saket Saurabh, Alexey A. Stepanov, Jan Arne Telle, Dimitrios Thilikos, Ioan Tod-
inca, Yngve Villanger, and Gerhard J. Woeginger. It was a great pleasure to work
with all of you and we profited greatly from all this cooperation. Special thanks go
to Fabrizio Grandoni for introducing us to the world of Measure & Conquer.

Many of our colleagues helped with valuable comments, corrections and sugges-
tions. We are grateful for feedback from Evgeny Dantsin, Serge Gaspers, Fabrizio
Grandoni, Petteri Kaski, Mikko Koivisto, Alexander Kulikov, Mathieu Liedloff,
Daniel Lokshtanov, Jesper Nederlof, Igor Razgon, Saket Saurabh, Uwe Schöning,
Gregory Sorkin, Ioan Todinca, K. Venkata, Yngve Villanger, and Ryan Williams.

It is a special pleasure to thank our wives Nora and Tanya. Without their encour-
agement this work would have taken much longer.

ix

Contents

Preface . v

1 Introduction . 1
1.1 Preliminaries . 1
1.2 Dynamic Programming for TSP . 4
1.3 A Branching Algorithm for Independent Set . 7

2 Branching . 13
2.1 Fundamentals . 14
2.2 k-Satisfiability . 18
2.3 Independent Set . 23

3 Dynamic Programming . 31
3.1 Basic Examples . 32

3.1.1 Permutation Problems . 32
3.1.2 Partition Problems . 34

3.2 Set Cover and Dominating Set . 36
3.3 TSP on Graphs of Bounded Degree . 41
3.4 Partition into Sets of Bounded Cardinality . 43

4 Inclusion-Exclusion . 51
4.1 The Inclusion-Exclusion Principle . 51
4.2 Some Inclusion-Exclusion Algorithms . 53

4.2.1 Computing the Permanent of a Matrix 53
4.2.2 Directed Hamiltonian Path . 56
4.2.3 Bin Packing . 59

4.3 Coverings and Partitions . 60
4.3.1 Coverings and Graph Coloring . 61
4.3.2 Partitions . 64
4.3.3 Polynomial Space Algorithms . 66

4.4 Counting Subgraph Isomorphisms . 68

xi

xii Contents

5 Treewidth . 77
5.1 Definition and Dynamic Programming . 77
5.2 Graphs of Maximum Degree 3 . 81
5.3 Counting Homomorphisms . 86
5.4 Computing Treewidth . 91

5.4.1 Computing the Treewidth Using Potential Maximal Cliques 92
5.4.2 Counting Minimal separators and Potential Maximal Cliques 96

6 Measure & Conquer . 101
6.1 Independent Set . 102
6.2 Feedback Vertex Set . 106

6.2.1 An Algorithm for Feedback Vertex Set 108
6.2.2 Computing a Minimum Feedback Vertex Set 109

6.3 Dominating Set . 113
6.3.1 The Algorithm msc . 114
6.3.2 A Measure & Conquer Analysis . 116

6.4 Lower Bounds . 120

7 Subset Convolution . 125
7.1 Fast zeta Transform . 126
7.2 Fast Subset Convolution . 128
7.3 Applications and Variants . 132
7.4 f -width and Rank-width . 136

8 Local Search and SAT . 141
8.1 Random Walks to Satisfying Assignments . 142
8.2 Searching Balls and Cover Codes . 146

9 Split and List . 153
9.1 Sort and Search . 153
9.2 Maximum Cut . 158

10 Time Versus Space . 161
10.1 Space for Time: Divide & Conquer . 161
10.2 Time for Space: Memorization . 166

11 Miscellaneous . 171
11.1 Bandwidth . 171
11.2 Branch & Recharge . 175
11.3 Subexponential Algorithms and ETH . 179

12 Conclusions, Open Problems and Further Directions 187

References . 189

Appendix: Graphs . 199

Contents xiii

Index . 201

Chapter 1
Introduction

In this introductory chapter we start with a preliminary part and present then two
classical exact algorithms breaking the triviality barrier. The first one, from the nine-
teen sixties, is the dynamic programming algorithm of Bellman, Held and Karp to
solve the TRAVELLING SALESMAN problem [16, 17, 111]. The second is a branch-
ing algorithm to compute a maximum independent set of a graph. The main idea of
this algorithm can be traced back to the work of Miller and Muller [155] and Moon
and Moser [161] from the nineteen sixties.

The history of research on exact algorithms for these two NP-hard problems is
contrasting. Starting with the algorithm of Tarjan and Trojanowski [213] from 1977
there was a chain of dramatic improvements in terms of the running time of an
algorithm for the MAXIMUM INDEPENDENT SET problem. For the TRAVELLING
SALESMAN problem, despite many attempts, no improvement on the running time
of the Bellman-Held-Karp’s algorithm was achieved so far.

1.1 Preliminaries

O∗ notation. The classical big-O notation is defined as follows. For functions f (n)
and g(n) we write f = O(g) if there are positive numbers n0 and c such that for
every n > n0, f (n) < c · g(n). In this book we use a modified big-O notation that
suppresses all polynomially bounded factors. For functions f and g we write f (n) =
O∗(g(n)) if f (n) = O(g(n)poly(n)), where poly(n) is a polynomial. For example,
for f (n) = 2nn2 and g(n) = 2n, f (n) =O∗(g(n)). This modification of the classical
big-O notation can be justified by the exponential growth of f (n). For instance, the
running time (

√
2)n poly(n) is sandwiched between running times 1.4142135n and

1.4142136n for every polynomial poly(n) and sufficiently large n. In many chapters
of this book when estimating the running time of algorithms, we have exponential
functions where the base of the exponent is some real number. Very often we round
the base of the exponent up to the fourth digit after the decimal point. For example,
for running time O((

√
2)n), we have

√
2 = 1.414213562..., and (

√
2)n poly(n) =

1

2 1 Introduction

O(1.4143n). Hence when we round reals in the base of the exponent, we use the
classical big-O notation. We also write f = Ω(g), which means that g =O(f), and
f = Θ(g), which means that f = Ω(g) and f =O(g).

Measuring quality of exact algorithms. The common agreement in polynomial
time algorithms is that the running time of an algorithm is estimated by a function
either of the input length or of the input “size”. The input length can be defined as
the number of bits in any “reasonable” encoding of the input over a finite alphabet;
but the notion of input size is problem dependent. Usually every time we speak
about the input size, we have to specify what we mean by that. Let us emphasize
that for most natural problems the length of the input is not exactly the same as what
we mean by its “size”. For example, for a graph G on n vertices and m edges, we
usually think of the size of G as Θ(n+m), while the length (or the number of bits)
in any reasonable encoding over a finite alphabet is Θ(n + m logn). Similarly for a
CNF Boolean formula F with n variables and m clauses, the size of F is Θ(n + m)
and the input length is Θ(n+m logm).

So what is the appropriate input “size” for exponential time algorithms? For ex-
ample for an optimization problem on graphs, the input “size” can be the number
of vertices, the number of edges or the input length. In most parts of this book we
follow the more or less established tradition that

• Optimization problems on graphs are analyzed in terms of the number of vertices;
• Problems on sets are analyzed in terms of the number of elements;
• Problems on Boolean formulas are analyzed in terms of the number of variables.

An argument for such choices of the “size” is that with such parameterization it
is often possible to measure the improvement over the trivial brute-force search
algorithm. Every search version of the problem L in NP can be formulated in the
following form:

Given x, find y so that |y| ≤ m(x) and R(x,y) (if such y exists).

Here x is an instance of L, |y| is the length (the number of bits in the binary represen-
tation) of certificate y, R(x,y) is a polynomial time decidable relation that verifies
the certificate y for instance x, and m(x) is a polynomial time computable and poly-
nomially bounded complexity parameter that bounds the length of the certificate y.
Thus problem L can be solved by enumerating all possible certificates y of length
at most m(x) and checking for each certificate in polynomial time if R(x,y). There-
fore, the running time of the brute-force search algorithm is up to a polynomial
multiplicative factor proportional to the number of all possible certificates of length
at most m(x), which is O∗(2m(x)).

Let us give some examples.

• Subset problems. In a subset problem every feasible solution can be specified as
a subset of an underlying ground set. If the cardinality of the ground set is n, then
every subset S of the ground set can be encoded by a binary string of length n. The
ith element of the string is 1 if and only if the ith element of the instance x is in S.
In this case m(x) = n and the brute-force search can be done in time O∗(2n). For

1.1 Preliminaries 3

instance, a truth assignment in the SATISFIABILITY problem corresponds to se-
lecting a subset of TRUE variables. A candidate solution in this case is the subset
of variables, and the size of each subset does not exceed the number of variables,
hence the length of the certificate does not exceed n. Thus the brute-force search
enumerating all possible subsets of variables and checking (in polynomial time)
whether the selected assignment satisfies the formula takes O∗(2n) steps. In the
MAXIMUM INDEPENDENT SET problem, every subset of the vertex set is a so-
lution candidate of size at most n, where n is the number of vertices of the graph.
Again, the brute-force search for MAXIMUM INDEPENDENT SET takes O∗(2n)
steps.

• Permutation problems. In a permutation problem every feasible solution can be
specified as a total ordering of an underlying ground set. For instance, in the
TRAVELLING SALESMAN problem, every tour corresponds to a permutation of
the cities. For an instance of the problem with n cities, possible candidate solu-
tions are ordered sets of n cities. The size of the candidate solution is n and the
number of different ordered sets of size n is n!. In this case m(x) = log2 n! and
the trivial algorithm runs in time O∗(n!).

• Partition problems. In a partition problem, every feasible solution can be speci-
fied as a partition of an underlying ground set. An example of such a problem is
the GRAPH COLORING problem, where the goal is to partition the vertex set of an
n-vertex graph into color classes. In this case m(x) = log2 nn and the brute-force
algorithm runs in O∗(nn) =O∗(2n logn) time.

Intuitively, such a classification of the problems according to the number of can-
didate solutions creates a complexity hierarchy of problems, where subset problems
are “easier” than permutation problems, and permutation problems are “easier” than
partition problems. However, we do not have any evidences that such a hierarchy
exists; moreover there are permutation problems solvable in time O∗((2− ε)n) for
some ε > 0. There are also some subset problems for which we do not know any-
thing better than brute-force search. We also should say that sometimes such clas-
sification is ambiguous. For example, is the HAMILTONIAN CYCLE problem a per-
mutation problem for vertices or a subset problem for edges? One can argue that
on graphs, where the number of edges m is less than log2 n!, the algorithm trying
all possible edge subsets in time O∗(2m) is faster than O∗(n!), and in these cases
we have to specify what we mean by the brute-force algorithm. Fortunately, such
ambiguities do not occur often.

Parameterized complexity. The area of exact exponential algorithms is not the
only one dealing with exact solutions of hard problems. The parameterized com-
plexity theory introduced by Downey and Fellows [66] is a general framework for a
refined analysis of hard algorithmic problems. Parameterized complexity measures
complexity not only in terms of input length but also in terms of a parameter which
is a numerical value not necessarily dependent on the input length. Many parameter-
ized algorithmic techniques evolved accompanied by a powerful complexity theory.
We refer to recent monographs of Flum and Grohe [78] and Niedermeier [164] for
overviews of parameterized complexity. Roughly speaking, parameterized complex-

4 1 Introduction

ity seeks the possibility of obtaining algorithms whose running time can be bounded
by a polynomial function of the input length and, usually, an exponential function
of the parameter. Thus most of the exact exponential algorithms studied in this book
can be treated as parameterized algorithms, where the parameter can be the number
of vertices in a graph, the number of variables in a formula, etc. However, such a pa-
rameterization does not make much sense from the point of view of parameterized
complexity, where the fundamental assumption is that the parameter is independent
of the input size. In particular, it is unclear whether the powerful tools from pa-
rameterized complexity can be used in this case. On the other hand, there are many
similarities between the two areas, in particular some of the basic techniques like
branching, dynamic programming, iterative compression and inclusion-exclusion
are used in both areas. There are also very nice connections between subexponen-
tial complexity and parameterized complexity.

1.2 Dynamic Programming for TSP

Travelling Salesman Problem. In the TRAVELLING SALESMAN problem (TSP),
we are given a set of distinct cities {c1,c2, . . . ,cn} and for each pair ci 6= c j the
distance between ci and c j, denoted by d(ci,c j). The task is to construct a tour
of the travelling salesman of minimum total length which visits all the cities and
returns to the starting point. In other words, the task is to find a permutation π of
{1,2, . . . ,n}, such that the following sum is minimized

n−1

∑
i=1

d(cπ(i),cπ(i+1))+d(cπ(n),cπ(1)).

How to find a tour of minimum length? The easy way is to generate all possible
solutions. This requires us to verify all permutations of the cities and the number of
all permutations is n!. Thus a naive approach here requires at least n! steps. Using
dynamic programming one obtains a much faster algorithm.

The dynamic programming algorithm for TSP computes for every pair (S,ci),
where S is a nonempty subset of {c2,c3, . . . ,cn} and ci ∈ S, the value OPT [S,ci]
which is the minimum length of a tour which starts in c1, visits all cities from S and
ends in ci. We compute the values OPT [S,ci] in order of increasing cardinality of S.
The computation of OPT [S,ci] in the case S contains only one city is trivial, because
in this case, OPT [S,ci] = d(c1,ci). For the case |S|> 1, the value of OPT [S,ci] can
be expressed in terms of subsets of S:

OPT [S,ci] = min{OPT [S\{ci},c j]+d(c j,ci) : c j ∈ S\{ci}}. (1.1)

Indeed, if in some optimal tour in S terminating in ci, the city c j immediately pre-
cedes ci, then

1.2 Dynamic Programming for TSP 5

OPT [S,ci] = OPT [S\{ci},c j]+d(c j,ci).

Thus taking the minimum over all cities that can precede ci, we obtain (1.1). Finally,
the value OPT of the optimal solution is the minimum of

OPT [{c2,c3, . . . ,cn},ci]+d(ci,c1),

where the minimum is taken over all indices i ∈ {2,3, . . . ,n}.
Such a recurrence can be transformed in a dynamic programming algorithm by

solving subproblems in increasing sizes, which here is the number of cities in S. The
corresponding algorithm tsp is given in Fig. 1.1.

Algorithm tsp({c1,c2, . . .cn},d).
Input: Set of cities {c1,c2, . . . ,cn} and for each pair of cities ci,c j the distance d(ci,c j).
Output: The minimum length of a tour.

for i = 2 to n do
OPT [ci,ci] = d(c1,ci)

for j = 2 to n−1 do
forall S⊆ {2,3, . . . ,n} with |S|= j do

OPT [S,ci] = min{OPT [S\{ci},ck]+d(ck,ci) : ck ∈ S\{ci}}
return min{OPT [{c2,c3, . . . ,cn},ci]+d(ci,c1) : i ∈ {2,3, . . . ,n}}

Fig. 1.1 Algorithm tsp for the TRAVELLING SALESMAN problem

Before analyzing the running time of the dynamic programming algorithm let us
give a word of caution. Very often in the literature the running time of algorithms is
expressed in terms of basic computer primitives like arithmetic (add, subtract, mul-
tiply, comparing, floor, etc.), data movement (load, store, copy, etc.), and control
(branching, subroutine call, etc.) operations. For example, in the unit-cost random-
access machine (RAM) model of computation, each of such steps takes constant
time. The unit-cost RAM model is the most common model appearing in the liter-
ature on algorithms. In this book we also adapt the unit-cost RAM model and treat
these primitive operations as single computer steps. However in some parts of the
book dealing with computations with huge numbers such simplifying assumptions
would be too inaccurate.

The reason is that in all known realistic computational models arithmetic op-
erations with two b-bit numbers require time Ω(b), which brings us to the log-
cost RAM model. For even more realistic models one has to assume that two b-bit
integers can be added, subtracted, and compared in O(b) time, and multiplied in
O(b logb log logb) time. But this level of precision is not required for most of the
results discussed in this book. Because of the O∗-notation, we can neglect the dif-
ference between log-cost and unit-cost RAM for most of the algorithms presented
in this book. Therefore, normally we do not mention the model used to analyze
running times of algorithms (assuming unit-cost RAM model), and specify it only
when the difference between computational models becomes important.

6 1 Introduction

Let us come back to TSP. The amount of steps required to compute (1.1) for a
fixed set S of size k and all vertices ci ∈ S is O(k2). The algorithm computes (1.1)
for every subset S of cities, and thus takes time ∑

n−1
k=1O(

(n
k

)
). Therefore, the total

time to compute OPT is

n−1

∑
k=1
O(
(

n
k

)
k2) =O(n22n).

The improvement fromO(n!n) in the trivial enumeration algorithm toO∗(2n) in the
dynamic programming algorithm is quite significant.

For the analyses of the TSP algorithm it is also important to specify which model
is used. Let W be the maximum distance between the cities. The running time of
the algorithm for the unit-cost RAM model is O∗(2n). However, during the algo-
rithm we have to operate with O(lognW)-bit numbers. By making use of more
accurate log-cost RAM model, we estimate the running time of the algorithm as
2n logWnO(1). Since W can be arbitrarily large, 2n logWnO(1) is not in O∗(2n).

Finally, once all values OPT [S,ci] have been computed, we can also construct an
optimal tour (or a permutation π) by making use of the following observation: A
permutation π , with π(c1) = c1, is optimal if and only if

OPT = OPT [{cπ(2),cπ(3), . . . ,cπ(n)},cπ(n)]+d(cπ(n),c1),

and for k ∈ {2,3, . . . ,n−1},

OPT [{cπ(2), . . . ,cπ(k+1)},cπ(k+1)] = OPT [{cπ(2), . . . ,cπ(k)},cπ(k)]
+d(cπ(k),cπ(k+1)).

A dynamic programming algorithm computing the optimal value of the solution
of a problem can typically also produce an optimal solution of the problem. This
is done by adding suitable pointers such that a simple backtracing starting at an
optimal value constructs an optimal solution without increasing the running time.

One of the main drawbacks of dynamic programming algorithms is that they
need a lot of space. During the execution of the dynamic programming algorithm
above described, for each i ∈ {2,3, . . . ,n} and j ∈ {1,2, . . . ,n−1}, we have to keep
all the values OPT [S,ci] for all sets of size j and j + 1. Hence the space needed is
Ω(2n), which means that not only the running time but also the space used by the
algorithm is exponential.

Dynamic Programming is one of the major techniques to design and analyse ex-
act exponential time algorithms. Chapter 3 is dedicated to Dynamic Programming.
The relation of exponential space and polynomial space is studied in Chap. 10.

1.3 A Branching Algorithm for Independent Set 7

1.3 A Branching Algorithm for Independent Set

A fundamental and powerful technique to design fast exponential time algorithms
is Branch & Reduce. It actually comes with many different names: branching al-
gorithm, search tree algorithm, backtracking algorithm, Davis-Putnam type algo-
rithm etc. We shall introduce some of the underlying ideas of the Branch & Reduce
paradigm by means of a simple example.

Maximum Independent Set. In the MAXIMUM INDEPENDENT SET problem (MIS),
we are given an undirected graph G = (V,E). The task is to find an independent

set I ⊆V , i.e. any pair of vertices of I is non-adjacent, of maximum cardinality. For
readers unfamiliar with terms from Graph Theory, we provide the most fundamental
graph notions in Appendix .

A trivial algorithm for this problem would be to try all possible vertex subsets
of G, and for each subset to check (which can be easily done in polynomial time),
whether this subset is an independent set. At the end this algorithm outputs the size
of the maximum independent set or a maximum independent set found. Since the
number of vertex subsets in a graph on n vertices is 2n, the naive approach here
requires time Ω(2n).

Here we present a simple branching algorithm for MIS to introduce some of the
major ideas. The algorithm is based on the following observations. If a vertex v is
in an independent set I, then none of its neighbors can be in I. On the other hand,
if I is a maximum (and thus maximal) independent set, and thus if v is not in I then
at least one of its neighbors is in I. This is because otherwise I ∪{v} would be an
independent set, which contradicts the maximality of I. Thus for every vertex v and
every maximal independent set I, there is a vertex y from the closed neighborhood
N[v] of v, which is the set consisting of v and vertices adjacent to v, such that y is
in I, and no other vertex from N[y] is in I. Therefore to solve the problem on G,
we solve problems on different reduced instances, and then pick up the best of the
obtained solutions. We will refer to this process as branching.

The algorithm in Fig. 1.2 exploits this idea. We pick a vertex of minimum degree
and for each vertex from its closed neighborhood we consider a subproblem, where
we assume that this vertex belongs to a maximum independent set.

Algorithm mis1(G).
Input: Graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if |V |= 0 then
return 0

choose a vertex v of minimum degree in G
return 1+max{mis1(G\N[y]) : y ∈ N[v]}

Fig. 1.2 Algorithm mis1 for MAXIMUM INDEPENDENT SET

8 1 Introduction

a

b

c d

e

c d

e

G\N[a]

e

G\N[b]

e

G\N[c] G\N[d]

G\N[e]

G\N[e]

Fig. 1.3 Example of a minimum degree branching algorithm. We branch on vertex a. Then in one
subproblem we branch on c, and in the other on e, etc.

The correctness of branching algorithms is usually easy to verify. The algorithm
consists of a single branching rule and its correctness follows from the discussions
above.

As an example, let us consider the performance of algorithm mis1 on the graph
G of Fig. 1.3. At the beginning the minimum vertex degree is 1, so we select one of
the vertices of degree 1, say a. We branch with 2 subproblems, the left branch corre-
sponding to G\N[a] and the right branch to G\N[b]. For the right branch there is a
unique choice and after branching on e we obtain an empty graph and do not branch
anymore. The value the algorithm outputs for this branch is 2 and this corresponds
to the maximal independent set {b,e}. For the left branch we pick a vertex of min-
imum degree (again 1), say c, and branch again with 2 subproblems. The maximal
independent sets found in the left branch are {e,c,a} and {d,a} and the algorithm
reports that the size of a maximum independent set is 3. Let us observe the interest-
ing fact that every maximal independent set can be constructed by following a path
from some leaf to the root of the search tree.

Analysing the worst case running time of a branching algorithm can be non-
trivial. The main idea is that such an algorithm is recursive and that each execution of
it can be seen as a search tree T , where a subproblem, here G′= G\V ′, is assigned to
a node of T . Furthermore when branching from a subproblem assigned to a node of
T then any subproblem obtained is assigned to a child of this node. Thus a solution

1.3 A Branching Algorithm for Independent Set 9

in a node can be obtained from its descendant branches, and this is why we use the
term branching for this type of algorithms and call the general approach Branch &
Reduce. The running time spent by the algorithm on computations corresponding
to each node is polynomial—we construct a new graph by removing some vertices,
and up to a polynomial multiplicative factor the running time of the algorithm is
upper bounded by the number of nodes in the search tree T . Thus to determine the
worst case running time of the algorithm, we have to determine the largest number
T (n) of nodes in a search tree obtained by any execution of the algorithm on an
input graph G having n vertices. To compute T (n) of a branching algorithm one
usually relies on the help of linear recurrences. We will discuss in more details how
to analyze the running time of such algorithms in Chap. 2.

Let us consider the branching algorithm mis1 for MIS of Fig. 1.2. Let G be
the input graph of a subproblem. Suppose the algorithm branches on a vertex v of
degree d(v) in G. Let v1,v2, . . . ,vd(v) be the neighbors of v in G. Thus for solving
the subproblem G the algorithm recursively solves the subproblems G \N[v], G \
N[v1], . . . ,G\N[vd(v)] and we obtain the recurrence

T (n)≤ 1+T (n−d(v)−1)+
d(v)

∑
i=1

T (n−d(vi)−1).

Since in step 3 the algorithm chooses a vertex v of minimum degree, we have that
for all i ∈ {1,2, . . . ,d(v)},

d(v) ≤ d(vi),
n−d(vi)−1 ≤ n−d(v)−1

and, by the monotonicity of T (n),

T (n−d(vi)−1)≤ T (n−d(v)−1).

We also assume that T (0) = 1. Consequently,

T (n) ≤ 1+T (n−d(v)−1)+
d(v)

∑
i=1

T (n−d(v)−1)

≤ 1+(d(v)+1) ·T (n−d(v)−1).

By putting s = d(v)+1, we obtain

T (n) ≤ 1+ s ·T (n− s)≤ 1+ s+ s2 + · · ·+ sn/s

=
1− sn/s+1

1− s
=O∗(sn/s).

For s > 0, the function f (s) = s1/s has its maximum value for s = e and for integer
s the maximum value of f (s) = s1/s is when s = 3.

10 1 Introduction

1,0

10

0,5

x

20181614

1,25

12

0,75

0,25

8

0,0

6420

Fig. 1.4 f (s) = s1/s

Thus we obtain

T (n) =O∗(3n/3),

and hence the running time of the branching algorithm is O∗(3n/3).

Branch & Reduce is one of the fundamental paradigms in the design and analy-
sis of exact exponential time algorithms. We provide a more detailed study of this
approach in Chaps 2 and 6.

Notes

As a mathematical problem, TSP was first formulated in 1930 but the history of
the problem dates back in the 1800s when Hamilton studied related problems. See
[115] for the history of the problem. The dynamic programming algorithm for TSP
is due to Bellman [16, 17] and to Held and Karp [111]. Surprisingly, for almost 50
years of developments in Algorithms, the running time O∗(2n) of an exact algo-
rithm for TSP has not been improved. Another interesting question is on the space
requirements of the algorithm. If the maximum distance between two cities is W ,
then by making use of inclusion-exclusion (we discuss this technique in Chap. 4), it
is possible to solve the problem in timeO∗(W2n) and spaceO∗(W) [127]. Recently,
Lokshtanov and Nederlof used the discrete Fourier transform to solve TSP in time
O∗(W2n) and polynomial, i.e. nO(1) · (logW)O(1) space [154]. See also Chap. 10
for a O∗(4nnO(logn)) time and polynomial space algorithm.

1.3 A Branching Algorithm for Independent Set 11

For discussions on computational models we refer to the book of Cormen et
al. [52]; see also [61]. The classical algorithm of Schönhage and Strassen from
1971 multiplies two b-bit integers in time O(b logb log logb) [198]. Recently Fürer
improved the running time to b logb2O(log∗ b), where log∗ b is the iterated logarithm
of b, i.e. the number of times the logarithm function must be iteratively applied
before the result is at most 1 [98].

MIS is one of the benchmark problems in exact algorithms. From an exact point
of view MIS is equivalent to the problems MAXIMUM CLIQUE and MINIMUM
VERTEX COVER. It is easy to modify the branching algorithm mis1 so that it not
only finds one maximum independent set but outputs all maximal independent sets
of the input graph in time O∗(3n/3). The idea of algorithm mis1 (in a different
form) goes back to the works of Miller and Muller [155] from 1960 and to Moon
and Moser [161] from 1965 who independently obtained the following combinato-
rial bound on the maximum number of maximal independent sets.

Theorem 1.1. The number of maximal independent sets in a graph on n vertices is
at most 




3n/3 if n≡ 0 (mod 3),
4 ·3(n−4)/3 if n≡ 1 (mod 3),
2 ·3(n−2)/3 if n≡ 2 (mod 3).

Moreover, all bounds of Theorem 1.1 are tight and are achievable on graphs con-
sisting of n/3 disjoint copies of K3s; one K4 or two K2s and (n−4)/3 K3s; one K2
and (n− 2)/3 copies of K3s. A generalization of this theorem for induced regular
subgraphs is discussed in [107].

While the bound 3n/3 on the number of maximal independent sets is tight, the
running time of an algorithm computing a maximum independent set can be strongly
improved. The first improvement over O∗(3n/3) was published in 1977 by Tar-
jan and Trojanowski [213]. It is a Branch & Reduce algorithm of running time
O∗(2n/3) = O(1.26n) [213]. In 1986 Jian published an improved algorithm with
running timeO(1.2346n) [125]. In the same year Robson provided an algorithm of
running time O(1.2278n) [185]. All these three algorithms are Branch & Reduce
algorithms, and use polynomial space. In [185] Robson also showed how to speed
up Branch & Reduce algorithms using a technique that is now called Memorization
(and studied in detail in Chap. 10), and he established anO(1.2109n) time algorithm
that needs exponential space. Fomin, Grandoni, and Kratsch [85] showed how to
solve the problem MIS in time O(1.2202n) and polynomial space. Kneis, Langer,
and Rossmanith in [133] provided a branching algorithm with a computer-aided
case analysis to establish a running time of O(1.2132n). Very recently Bourgeois,
Escoffier, Paschos and van Rooij in [38] improved the best running time of a poly-
nomial space algorithm to compute a maximum independent set to O(1.2114n). A
significant amount of research has also been devoted to solving the maximum inde-
pendent set problem on sparse graphs [13, 37, 39, 47, 48, 97, 179].

Chapter 2
Branching

Branching is one of the basic algorithmic techniques for designing fast exponential
time algorithms. It is safe to say that at least half of the published fast exponential
time algorithms are branching algorithms. Furthermore, for many NP-hard prob-
lems the fastest known exact algorithm is a branching algorithm. Many of those
algorithms have been developed during the last ten years by applying techniques
like Measure & Conquer, quasiconvex analysis and related ones.

Compared to some other techniques for the design of exact exponential time
algorithms, branching algorithms have some nice properties. Typically branching
algorithms need only polynomial (or linear) space. The running time on some par-
ticular inputs might be much better than the worst case running time. They allow
various natural improvements that do not really change the worst case running time
but significantly speed up the running time on many instances.

Branching is a fundamental algorithmic technique: a problem is solved by de-
composing it into subproblems, recursively solving the subproblems and by finally
combining their solutions into a solution of the original problem.

The idea behind branching is so natural and simple that it was reinvented in many
areas under different names. In this book we will refer to the paradigm as Branch
& Reduce and to such algorithms as branching algorithms. There are various other
names in the literature for such algorithms, like splitting algorithms, backtracking
algorithms, search tree algorithms, pruning search trees, DPLL algorithms etc. A
branching algorithm is recursively applied to a problem instance and uses two types
of rules.

• A reduction rule is used to simplify a problem instance or to halt the algorithm.
• A branching rule is used to solve a problem instance by recursively solving

smaller instances of the problem.

By listing its branching and reduction rules such an algorithm is in principle easy to
describe, and its correctness is often quite easy to prove. The crux is the analysis of
the worst-case running time.

The design and analysis of such algorithms will be studied in two chapters. In
this chapter we start with several branching algorithms and analyze their running

13

14 2 Branching

time by making use of a simple measure of the input, like the number of variables in
a Boolean formulae, or the number of vertices in a graph. More involved techniques,
which use more complicated measures and allow a better analysis of branching al-
gorithms, in particular Measure & Conquer, will be discussed in Chap. 6.

2.1 Fundamentals

The goal of this section is to present the fundamental ideas and techniques in the
design and analysis of branching algorithms; in particular an introduction to the
running time analysis of a branching algorithm, including the tools and rules used
in such an analysis.

A typical branching algorithm consists of a collection of branching and reduction
rules. Such an algorithm may also have (usually trivial) halting rules. Furthermore
it has to specify which rule to apply on a particular instance. Typical examples are
preference rules or rules on which vertex to branch; e.g. the minimum degree rule of
algorithm mis1 in Chap. 1. To a large part designing a branching algorithm means
establishing reduction and branching rules.

In many branching algorithms any instance of a subproblem either contains a
corresponding partial solution explicitly or such a partial solution can easily be at-
tached to the instance. Thus a given algorithm computing (only) the optimal size
of a solution can easily be modified such that it also provides a solution of optimal
size. For example, in a branching algorithm computing the maximum cardinality of
an independent set in a graph G, it is easy to attach the set of vertices already chosen
to be in the (maximum) independent set to the instance.

The correctness of a well constructed branching algorithm usually follows from
the fact that the branching algorithm considers all cases that need to be considered.
A typical argument is that at least one optimal solution cannot be overlooked by the
algorithm. Formally one has to show that all reduction rules and all branching rules
are correct. Often this is not even explicitly stated since it is straightforward. Clearly
sophisticated rules may need a correctness proof.

Finally let us consider the running time analysis. Search trees are very useful to
illustrate an execution of a branching algorithm and to facilitate our understanding
of the time analysis of a branching algorithm. A search tree of an execution of a
branching algorithm is obtained as follows: assign the root node of the search tree
to the input of the problem; recursively assign a child to a node for each smaller
instance reached by applying a branching rule to the instance of the node. Note that
we do not assign a child to a node when a reduction rule is applied. Hence as long
as the algorithm applies reduction rules to an instance the instance is simplified but
the instance corresponds to the same node of the search tree.

What is the running time of a particular execution of the algorithm on an input
instance? To obtain an easy answer, we assume that the running time of the algo-
rithm corresponding to one node of the search tree is polynomial. This has to be

2.1 Fundamentals 15

guaranteed even in the case that many reduction rules are applied consecutively to
one instance before the next branching. Furthermore we require that a reduction of
an instance does not produce a simplified instance of larger size. For example, a
reduction rule applied to a graph typically generates a graph with fewer vertices.

Under this assumption, which is satisfied for all our branching algorithms, the
running time of an execution is equal to the number of nodes of the search tree times
a polynomial. Thus analyzing the worst-case running time of a branching algorithm
means determining the maximum number of nodes in a search tree corresponding
to the execution of the algorithm on an input of size n, where n is typically not the
length of the input but a natural parameter such as the number of vertices of a graph.

How can we determine the worst-case running time of a branching algorithm? A
typical branching algorithm has a running time of O∗(αn) for some real constant
α ≥ 1. However except for some very particular branching algorithms we are not
able determine the smallest possible α . More precisely, so far no general method
to determine the worst-case running time of a branching algorithm is available, not
even up to a polynomial factor. In fact this is a major open problem of the field.
Hence analysing the running time means upper bounding the unknown smallest
possible value of α . We shall describe in the sequel how this can be done.

The time analysis of branching algorithms is based on upper bounding the num-
ber of nodes of the search tree of any input of size n; and since the number of leaves
is at least one half of the number of nodes in any search tree, one usually prefers
to upper bound the number of leaves. First a measure for the size of an instance of
the problem is defined. In this chapter we mainly consider simple and natural mea-
sures like the number of vertices for graphs, the number of variables for Boolean
formulas, the number of edges for hypergraphs (or set systems), etc.

We shall see later that other choices of the measure of the size of an instance
are possible and useful. The overall approach to analyzing the running time of a
branching algorithm that we are going to describe will also work for such measures.
This will mainly be discussed in Chap. 6.

Let T (n) be the maximum number of leaves in any search tree of an input of
size n when executing a certain branching algorithm. The general approach is to
analyse each branching rule separately and finally to use the worst-case time over
all branching rules as an upper bound on the running time of the algorithm.

Let b be any branching rule of the algorithm to be analysed. Consider an appli-
cation of b to any instance of size n. Let r ≥ 2, and ti > 0 for all i ∈ {1,2, . . . ,r}.
Suppose rule b branches the current instance into r ≥ 2 instances of size at most
n− t1, n− t2, . . . , n− tr, for all instances of size n ≥ max{ti : i = 1,2, . . .r}. Then
we call b = (t1, t2, . . . tr) the branching vector of branching rule b. This implies the
linear recurrence

T (n)≤ T (n− t1)+T (n− t2)+ · · ·+T (n− tr). (2.1)

There are well-known standard techniques to solve linear recurrences. A funda-
mental fact is that base solutions of linear recurrences are of the form cn for some
complex number c, and that a solution of a homogeneous linear recurrence is a

16 2 Branching

linear combination of base solutions. More precisely, a base solution of the linear
recurrence (2.1) is of the form T (n) = cn where c is a complex root of

xn− xn−t1 − xn−t2 −·· ·− xn−tr = 0. (2.2)

We provide some references to the literature on linear recurrences in the Notes.
Clearly worst-case running time analysis is interested in a largest solution of (2.1)

which is (up to a polynomial factor) a largest base solution of (2.1). Fortunately there
is some very helpful knowledge about the largest solution of a linear recurrence
obtained by analysing a branching rule.

Theorem 2.1. Let b be a branching rule with branching vector (t1, t2, . . . tr). Then
the running time of the branching algorithm using only branching rule b isO∗(αn),
where α is the unique positive real root of

xn− xn−t1 − xn−t2 −·· ·− xn−tr = 0.

We call this unique positive real root α the branching factor of the branching vector
b. (They are also called branching numbers.) We denote the branching factor of
(t1, t2, . . . , tr) by τ(t1, t2, . . . , tr).

Theorem 2.1 supports the following approach when analysing the running time
of a branching algorithm. First compute the branching factor αi for every branching
rule bi of the branching algorithm to be analysed, as previously described. Now an
upper bound of the running time of the branching algorithm is obtained by taking
α = maxi αi. Then the number of leaves of the search tree for an execution of the
algorithm on an input of size n isO∗(αn), and thus the running time of the branching
algorithm is O∗(αn).

Suppose a running time expressed in terms of n is what we are interested in.
Using n as a simple measure of the size of instances we establish the desired up-
per bound of the worst-case running time of the algorithm. Using a more complex
measure we need to transform the running time in terms of this measure into one in
terms of n. This will be discussed in Chap. 6.

Due to the approach described above establishing running times of branching
algorithms, they are of the form O∗(αn) where α ≥ 1 is a branching factor and
thus a real (typically irrational). Hence the analysis of branching algorithms needs
to deal with reals. We adopt the following convention. Reals are represented by five-
digit numbers, like 1.3476, such that the real is rounded appropriately: rounded up
in running time analysis (and rounded down only in Sect. 6.4). For example, instead
of writing τ(2,2) =

√
2 = 1.414213562.., we shall write τ(2,2) < 1.4143, and this

implicitly indicates that 1.4142 < τ(2,2) < 1.4143. In general, reals are rounded
(typically rounded up) and given with a precision of 0.0001.

As a consequence, the running times of branching algorithms in Chap. 2 and
Chap. 6 are usually of the form O(β n), where β is a five-digit number achieved by
rounding up a real. See also the preliminaries on the O∗ notation in Chap. 1.

2.1 Fundamentals 17

Properties of branching vectors and branching factors are crucial for the design
and analysis of branching algorithms. Some of the fundamental ones will be dis-
cussed in the remainder of this section.

We start with some easy properties which follow immediately from the definition.

Lemma 2.2. Let r ≥ 2. Let ti > 0 for all i ∈ {1,2, . . .r}. Then the following proper-
ties are satisfied:

1. τ(t1, t2, . . . , tr) > 1.
2. τ(t1, t2, . . . , tr) = τ(tπ(1), tπ(2), . . . , tπ(r)) for any permutation π .
3. If t1 > t ′1 then τ(t1, t2, . . . , tr) < τ(t ′1, t2, . . . , tr).

Often the number of potential branching vectors is unbounded, and then re-
peated use of property 3. of the previous lemma may remove branchings such that a
bounded number of branchings remains and the worst-case branching factor remains
the same. This is based on the fact that the branching with vector (t ′1, t2, . . . , tr) is
worse than the branching with vector (t1, t2, . . . , tr), thus the latter branching can be
discarded. We shall also say that (t ′1, t2, . . . , tr) dominates (t1, t2, . . . , tr). In general,
dominated branching vectors can be safely discarded from a system of branching
vectors.

One often has to deal with branching into two subproblems. The corresponding
branching vector (t1, t2) is called binary. Intuitively the factor of a branching vector
can be decreased if it is better balanced in the sense of the following lemma.

Lemma 2.3. Let i, j,k be positive reals.

1. τ(k,k)≤ τ(i, j) for all branching vectors (i, j) satisfying i+ j = 2k.
2. τ(i, j) > τ(i+ ε, j− ε) for all 0 < i < j and all 0 < ε < j−i

2 .

The following example shows that trying to improve the balancedness of a
branching rule or branching vector by changes in the algorithm or other means is a
powerful strategy.

τ(3,3) = 3√2 < 1.2600
τ(2,4) = τ(4,2) < 1.2721
τ(1,5) = τ(5,1) < 1.3248

2 A table of precalculated factors of branching vectors can be helpful, in particular
in the case of simple analysis or more generally when all branching vectors are inte-
gral. Note that the factors have been rounded up, as it is necessary in (upper bounds
of) running times. Table 2.1 provides values of τ(i, j) for all i, j ∈ {1,2,3,4,5,6}.
They have been computed based on the linear recurrence

T (n)≤ T (n− i)+T (n− j) ⇒ xn = xn−i + xn− j

and the roots of the characteristic polynomial (assuming (j ≥ i)

x j− x j−i−1.

18 2 Branching

1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107
3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510
5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348
6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

Table 2.1 A table of branching factors (rounded up)

So far we have studied fundamental properties of branching vectors. Now we
shall discuss a way to combine branching vectors. This is an important tool when
designing branching algorithms using simple analysis. We call this operation addi-
tion of branching vectors.

The motivation is easiest to understand in the following setting. Suppose (i, j) is
the branching vector with the largest branching factor of our algorithm. In simple
time analysis this means that τ(i, j) is actually the base of the running time of the
algorithm. We might improve upon this running time by modifying our algorithm
such that whenever branching with branching vector (i, j) is applied then in one or
both of the subproblems obtained, the algorithm branches with a better factor. Thus
we would like to know the overall branching factor when executing the branchings
together. The hope is to replace the tight factor τ(i, j) by some smaller value.

The corresponding sum of branching vectors is easy to compute by the use of a
search tree; one simply computes the decrease (or a lower bound of the decrease)
for all subproblems obtained by the consecutive branchings, i.e. the overall decrease
for each leaf of the search tree, and this gives the branching vector for the sum of
the branchings. Given that the branching vectors are known for all branching rules
applied, it is fairly easy to compute the branching vector of the sum of branchings.

Let us consider an example. Suppose whenever our algorithm (i, j)-branches, i.e.
applies a branching rule with branching vector (i, j), it immediately (k, l)-branches
on the left subproblem. Then the overall branching vector is (i+k, i+ l, j), since the
addition of the two branchings produces three subproblems with the corresponding
decreases of the size of the original instance. How to find the sum of the branchings
by use of a search tree is illustrated in Fig. 2.1. In the second example the branch-
ing vectors are (2,2) and then (2,3) on the left subproblem and (1,4) on the right
subproblem; the sum is (4,5,3,6).

In Sect. 2.3 we use addition of branching vectors in the design and analysis of an
algorithm for MAXIMUM INDEPENDENT SET.

2.2 k-Satisfiability

In this section we describe and analyse a classical branching algorithm solving the
k-SATISFIABILITY problem. In 1985 in their milestone paper Monien and Speck-

2.2 k-Satisfiability 19

enmeyer presented a branching algorithm and its worst-case running time analysis
[159]. Their paper is best known for the fact that their algorithm has time complexity
O(1.6181n) for the 3-SATISFIABILITY problem.

Let us recall some fundamental notions. Let X = {x1,x2, . . . ,xn} be a set of
Boolean variables. A variable or a negated variable is called a literal. Let L =
L(X) = {x1,x1,x2,x2, . . . ,xn,xn} be the set of literals over X . A disjunction c =
(`1∨ `2∨·· ·∨ `t) of literals `i ∈ L(X), i ∈ {1,2, . . . t}, is called a clause over X . As
usual we demand that a literal appears at most once in a clause, and that a clause
does not contain both a variable xi and its negation xi. We represent a clause c by
the set {`1, `2, . . . `t} of its literals. A conjunction F = (c1∧ c2∧ ·· ·∧ cr) of clauses
is called a Boolean formula in conjunctive normal form (CNF). We represent F by
the set {c1,c2, . . . ,cm} of its clauses and call it a CNF formula. If each clause of a
CNF formula consists of at most k literals then it is called a k-CNF formula. By /0 we
denote the empty formula which is a tautology, and thus satisfiable, by definition.
A CNF formula F ′ is a subformula of a CNF formula F if every clause of F ′ is a
subset of some clause of F .

A truth assignment t from X to {0,1} assigns Boolean values (0=false, 1=true)
to the variables of X , and thus also to the literals of L(X). A CNF formula F is
satisfiable if there is a truth assignment t such that the formula F evaluates to true,
i.e. every clause contains at least one literal which is true. For example, the CNF
formula

(x1∨ x2∨ x3)∧ (x1∨ x2)∧ (x1∨ x3)

is satisfied by the truth assignment x1 = true, x2 = false, and x3 = false.

Satisfiability Problem. In the SATISFIABILITY problem (SAT), we are given a
Boolean formula in conjunctive normal form (CNF) with n variables and m clauses.
The task is to decide whether the formula is satisfiable, i.e. whether there is a truth
assignment for which the formula is true.

k-Satisfiability Problem. If the input of the satisfiability problem is in CNF in
which each clause contains at most k literals, then the problem is called the k-
SATISFIABILITY problem (k-SAT).

i j

jk l

i+li+k

2 2

2 3

54

4

3 6

1

Fig. 2.1 Adding branching vectors

20 2 Branching

It is well-known that 2-SAT is linear time solvable, while for every k ≥ 3, k-
SAT is NP-complete. How can one decide whether a CNF formula is satisfiable? A
trivial algorithm solves SAT by checking every truth assignment of the given CNF
formula. If the number of variables is n, then there are 2n different truth assignments.
For each such assignment, we have to check whether every clause is satisfied, which
can be done in time O(nm). Thus the brute-force algorithm will solve the problem
in time O(2nnm). It is a major open question whether SAT can be solved in time
O∗((2− ε)n) for some constant ε > 0.

Now we decribe the branching algorithm of Monien and Speckenmeyer that
solves the k-SAT problem in time O∗(αk

n) where αk < 2 for every fixed k ≥ 3.
Let F be a CNF formula with n variables and m clauses such that each clause of
F contains at most k literals. Assuming that F does not have multiple clauses, we
have that m ≤ ∑

k
i=0
(2n

i

)
, since F has at most 2n literals. Consequently the number

of clauses of F is bounded by a polynomial in n. Let X = {x1,x2, . . . ,xn} be the set
of variables of F and L = {x1,x1,x2,x2, . . . ,xn,xn} be the corresponding literals. If
L′ ⊆ L we denote lit(L′) = {xi,xi : xi ∈ L′ or xi ∈ L′}. The size of a clause, denoted
|c|, is the number of literals of c. By the definition of k-SAT, |c| ≤ k for all clauses
of F .

The algorithm recursively computes CNF formulas obtained by a partial truth
assignment of the input k-CNF formula, i.e. by fixing the Boolean value of some
variables and literals, respectively, of F . Given any partial truth assignment t of the
k-CNF formula F the corresponding k-CNF formula F ′ is obtained by removing
all clauses containing a true literal, and by removing all false literals. Hence the
instance of any subproblem generated by the algorithm is a k-CNF formula and the
size of a formula is its number of variables (or the number of variables not fixed by
the corresponding partial truth assignment).

We first study the branching rule of the algorithm. Let F be any k-CNF formula
and let c = (`1 ∨ `2 ∨ ·· · ∨ `q) be any clause of F . Branching on clause c means to
branch into the following q subformulas obtained by fixing the Boolean values of
some literals as described below:

• F1 : `1 = true
• F2 : `1 = false, `2 = true
• F3 : `1 = false, `2 = false, `3 = true
• · · · · · ·
• Fq : `1 = false, `2 = false, · · · , `q−1 = false, `q = true

The branching rule says that F is satisfiable if and only if at least one Fi, i ∈
{1,2, . . . ,q} is satisfiable, and this is obviously correct. Hence recursively solving all
subproblem instances Fi, we can decide whether F is satisfiable. The corresponding
branching algorithm k-sat1 is described in Fig. 2.2.

Since the Boolean values of i variables of F are fixed to obtain the instance
Fi, i ∈ {1,2, . . . ,q}, the number of (non fixed) variables of Fi is n− i. Therefore
the branching vector of this rule is (1,2, . . . ,q). To obtain the branching factor of
(1,2, . . . ,q), as discussed in Sect. 2.1, we solve the linear recurrence

2.2 k-Satisfiability 21

T (n)≤ T (n−1)+T (n−2)+ · · ·+T (n−q)

by computing the unique positive real root of

xq = xq−1− xq−2−·· ·− x−1,

which is equivalent to computing the largest real root of

xq+1−2xq +1 = 0.

For any clause of size q, we denote the branching factor by βq. Then, when rounding
up, one obtains β2 < 1.6181, β3 < 1.8393, β4 < 1.9276 and β5 < 1.9660.

We note that on a clause of size 1, there is only one subproblem and thus this is
indeed a reduction rule. By adding some simple halting rules saying that a formula
containing an empty clause is unsatisfiable and that the empty formula is satisfiable,
we would obtain the first branching algorithm consisting essentially of the above
branching rule.

Algorithm k-sat1(F).
Input: A CNF formula F .
Output: Return true if F is satisfiable, otherwise return false.

if F contains an empty clause then
return false

if F is an empty formula then
return true

choose any clause c = (`1∨ `2∨·· ·∨ `q) of F
b1 = k-sat1(F [`1 = true])
b2 = k-sat1(F [`1 = false, `2 = true])
· · · · · ·
bq = k-sat1(F [`1 = false, `2 = false, · · · , `q−1 = false, `q = true])
return b1∨b2 · · ·∨bq

Fig. 2.2 Algorithm k-sat1 for k-Satisfiability

Of course, we may also add the reduction rule saying that if the formula is in
2-CNF then a polynomial time algorithm will be used to decide whether it is satis-
fiable. The running time of such a simple branching algorithm is O∗(βk

n) because
for a given k-CNF as an input all instances generated by the branching algorithm
are also k-CNF formulas, and thus every clause the algorithm branches on has size
at most k.

Notice that the branching factor βt depends on the size of the clause c chosen to
branch on. Hence it is natural to aim at branching on clauses of minimum size. Thus
for every CNF formula being an instance of a subproblem the algorithm chooses a
clause of minimum size to branch on.

Suppose we can guarantee that for an input k-CNF the algorithm always branches
on a clause of size at most k− 1 (except possibly the very first branching). Such

22 2 Branching

a branching algorithm would solve k-SAT in time O∗(βk−1
n). For example, this

algorithm would solve 3-SAT in time O(1.6181n).
The tool used to achieve this goal is a logical one. Autarkies are partial (truth)

assignments satisfying some subset F ′ ⊆ F (called an autark subset), while not in-
teracting with the clauses in F \F ′. In other words, a partial truth assignment t of a
CNF formula F is called an autark if for every clause c of F for which the Boolean
value of at least one literal is set by t, there is a literal `i of c such that t(`i) = true.
For example, for the following formula

(x1∨ x2∨ x3)∧ (x1∨ x2)∧ (x2∨ x3∨ x4)∧ (x3∨ x4)

the partial assignment x1 = true, x2 = false is an autark.
Hence for an autark assignment t of a CNF formula F all clauses for which at

least one literal is set by t are simultaneously satisfied by t. Thus if F ′ is the CNF
formula obtained from F by setting Boolean variables w.r.t. t, then F is satisfiable if
and only if F ′ is satisfiable, because no literal of F ′ has been set by t. On the other
hand, if t is not an autark then there is at least one clause c of F which contains
a false literal and only false literals w.r.t. t. Hence the corresponding CNF formula
F ′ contains a clause c′ with |c′|< |c|. Therefore, when a partial truth assignment of
a k-CNF formula F is an autark, the algorithm does not branch and is recursively
applied to the k-CNF formula F ′. When t is not an autark then there is a clause of
size at most k−1 to branch on.

In the branching algorithm k-sat2 described in Fig. 2.3 this idea is used as
follows. First of all there are two reduction rules for termination: If F contains an
empty clause then F is unsatisfiable. If F is an empty formula then F is satisfiable.
Then the basic branching rule is adapted as follows. Branch on a clause c of F of
minimum size. For each subproblem Fi with corresponding truth assignment ti verify
whether ti is an autark assignment. If none of the assignments ti, i∈{1,2, . . . ,q} is an
autark, then we branch in each of the subproblems as before. However if there is an
autark assignment then we recursively solve only the subproblem F ′ corresponding
to this assignment. Indeed, F is satisfiable if and only if F ′ is satisfiable. This is now
a reduction rule.

To complete the running time analysis we notice that whenever branching on a
k-CNF formula F one branches on a clause of size at most k− 1, except possibly
for the very first one. Hence the corresponding branching vector is (1,2, . . . ,q) with
q ≤ k−1. Hence the worst case branching factor when executing the algorithm on
an input k-CNF formula is αk = βk−1. We conclude with the following theorem.

Theorem 2.4. There is a branching algorithm solving k-SAT with n variables in
time O∗(αk

n), where αk is the largest real root of xk−2xk−1 +1 = 0. In particular,
the branching algorithm solves 3-SAT in time O(1.6181n).

The best known algorithms solving 3-SAT use different techniques and are based
on local search. Chapter 8 is dedicated to local search and the SATISFIABILITY
problem.

2.3 Independent Set 23

Algorithm k-sat2(F).
Input: A CNF formula F .
Output: Return true if F is satisfiable, otherwise return false.

if F contains an empty clause then
return false

if F is an empty formula then
return true

choose a clause c = (`1∨ `2∨·· ·∨ `q) of F of minimum size
let t1 be the assignment corresponding to F1 = F [`1 = true]
let t2 be the assignment corresponding to F2 = F [`1 = false, `2 = true]
· · · · · ·
let tq be the assignment corresponding to
Fq = F [`1 = false, `2 = false, · · · , `q−1 = false, `q = true]
if there is an i ∈ {1,2, . . . ,q} s.t. ti is autark for Fi then

return k-sat2(Fi)
else

b1 = k-sat2(F [`1 = true])
b2 = k-sat2(F [`1 = false, `2 = true])
· · · · · ·
bq = k-sat2(F [`1 = false, `2 = false, · · · , `q−1 = false, `q = true])
if at least one bi is true then

return true
else

return false

Fig. 2.3 Algorithm k-sat2 for k-SATISFIABILITY

2.3 Independent Set

In this section we present a branching algorithm to compute a maximum indepen-
dent set of an undirected graph. As in the previous section the running time analysis
will be simple in the sense that the size of any subproblem instance is measured by
the number of vertices in the graph.

Let us recall that an independent set I ⊆ V of a graph G = (V,E) is a subset
of vertices such that every pair of vertices of I is non-adjacent in G. We denote by
α(G) the maximum size of an independent set of G. The MAXIMUM INDEPENDENT
SET problem (MIS), to find an independent set of maximum size, is a well-known
NP-hard graph problem. A simple branching algorithm of running timeO∗(3n/3) =
O(1.4423n) to solve the problem MIS exactly has been presented and analysed in
Chap. 1.

Our aim is to present a branching algorithm to compute a maximum indepen-
dent set that uses various of the fundamental ideas of maximum independent set
branching algorithms, is not too complicated to describe and has a reasonably good
running time when using simple analysis.

Our algorithm works as follows. Let G be the input graph of the current (sub)prob-
lem. The algorithm applies reduction rules whenever possible, thus branching rules

24 2 Branching

are applied only if no reduction rule is applicable to the instance. The reduction
rules our algorithm uses are the simplicial and the domination rule explained below.

If the minimum degree of G is at most 3 then the algorithm chooses any vertex
v of minimum degree. Otherwise the algorithm chooses a vertex v of maximum
degree. Then depending on the degree of v, reduction or branching rules are applied
and the corresponding subproblem(s) are solved recursively. When the algorithm
puts a vertex v into the solution set, we say that it selects v. When the algorithm
decides that a vertex is not in the solution set, we say that it discards v. Before
explaining the algorithm in detail, we describe the main rules the algorithm will
apply and prove their correctness.

The first one is a reduction rule called the domination rule.

Lemma 2.5. Let G = (V,E) be a graph, let v and w be adjacent vertices of G such
that N[v]⊆ N[w]. Then

α(G) = α(G\w).

Proof. We have to prove that G has a maximum independent set not containing w.
Let I be a maximum independent set of G such that w ∈ I. Since w ∈ I no neighbor
of v except w belongs to I. Hence (I \ {w})∪{v} is an independent set of G, and
thus a maximum independent set of G\w. ut

Now let us study the branching rules of our algorithm. The standard branching of
a maximum independent set algorithm chooses a vertex v and then either it selects
v for the solution and solves MIS recursively on G \N[v], or it discards v from the
solution and solves MIS recursively on G\ v. Hence

α(G) = max(1+α(G\N[v]),α(G\ v)).

As already discussed in Chap. 1, this standard branching rule of MIS is correct since
for any vertex v, G has a maximum independent set containing v or a maximum
independent set not containing v. Furthermore if v is selected for any independent
set none of its neighbors can be in this independent set. Obviously the branching
vector of standard branching is (d(v)+1,1).

The following observation is simple and powerful.

Lemma 2.6. Let G = (V,E) be a graph and let v be a vertex of G. If no maximum
independent set of G contains v then every maximum independent set of G contains
at least two vertices of N(v).

Proof. We assume that every maximum independent set of G is also a maximum
independent set of G \ v. Suppose there is a maximum independent set I of G \ v
containing at most one vertex of N(v). If I contains no vertex of N[v] then I∪{v} is
independent and thus I is not a maximum independent set, which is a contradiction.
Otherwise, let I ∩N(v) = {w}. Then (I \ {w})∪ {v} is an independent set of G,
and thus there is a maximum independent set of G containing v, a contradiction.
Consequently, every maximum independent set of G contains at least two vertices
of N(v). ut

2.3 Independent Set 25

Using Lemma 2.6, standard branching has been refined recently. Let N2(v) be the
set of vertices at distance 2 from v in G, i.e. the set of the neighbors of the neighbors
of v, except v itself. A vertex w ∈ N2(v) is called a mirror of v if N(v) \N(w) is a
clique. Calling M(v) the set of mirrors of v in G, the standard branching rule can be
refined via mirrors.

Lemma 2.7. Let G = (V,E) be a graph and v a vertex of G. Then

α(G) = max(1+α(G\N[v]),α(G\ (M(v)∪{v})).

Proof. If G has a maximum independent set containing v then α(G) = 1 + α(G \
N[v]) and the lemma is true. Otherwise suppose that no maximum independent set of
G contains v. Then by Lemma 2.6, every maximum independent set of G contains at
least two vertices of N(v). Let w be any mirror of v. This implies that N(v)\N(w) is a
clique, and thus at least one vertex of every maximum independent set of G belongs
to N(w). Consequently, no maximum independent set of G contains a w ∈ M(v),
and thus w can be safely discarded. ut

We call the corresponding rule the mirror branching. Its branching vector is (d(v)+
1, |M(v)|+1).

Exercise 2.8. Show that the following claim is mistaken: If G has an independent
set of size k not containing v then there is an independent set of size k not containing
v and all its mirrors.

Lemma 2.6 can also be used to establish another reduction rule that we call the
simplicial rule.

Lemma 2.9. Let G = (V,E) be a graph and v be a vertex of G such that N[v] is a
clique. Then

α(G) = 1+α(G\N[v]).

Proof. If G has a maximum independent set containing v then the lemma is true.
Otherwise, by Lemma 2.6 a maximum independent set must contain two vertices of
the clique N(v), which is impossible. ut

Sometimes our algorithm uses yet another branching rule. Let S⊆V be a (small)
separator of the graph G, i.e. G \ S is disconnected. Then for any maximum inde-
pendent set I of G, I ∩ S is an independent set of G. Thus we may branch into all
possible independent sets of S.

Lemma 2.10. Let G be a graph, let S be a separator of G and let I(S) be the set of
all subsets of S being an independent set of G. Then

α(G) = max
A∈I(S)

|A| + α(G\ (S∪N[A])).

Our algorithm uses the corresponding separator branching only under the following
circumstances: the separator S is the set N2(v) and this set is of size at most 2.

26 2 Branching

Thus the branching is done in at most four subproblems. In each of the recursively
solved subproblems the input graph is G\N2[v] or an induced subgraph of it, where
N2[v] = N[v]∪N2(v).

Finally let us mention another useful branching rule to be applied to disconnected
graphs.

Lemma 2.11. Let G = (V,E) be a disconnected graph and C⊆V a connected com-
ponent of G. Then

α(G) = α(G[C]) + α(G\C)).

A branching algorithm for the MAXIMUM INDEPENDENT SET problem based
on the above rules is given in Fig. 2.4.

To analyse algorithm mis2 let us first assume that the input graph G of the
(sub)problem has minimum degree at most 3 and that v is a vertex of minimum
degree. If d(v) ∈ {0,1} then the algorithm does not branch. The reductions are ob-
tained by the simplicial rule.
d(v) = 0: then v is selected, i.e. added to the maximum independent set I to be
computed, and we recursively call the algorithm for G\ v.
d(v) = 1: then v is selected, and we recursively call the algorithm for G\N[v].

Now let us assume that d(v) = 2.
d(v) = 2: Let u1 and u2 be the neighbors of v in G.

(i) {u1,u2} ∈ E. Then N[v] is a clique and by the simplicial rule α(G) = 1 +
α(G\N[v]) and the algorithm is recursively called for G\N[v].

(ii) {u1,u2} /∈ E. If |N2(v)|= 1 then the algorithm applies a separator branching
on S = N2(v) = {w}. The two subproblems are obtained either by selecting v and
w and recursively calling the algorithm for G \ (N2[v]∪N[w]), or by selecting u1
and u2 and recursively calling the algorithm for G \N2[v]. The branching vector is
(|N2[v]∪N[w]|, |N2[v]|), and this is at least (5,4). If |N2(v)| ≥ 2 then the algorithm
applies a mirror branching to v. If the algorithm discards v then both u1 and u2
are selected by Lemma 2.6. If the algorithm selects v it needs to solve G \N[v]
recursively. Hence the branching vector is (N2[v],N[v]) which is at least (5,3). Thus
the worst case for d(v) = 2 is obtained by the branching vector (5,3) and τ(5,3) <
1.1939.

Now let us consider the case d(v) = 3.
d(v) = 3: Let u1, u2 and u3 be the neighbors of v in G.

(i) N(v) is an independent set: We assume that no reduction rule can be applied.
Hence each ui, i ∈ {1,2,3} has a neighbor in N2(v), otherwise the domination rule
could be applied to v and ui. Note that every w∈N2(v) with more than one neighbor
in N(v) is a mirror of v.

If v has a mirror then the algorithm applies mirror branching to v with branching
vector (|N[v]|,{v}∪M(v)) which is at least (4,2) and τ(4,2) < 1.2721.

If there is no mirror of v then every vertex of N2(v) has precisely one neighbor
in N(v). Furthermore by the choice of v, every vertex of G has degree at least 3,
and thus, for all i ∈ {1,2,3}, the vertex ui has at least two neighbors in N2(v). The

2.3 Independent Set 27

Algorithm mis2(G).
Input: A graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if |V |= 0 then
return 0

if ∃v ∈V with d(v)≤ 1 then
return 1+mis2(G\N[v])

if ∃v ∈V with d(v) = 2 then
(let u1 and u2 be the neighbors of v)
if {u1,u2} ∈ E then

return 1+mis2(G\N[v])

if {u1,u2} /∈ E then
if |N2(v)|= 1 then

(let N2(v) = {w})
return max(2+mis2(G\ (N2[v]∪N[w])),2+mis2(G\N2[v]))

if |N2(v)|> 1 then
return max(mis2(G\N[v]),mis2(G\ (M(v)∪{v}))

if ∃v ∈V with d(v) = 3 then
(let u1u2 and u3 be the neighbors of v)
if G[N(v)] has no edge then

if v has a mirror then
return max(1+mis2(G\N[v]),mis2(G\ (M(v)∪{v}))

if v has no mirror then
return max(1+mis2(G\N[v]),2+mis2(G\N[{u1,u2}]),2+mis2(G\
(N[{u1,u3}]∪{u2})),2+mis2(G\ (N[{u2,u3}]∪{u1})))

if G[N(v)] has one or two edges then
return max(1+mis2(G\N[v]),mis2(G\ (M(v)∪{v}))

if G[N(v)] has three edges then
return 1+mis2(G\N[v])

if ∆(G)≥ 6 then
choose a vertex v of maximum degree in G
return max(1+mis2(G\N[v]),mis2(G\ v))

if G is disconnected then
(let C ⊆V be a component of G)
return mis2(G[C])+mis2(G\C)

if G is 4 or 5-regular then
choose any vertex v of G
return max(1+mis2(G\N[v]),mis2(G\ (M(v)∪{v}))

if ∆(G) = 5 and δ (G) = 4 then
choose adjacent vertices v and w with d(v) = 5 and d(w) = 4 in G
return
max(1+mis2(G\N[v]),1+mis2(G\({v}∪M(v)∪N[w])),mis2(G\(M(v)∪{v,w})))

Fig. 2.4 Algorithm mis2 for MAXIMUM INDEPENDENT SET

28 2 Branching

algorithm branches into four subproblems. It either selects v or when discarding v it
inspects all possible cases of choosing at least two vertices of N(v) for the solution:

• select v
• discard v, select u1, select u2
• discard v, select u1, discard u2, select u3
• discard v, discard u1, select u2, select u3

The branching vector is at least (4,7,8,8) and τ(4,7,8,8) < 1.2406.
(ii) The graph induced by N(v) contains one edge, say {u1,u2}∈E: By the choice

of v, the vertex u3 has degree at least 3, and thus at least two neighbors in N2(v).
Those neighbors of u3 are mirrors. The algorithm applies mirror branching to v and
the branching factor is at least (4,3) and τ(4,3) < 1.2208.

(iii) The graph induced by N(v) contains two edges, say {u1,u2} ∈ E and
{u2,u3} ∈ E. Thus when mirror branching on v either v is selected and G \N[v]
solved recursively, or v is discarded and u1 and u3 are selected. Hence the branching
factor is at least (4,5) and τ(4,5) < 1.1674.

(iv) If N(v) is a clique then apply reduction by simplicial rule.
Summarizing the case d(v) = 3, the worst case for d(v) = 3 is the branching vector
(4,2) with τ(4,2) < 1.2721. It dominates the branching vectors (4,3) and (4,5)
which can thus be discarded. There is also the branching vector (4,7,8,8).

Now assume that the input graph G has minimum degree at least 4. Then the al-
gorithm does not choose a minimum degree vertex (as in all cases above). It chooses
a vertex v of maximum degree to branch on it.
d(v)≥ 6: The algorithm applies mirror branching to v. Thus the branching vector is
(d(v)+1,1) which is at least (7,1) and τ(7,1) < 1.2554.
d(v) = 4: Due to the branching rule applied to disconnected graphs the graph G is
connected. Furthermore G is 4-regular since its minimum degree is 4.

For any r≥ 3, there is at most one r-regular graph assigned to a node of the search
tree from the root to a leaf, since every instance generated by the algorithm is an
induced subgraph of the input graph of the original problem. Hence any branching
rule applied to r-regular graphs, for some fixed r, can only increase the number
of leaves by a multiplicative constant. Hence we may neglect the branching rules
needed for r-regular graphs in the time analysis.
d(v) = 5: A similar argument applies to 5-regular graphs, and thus we do not have
to consider 5-regular graphs. Therefore we may assume that the graph G has vertices
of degree 5 and vertices of degree 4, and no others since vertices of smaller or higher
degrees would have been chosen to branch on in earlier parts of the algorithm. As
G is connected there is a vertex of degree 5 adjacent to a vertex of degree 4. The
algorithm chooses those vertices to be v and w such that d(v) = 5 and d(w) = 4.
Now it applies a mirror branching on v. If there is a mirror of v then the branching
vector is at least (2,6) and τ(2,6) < 1.2366. If there is no mirror of v then mirror
branching on v has branching vector (1,6) and τ(1,6) < 1.2852.

To achieve a better overall running time of the branching algorithm than
Θ ∗(1.2852n) we use addition of branching vectors. Note that the subproblem ob-
tained by discarding v in the mirror branching, i.e. the instance G \ v, contains the

2.3 Independent Set 29

vertex w such that the degree of w in G \ v is equal to 3. Now whenever the al-
gorithm does the (expensive) (1,6)-branching it immediately branches on w in the
subproblem obtained by discarding v. Hence we may replace (1,6) by the branch-
ing vectors obtained by addition. The candidates for addition are the branching
vectors for branching on a vertex of degree 3. These are (4,2) and (4,7,8,8).
Adding (4,2) to (1,6) (in the subproblem achieved by a gain of 1) gives (5,3,6).
Adding (4,7,8,8) to (1,6) gives (5,8,9,9,6). The corresponding branching factors
are τ(5,6,8,9,9) < 1.2548 and τ(3,5,6) < 1.2786. See Fig. 2.5.

w

v

1 6

6
4 2

35

w

v

1 6

6
4 7 8 8

85 9 9

Fig. 2.5 Adding branching vectors in the case d(v) = 5

Consequently the worst case branching factor of the whole branching algorithm is
τ(3,5,6) < 1.2786.

Theorem 2.12. The branching algorithm mis2 for the MAXIMUM INDEPENDENT
SET problem has running time O(1.2786n).

Exercise 2.13. Improve upon the branching algorithm mis2 by a more careful anal-
ysis of the case d(v) = 3.

Exercise 2.14. Improve upon the branching algorithm mis1 of Chap. 1 by the use
of Lemma 2.6.

Notes

The analysis of the worst-case running time of branching algorithms is based on
solving linear recurrences. This is a subject of most textbooks in Discrete Mathe-
matics. We recommend Rosen [191] and Graham, Knuth, Patashnik [104].

The history of branching algorithms can be traced back to the work of Davis
and Putnam [63] (see also [62]) on the design and analysis of algorithms to solve
the SATISFIABILITY problem (SAT). It is well-known that SAT and 3-SAT are

30 2 Branching

NP-complete [100], while there is a linear time algorithm solving 2-SAT [8].
For a few decades branching algorithms have played an important role in the
design of exact algorithms for SAT and in particular 3-SAT. One of the mile-
stone branching algorithms for 3-SAT and k-SAT, k ≥ 3, has been established by
Monien and Speckenmeyer in 1985 [159]. In his long paper from 1999 [147],
Kullmann establishes a branching algorithm of running time O(1.5045n). He also
presents a comprehensive study of the worst-case analysis of branching algo-
rithms. See also [148] for an overview. Parts of the Fundamentals section are in-
spired by [147]. General references for algorithms and complexity of SAT are
[21, 130]. Branching algorithms are used to solve different variants of SAT like
Max-2-SAT, XSAT , counting variants, and SAT parameterized by the number of
clauses [57, 44, 58, 105, 112, 140, 144, 145, 146].

Another problem with a long history in branching algorithms is the MAXIMUM
INDEPENDENT SET problem dating back to 1977 and the algorithm of Tarjan and
Trojanowski [213]. We refer the reader to the Notes of Chap. 1 for more information.

Many of the reduction and branching rules for MAXIMUM INDEPENDENT SET
can be found in [213]. Fürer used the separator rule in [97]. The mirror rule was been
introduced by Fomin, Grandoni and Kratsch as part of their Measure & Conquer-
based branching algorithm for MAXIMUM INDEPENDENT SET [85], which also
uses the folding rule. Kneis, Langer, and Rossmanith in [133] introduced the satellite
rule.

Chvátal studied the behaviour of branching algorithms for MIS and showed that
for a large class of branching algorithms there is a constant c > 1 such that for almost
all graphs the running time of these algorithms is more than cn [50]. Lower bounds
for different variants of DPLL algorithms for SAT are discussed in [1, 3, 166].

Chapter 3
Dynamic Programming

Dynamic programming is one of the basic algorithmic techniques. Contrary to
branching algorithms, dynamic programming is of great importance for designing
polynomial time algorithms as well as for designing exponential time algorithms.
The main idea of dynamic programming is to start by solving small or trivial in-
stances and then gradually resolving larger and harder subproblems by composing
solutions from smaller subproblems. From this point of view, dynamic programming
is quite opposite to branching, where we try to decompose the problem. The careful
choice of subproblems is often crucial for the running time of dynamic program-
ming. We refer to classical textbooks [52, 129] for detailed discussions of dynamic
programming and its applications in polynomial time algorithms. The (unwanted)
property of exponential time dynamic programming algorithms is that they usually
require exponential space, contrary to branching algorithms which usually need only
polynomial space. The relation of time and space requirements of exponential time
algorithms is studied in Chap. 10.

In this chapter we give several examples of the use of dynamic programming to
design exact exponential time algorithms. In Chap. 1, we showed how dynamic pro-
gramming across the subsets is used to solve the TRAVELLING SALESMAN prob-
lem on n cities in time O(2nn2). This approach can be applied to many permutation
problems. In many examples, the number of subproblems we have to solve is pro-
portional to the number of subsets of the ground set up to a polynomial factor and in
such cases dynamic programming requires O∗(2n) steps. Sometimes the number of
“essential” subsets is significantly smaller than 2n and in that case faster exponential
time algorithms can be established.

31

32 3 Dynamic Programming

3.1 Basic Examples

3.1.1 Permutation Problems

In this subsection we discuss how to use dynamic programming across the subsets
to solve different permutation problems. In all these problems one has to find an
optimal permutation of the elements of the ground set. One of the typical examples
is the TRAVELLING SALESMAN problem (TSP), discussed in Chap. 1, where one
asks for a permutation minimizing the total cost of a tour. Most of the permutation
problems on a ground set of size n can be solved trivially in timeO∗(n!). In Chap. 1,
we showed how dynamic programming across the subsets for TSP results in an
algorithm of running time O∗(2n). For many other permutation problems, dynamic
programming allows us to reduce the running time to O(cn), for some constant
c > 1.

Scheduling Problem. Let us consider a SCHEDULING problem in which we are
given a set of jobs J1,J2, . . . ,Jn, execution times τ1,τ2, . . . ,τn, and cost functions
c1(t),c2(t), . . . ,cn(t). Every job Ji requires time τi to be executed, and there is an
associated cost ci(t) when finishing job Ji at time t. The jobs have to be executed
on a single machine. We assume that the machine is to be in use constantly and that
an executed job is not to be interrupted before its completion (i.e. non-preemptive
scheduling). Under these assumptions the order of executing jobs, or schedule, can
be represented by a permutation π of {1,2, . . . ,n}. Given such a schedule, the ter-
mination time of job Jπ(i) is

tπ(i) =
i

∑
j=1

τπ(j)

and the total cost associated with the schedule is

n

∑
i=1

cπ(i) · tπ(i).

For a given input, the task is to find the minimum total cost taken over all possible
schedules; we call this minimum cost OPT .

For a subset of jobs S, we denote the time required to finish all jobs from S by tS,
i.e.

tS = ∑
i∈S

τi.

Let OPT [S] be the minimum cost of executing all jobs of S in the interval [0, tS].
In case S = {Ji}, we have OPT [S] = ci(τi). If |S|> 1, then

OPT [S] = min{OPT [S\{Ji}]+ ci(tS)} : Ji ∈ S}. (3.1)

To see this, if in some optimal scheduling of S job Ji is the last executed job, then

3.1 Basic Examples 33

OPT [S] = OPT [S\{Ji}]+ ci(tS).

Taking the minimum over all choices of Ji, we arrive at (3.1).
Now OPT can be computed by dynamic programming based on (3.1). The num-

ber of steps is O(n2n) and we conclude with the following.

Theorem 3.1. The scheduling problem is solvable in time O(n2n).

There is a natural way to establish an algorithm based on the recurrence achieved.
The corresponding algorithm cost is described in Fig. 3.1.

Algorithm cost(J1,J2, . . . ,Jn, τ1,τ2, . . . ,τn, c1(t),c2(t), . . . ,cn(t)).
Input: A collection of jobs J1,J2, . . . ,Jn with execution times τ1,τ2, . . . ,τn, and cost functions

c1(t),c2(t), . . . ,cn(t).
Output: The minimum cost OPT of a schedule.

for i = 1 to n do
OPT [{Ji}] = ci(τi)

for j = 2 to n do
forall S⊆ {1,2,3, . . .n} with |S|= j do

OPT [S] = min{OPT [S\{Ji}]+ ci(tS) : Ji ∈ S}
return OPT [{1,2, . . . ,n}]

Fig. 3.1 Algorithm cost for the SCHEDULING problem

Exercise 3.2. The cutwidth of a vertex ordering π of a graph G = (V,E) is

max
v∈V
|{{w,x} ∈ E : π(w)≤ π(v) < π(x)}|.

The cutwidth of a graph G = (V,E) is the minimum cutwidth taken over all linear
orderings of its vertices. Prove that the cutwidth of a graph on n vertices can be
computed in time O∗(2n).

Exercise 3.3. Design and analyse dynamic programming algorithms to compute the
pathwidth of a graph. See Chap. 5 for the definitions of pathwidth.

Directed Feedback Arc Set. In the DIRECTED FEEDBACK ARC SET problem we are
given a directed graph G = (V,A). The task is to find a feedback arc set of minimum
cardinality, i.e. a set of arcs F ⊆ A such that (V,A\F) is acyclic and |F | is as small
as possible. Hence F ⊆ A is a feedback arc set of the directed graph G = (V,A) if
each directed cycle of G contains at least one arc of F .

At first glance the problem does not look like a permutation problem. However it
can be expressed in terms of permutations. Let us recall that a topological ordering
of a directed graph G = (V,A) is an ordering π : V →{1,2, . . . , |V |} (or permutation)
of its vertices such that all arcs are directed from left to right. In other words, for
any arc (u,v) ∈ A, we have π(u) < π(v).

34 3 Dynamic Programming

Lemma 3.4. Let G = (V,A) be a directed graph, and let w : A→ N+ be a function
assigning to each arc a non-negative integer weight. Let k ≥ 0 be an integer. There
exists a set of arcs F ⊆ A such that (V,A \F) is acyclic and ∑a∈F w(a) ≤ k, if and
only if there is a linear ordering π of G, such that

∑
(x,y)∈A, π(x)>π(y)

w((x,y))≤ k.

Proof. The proof of the lemma becomes trivial after we make the following obser-
vation: A directed graph is acyclic if and only if it has a topological ordering.

Indeed, if a graph is acyclic, it contains a vertex of in-degree 0. We take this
vertex as the first vertex in the ordering, remove it from the graph and proceed
recursively. In the opposite direction, if a directed graph has a topological ordering,
then it cannot contain a cycle, because in any ordering, at least one arc of the cycle
should go from right to left. ut

By making use of Lemma 3.4, it is now easy to obtain a recurrence like (1.1) or
(3.1) and to solve DIRECTED FEEDBACK ARC SET in time O(nm2n).

Theorem 3.5. The DIRECTED FEEDBACK ARC SET problem can be solved in time
O(nm2n), where n is the number of vertices and m is the number of arcs of the given
weighted directed graph G.

Exercise 3.6. We leave the proof of Theorem 3.5 as an exercise for the reader.

Exercise 3.7. In the OPTIMAL LINEAR ARRANGEMENT problem, we are given a
graph G = (V,E). The task is to find the minimum value of

∑
{v,w}∈E

|π(v)−π(w)|,

where the minimum is taken over all linear orderings π of the vertices of G. Prove
that OPTIMAL LINEAR ARRANGEMENT is solvable in time O∗(2n).
Hint: Restate the problem as a permutation problem by proving that for each linear
ordering π of V ,

∑
{v,w}∈E

|π(v)−π(w)|= ∑
v∈V
|{{x,y} ∈ E : π(x)≤ π(v) < π(w)}| .

3.1.2 Partition Problems

Graph Coloring. A k-coloring c of an undirected graph G = (V,E) assigns a color
to each vertex of the graph c : V → {1,2, . . . ,k} such that adjacent vertices have
different colors. The smallest k for which G has a k-coloring is called the chromatic
number of G, denoted by χ(G). A coloring c of G using χ(G) colors is called an

3.1 Basic Examples 35

optimal coloring. In the COLORING problem we are given an undirected graph
G = (V,E). The task is to compute the chromatic number of G, or even to find an
optimal coloring of G.

The computation of the chromatic number of a graph is a typical partition prob-
lem, and the trivial brute-force solution would be for every vertex to try every possi-
ble color. The maximum chromatic number of an n-vertex graph is equal to n; thus
such a trivial algorithm has running time O∗(nn) which is roughly 2O(n logn).

Theorem 3.8. The chromatic number of an n-vertex graph can be computed in time
O∗((1+ 3

√
3)n) =O(2.4423n) by a dynamic programming algorithm.

Proof. For every X ⊆ V , we define OPT [X] = χ(G[X]), the chromatic number of
the subgraph of G induced by X . The algorithm computes the values of OPT [X] by
making use of dynamic programming. For every subset X in the order of increasing
cardinality the following recurrence is used:

OPT [/0] = 0,

and

OPT [X] = 1+min{OPT [X \ I] : I is a maximal independent set of G[X]}.

We claim that χ(G) = OPT [V]. Indeed, every k-coloring of a graph G is a parti-
tion of the vertex set into k independent sets (resp. color classes) and that we may
always modify the k-coloring such that one independent set is maximal. Therefore
an optimal coloring of G is obtained by removing a maximal independent set I from
G and adding an optimal coloring of G\ I.

What is the running time of this algorithm? Let n = |V |. The algorithm runs on
all subsets X ⊆ V , and for every subset X , it runs on all its subsets I, which are
maximal independent sets in G[X]. The number of such sets is at most 2|X |. Thus the
number of steps of the algorithm is up to a polynomial factor at most

n

∑
i=1

(
n
i

)
·2i = 3n. (3.2)

In (3.2) we do not take into account that the algorithm does not run on all subsets of
a subset X , but only on maximal independent sets of G[X]. As we already know from
Chap. 1, the number of maximal independent sets in a graph of i vertices is at most
3i/3 and these sets can be enumerated in time O∗(3i/3). Thus up to a polynomial
factor, the running time of the algorithm can be bounded by

n

∑
i=1

(
n
i

)
·3i/3 = (1+ 3√3)n < 2.4423n. (3.3)

ut

36 3 Dynamic Programming

The running time obtained in Theorem 3.8 can be improved to O∗(2n) by com-
bining dynamic programming with inclusion-exclusion. We will come back to this
in Chap. 4.

Exercise 3.9. In the DOMATIC NUMBER problem we are given an undirected graph
G = (V,E). The task is to compute the domatic number of G which is the largest
integer k such that there is a partition of V into pairwise disjoint sets V1,V2, . . .Vk
such that V1 ∪V2 ∪ ·· · ∪Vk = V and each Vi is a dominating set of G. Show how to
compute the domatic number of an n-vertex graph in time O∗(3n).

3.2 Set Cover and Dominating Set

Minimum Set Cover. In the MINIMUM SET COVER problem (MSC) we are given a
universe U of elements and a collection S of (non-empty) subsets of U . The task is
to find the minimum cardinality of a subset S ′ ⊆ S which covers U , i.e. S ′ satisfies

∪S∈S ′S = U .

A minimum set cover of U is a minimum cardinality subset S ′ ⊆ S which covers U .
Let U be a ground set of n elements, and let S = {S1,S2, . . . ,Sm} be a collection

of subsets of U . We say that a subset S ′ ⊆S covers a subset S⊆U , if every element
in S belongs to at least one member of S ′.

Note that a minimum set cover of (U ,S) can trivially be found in time O(n2m)
by checking all subsets of S.

Theorem 3.10. There is an O(nm2n) time algorithm to solve the MSC problem for
any instance (U ,S) where |U|= n and |S|= m.

Proof. Let (U ,S) with S = {S1,S2, . . . ,Sm} be an instance of the minimum set cover
problem over a ground set U with |U|= n.

For every nonempty subset U ⊆ U , and for every j = 1,2, . . . ,m we define
OPT [U ; j] as the minimum cardinality of a subset of {S1, . . . ,S j} that covers U .
If {S1, . . . ,S j} does not cover U then we set OPT [U ; j] := ∞.

Now all values OPT [U ; j] can be computed as follows. In the first step, for every
subset U ⊆U , we set OPT [U ;1] = 1 if U ⊆ S1, and OPT [U ;1] = ∞ otherwise. Then
in step j+1, j ∈ {1,2, . . . ,m−1}, OPT [U ; j+1] is computed for all U ⊆U inO(n)
time as follows:

OPT [U ; j +1] = min{OPT [U ; j], OPT [U \S j+1; j]+1}.

This yields an algorithm to compute OPT [U ; j] for all U ⊆U and all j∈{1,2, . . . ,m}
of overall running time O(nm2n). Therefore OPT [U ;m] is the cardinality of a min-
imum set cover of (U ,S). ut

3.2 Set Cover and Dominating Set 37

Now let us show how the dynamic programming algorithm of Theorem 3.10 can
be used to break the 2n barrier for the MINIMUM DOMINATING SET problem; that
is to construct an O∗(cn) algorithm with c < 2 solving this problem.

Minimum Dominating Set. In the MINIMUM DOMINATING SET problem (MDS)
we are given an undirected graph G = (V,E). The task is to find the minimum

cardinality of a dominating set in G.
A vertex subset D ⊆ V of a graph G = (V,E) is a dominating set for G if every

vertex of G is either in D, or adjacent to some vertex in D. The domination number
γ(G) of a graph G is the minimum cardinality of a dominating set of G. The MDS
problem asks us to compute γ(G).

The MINIMUM DOMINATING SET problem can be reduced to the MINIMUM
SET COVER problem by imposing U = V and S = {N[v] : v ∈ V}. Note that N[v]
is the set of vertices dominated by v, thus D is a dominating set of G if and only if
{N[v] : v ∈ D} is a set cover of {N[v] : v ∈ V}. In particular, every minimum set
cover of {N[v] : v ∈V} corresponds to a minimum dominating set of G.

We use Theorem 3.10 to prove the following result.

Theorem 3.11. Let G = (V,E) be a graph on n vertices given with an independent
set I. Then a minimum dominating set of G can be computed in time 2n−|I| · nO(1).
In particular, a minimum dominating set of a bipartite graph on n vertices can be
computed in time O∗(2n/2).

Proof. Let J = V \ I be the set of vertices outside the independent set I. Instead of
trying all possible subsets D of V as dominating sets, we try all possible projections
of D on J, and for each such projection JD = J ∩D, we decide whether JD can be
extended to a dominating set of G by adding only vertices of I. In fact, for every
JD ⊆ J the smallest possible number of vertices of I should be added to JD to obtain
a dominating set of G

For every subset JD ⊆ J, we show how to construct a set D such that

|D|= min{|D′| : D′ is a dominating set and J∩D′ = JD}. (3.4)

Then obviously
γ(G) = min

JD⊆J
|D|.

The set ID = I \N(JD) is a subset of D since I is an independent set and the vertices
of ID cannot be dominated by JD. Then the only vertices that are not dominated by
ID∪JD are the vertices JX = J \(N[JD]∪N(ID)). Therefore, to find D we have to add
to ID∪ JD the minimum number of vertices from I \ ID that dominate all vertices of
JX . To find a minimum subset of I \ ID which dominates JX , we reduce this problem
to MSC by imposing U = JX and S = {N[v] : v ∈ I \ ID}. By Theorem 3.10, such a
problem is solvable in time 2|JX | ·nO(1). Thus the running time of the algorithm (up
to a polynomial factor) is

38 3 Dynamic Programming

∑
JD⊆J

(|J|
|JD|

)
·2|JX | = ∑

JD⊆J

(|J|
|JD|

)
·2|J\(N[JD]∪N(ID))|

≤ ∑
JD⊆J

(
J
|JD|

)
·2|J\JD|

= ∑
JD⊆J

(
n−|I|
|JD|

)
·2n−|I|−|JD|

= 3n−|I|.

In the remaining part of the proof we show how to improve the running time 3n−|I|

to the claimed 2n−|I|. There is a general theorem based on fast subset convolution
which will be proved in Chap. 7 that can do this job. However, for this case, we
show an alternative proof based on dynamic programming.

Once again, we want to show that

∑
JD⊆J

(
J
|JD|

)
·2|J\JD|

can be evaluated in time 2n−|I| · nO(1). Instead of trying all subsets of J and then
for each subset constructing a dominating set D, we do the following. For every
subset X ⊆ J we compute a minimum subset of I which dominates X . We can com-
pute this by performing the following dynamic programming. Let us fix an ordering
{v1,v2, . . . ,vk} of I. We define DX ,i a subset of {v1,v2, . . . ,vi} of the minimum size
subset which dominates X . Thus DX ,k is a subset of I dominating X of minimum
size. We put D /0,k = /0 and for X 6= /0,

DX ,1 =
{

v1, if X ⊆ N(v1),
{v1,v2, . . . ,vk}, otherwise.

To compute the values DX ,i for i > 1, we consider two cases. Either the optimum
set is a subset of {v1,v2, . . . ,vi−1}, or it contains vi. Thus

DX ,i =
{

DX ,i−1, if |DX ,i−1|< |DX\N(vi),i−1|+1,
DX\N(vi),i−1∪{vi}, otherwise.

The computation of all sets DX ,k, X ⊆ J, takes time 2|J| · nO(1). Once these sets
are computed, constructing a set D satisfying (3.4) for every subset JD ⊆ J can be
done in polynomial time by computing D = ID ∪ JD ∪DJX ,k. In total, the running
time needed to compute γ(G) is the time required to compute sets DX ,k plus the
time required to compute for every subset JD subsets ID and DJX ,k. Thus, up to a
polynomial factor, the running time is

2|J|+ ∑
JD⊆J

(|J|
|JD|

)
= 2|J|+1 = 2n−|I|+1.

3.2 Set Cover and Dominating Set 39

ut

The following binary entropy function is very helpful in computations involving
binomial coefficients. For more information on Stirling’s formula and the binary
entropy function the reader is referred to the Notes.

Lemma 3.12 (Stirling’s Formula). For n > 0,

√
2πn

(n
e

)n
≤ n!≤ 2

√
2πn

(n
e

)n
.

The binary entropy function h is defined by

h(α) =−α log2 α− (1−α) log2 (1−α)

for α ∈ (0,1).

Lemma 3.13 (Entropy function). For α ∈ (0,1),

1√
8nα(1−α)

·2h(α)n ≤
αn

∑
i=1

(
n
i

)
≤ 2h(α)n =

(
1
α

)αn

·
(

1
1−α

)(1−α)n

.

Proof. We give only the proof of the second inequality.
Since h(α) = h(1−α), we can assume that α ≤ 1/2. By the Binomial Theorem,

1 = (α +(1−α))n =
n

∑
i=1

(
n
i

)
α

i(1−α)n−i

=
n

∑
i=1

(
n
i

)(
α

1−α

)i

(1−α)n

≥
αn

∑
i=1

(
n
i

)(
α

1−α

)i

(1−α)n

Because 0≤ α ≤ 1/2 and i≤ αn, we have that

(
α

1−α

)i

≥
(

α

1−α

)αn

.

Therefore,

1≥
αn

∑
i=1

(
n
i

)(
α

1−α

)i

(1−α)n ≥
αn

∑
i=1

(
n
i

)(
α

1−α

)αn

(1−α)n

=
αn

∑
i=1

(
n
i

)
α

αn(1−α)(1−α)n

=
αn

∑
i=1

(
n
i

)
2−nh(α).

40 3 Dynamic Programming

ut

By making use of Theorem 3.11 and the binary entropy function, it is possible to
construct an algorithm solving the MDS problem (for general graphs) faster than by
trivial brute-force in Θ ∗(2n).

Corollary 3.14. The MINIMUM DOMINATING SET problem is solvable in time
O(1.7088n), where n is the number of vertices of the input graph.

Proof. Every maximal independent set of a graph G is also a dominating (not neces-
sary minimum) set of G. First we compute any maximal independent set of G, which
can be done by a greedy procedure in polynomial time. If the size of the maximal in-
dependent set found is larger than αn, for 0.2271 < α < 0.22711, by Theorem 3.11,
we can compute γ(G) in time 2n−αn ·nO(1) =O(20.7729n) =O(1.7088n). If the size
of the maximal independent set is at most αn, then we know that γ(G) ≤ αn, and
by trying all subsets of size at most αn, we can find a minimum dominating set in
time (

n
αn

)
·nO(1) =O

((
n

0.22711n

))
.

By making use of the formula for the entropy function (Lemma 3.13), we estimate

O
((

n
0.22711n

))
=O(20.7729n) =O(1.7088n).

ut

In Chap. 6 we present a faster algorithm for the MINIMUM DOMINATING SET
problem based on the Branch & Reduce paradigm and Measure & Conquer analysis.

Exercise 3.15. Construct a greedy algorithm to compute some (no matter which)
maximal independent set of an input graph G = (V,E) in polynomial time. (Note
that such a procedure is needed as part of the algorithm of Corollary 3.14).)

Exercise 3.16. The EXACT SET COVER problem is a covering problem. For a given
universe U of elements and a collection S of (non-empty) subsets of U , the task is
to determine the minimum cardinality of a subset S ′ ⊆ S which partitions U , i.e.

∪S∈S ′S = U

and for every S,S′ ∈ S ′, if S 6= S′ then S∩ S′ = /0. Construct an exact algorithm
solving the EXACT SET COVER problem on any input with n elements and m sets
in time O(nm2n).

Exercise 3.17. The EXACT SAT problem (XSAT) is a variant of the SATISFIA-
BILITY problem, where for a given CNF-formula, the task is to find a satisfying
assignment such that in every clause exactly one literal is true. Show that XSAT can
be solved in time O∗(2m) on input CNF-formulas with m clauses.
Hint: Reduce XSAT to the EXACT HITTING SET problem by eliminating literals

3.3 TSP on Graphs of Bounded Degree 41

of different signs. In EXACT HITTING SET we are given a universe U of elements
and a collection S of (non-empty) subsets of U , the task is to determine the mini-
mum cardinality of a subset U ′ ⊆ U such that U ′ hits every set S ∈ S exactly once,
i.e. |U ′ ∩ S| = 1 for all S ∈ S. Use the observation that EXACT HITTING SET and
EXACT SET COVER are dual problems.

3.3 TSP on Graphs of Bounded Degree

In this section we revisit the dynamic programming algorithm for the TRAVELLING
SALESMAN problem of Chap. 1.

To an input of TSP consisting of a set of cities {c1,c2, . . . ,cn} and a distance
function d, we associate a graph G on vertex set V = {c1,c2, . . . ,cn}. Two vertices
ci and c j, i 6= j, are adjacent in G if and only if d(ci,c j) < ∞. We show that for
graphs of bounded maximum degree, the dynamic programming algorithm for the
travelling salesman problem of Chap. 1 runs in time O∗(cn), for some c < 2. The
proof is based on the observation that the running time of the dynamic programming
algorithm is proportional to the number of connected vertex sets in a graph.

We call a vertex set C⊆V of a graph G = (V,E) connected if G[C], the subgraph
of G induced by C, is connected. While for a graph G on n vertices, the number
of connected vertex sets in G can be as large as 2n, for graphs of bounded degree
it is possible to show that the maximum number of connected vertex subsets is
significantly smaller than 2n. The proof of this fact is based on the following lemma
of Shearer.

Lemma 3.18 (Shearer’s Lemma). Let U be a finite set of elements with a collection
S = {S1,S2, . . . ,Sr} of (non-empty) subsets of U such that every element u ∈ U is
contained in at least δ subsets of S. Let T be another family of subsets of U . For
each 1≤ i≤ r, we define the projection Ti = {T ∩Si : T ∈ T }. Then

|T |δ ≤
r

∏
i=1
|Ti|.

For more information on Shearer’s lemma we refer the reader to the Notes. For a
proof we refer to Corollary 14.6.5 (p. 243) in the book of Alon and Spencer [4].

In the proof of the next lemma we use Jensen’s inequality, a classical inequality
on convex functions. For more information on Jensen’s inequality the reader is re-
ferred to the Notes. Let I be an interval of R. A real-valued function f defined on I
is a convex function on I, if

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y)

for all x,y ∈ I and 0≤ λ ≤ 1. Or equivalently, for any two points of the graph of f ,
the segment connecting these points, is above or on the graph of f .

42 3 Dynamic Programming

Lemma 3.19 (Jensen’s inequality). Let f be a convex function on the interval I of
R1. Then

f (
n

∑
i=1

λixi)≤
n

∑
i=1

λi f (xi).

Using Shearer’s lemma and Jensen’s inequality we are able to upper bound the
maximum number of connected vertex subsets in graphs of bounded maximum de-
gree.

Lemma 3.20. Let G = (V,E) be a graph on n vertices of maximum degree ∆ . Then
the number of connected vertex subsets in G is at most

(2∆+1−1)n/(∆+1) +n.

Proof. The closed neighborhood of a vertex v, denoted by N[v], consists of v and all
neighbors of v: N[v] = {u ∈V : {u,v} ∈ E}∪{v}.

We start by defining sets Sv for all v ∈V . Initially we assign Sv := N[v]. Then for
every vertex v which is not of maximum degree, d(v) < ∆ , we add v to ∆ − d(v)
sets Su which do not already contain v (it does not matter which sets Su). Having
completed this construction, every vertex v is contained in exactly ∆ +1 sets Su and

∑
v∈V
|Sv|= n(∆ +1).

Let C be the set of all connected vertex sets in G of size at least two. For every
v ∈ V , the number of subsets in the projection Cv = {C ∩ Sv : C ∈ C} is at most
2|Sv|−1. This is because for any connected set C of size at least two, C∩N[v] 6= {v},
and thus the singleton set {v} does not belong to Cv. By Lemma 3.18,

|C|(∆+1) ≤∏
v∈V

(2|Sv|−1). (3.5)

Let us define f (x) = 2x−1. It is quite easy to check that the function− log(f (x))
is convex on the interval [1,+∞), and by Jensen’s inequality, (Lemma 3.19) we have
that

− log f (
1
n

n

∑
i=1

xi)≤−
1
n

log f (
n

∑
i=1

xi)

for any xi ≥ 1. In particular,

1
n ∑

v∈V
log f (|Sv|)≤ log f (

1
n ∑

v∈V
|Sv|) = log f (∆ +1).

By taking exponentials and combining with (3.5), we obtain

∏
v∈V

(2|Sv|−1)≤ (2∆+1−1)n.

Therefore

3.4 Partition into Sets of Bounded Cardinality 43

|C| ≤ (2∆+1−1)n/(∆+1).

Finally, the number of connected sets of size one is at most n, which concludes the
proof of the lemma. ut

As soon as the bound on the maximum number of connected vertex subsets in a
graph of bounded degree is established, the proof of the main result of this section
becomes straightforward.

Theorem 3.21. TSP on n-vertex graph of maximum degree ∆ can be solved in time
O∗((2∆+1−1)n/(∆+1)).

Proof. We use the dynamic programming algorithm tsp provided in Chap. 1 (with-
out any changes). The only observation is that if the set S in the recurrence (1.1) is
a prefix of a tour for the salesman, then S is a connected vertex set of G. Thus the
computation in (1.1) can be reduced to connected sets S.

Hence we may now modify the original TSP algorithm by running the dynamic
programming algorithm tsp only over connected vertex sets S. Let us note that the
connectivity test is easily done in polynomial (actually linear) time using depth first
search.

By Lemma 3.20, the number of connected vertex subsets in a G of maximum
degree ∆ is at most (2∆+1−1)n/(∆+1), and the theorem follows. ut

3.4 Partition into Sets of Bounded Cardinality

In Sect. 3.1.2, we discussed how to use dynamic programming to compute the chro-
matic number of a graph. This is a typical partition problem, i.e. partition of the ver-
tex set of the graph into independent sets, and many such problems can be solved
by the use of dynamic programming. In this section we consider the problem of
counting k-partitions for sets of bounded cardinality, more precisely, each set S ∈ S
of the input (U ,S) has cardinality at most r, for some fixed integer r ≥ 2.

Let U be a set of n elements and let S be a family of subsets of U . Then a
collection S1,S2, . . . ,Sk of nonempty pairwise disjoint subsets is a k-partition of
(U ,S) if Si ∈ S for all i with 1 ≤ i ≤ k, and S1 ∪ S2 ∪ ·· · ∪ Sk = U . The task is to
determine the number of unordered k-partitions of the input (U ,S). (The number of
ordered k-partitions of (U ,S), i.e. the number of k-tuples (S1,S2, . . . ,Sk) such that
{S1,S2, . . . ,Sk} is a k-partition of (U ,S), is OPT [U ,k] · k!.)

It is worth mentioning that sometimes the family S is given as a part of the input,
but often S is given implicitly by a description which usually implies a polynomial
(in |U|) time algorithm to recognize the sets of S. In this section we assume that
there is a polynomial time algorithm verifying for each S⊆ U whether S ∈ S.

Counting problems are believed to be more difficult than their decision or op-
timization counterparts. A classical example is the problem of counting perfect
matchings in a bipartite graph which is equivalent to the computation of the perma-
nent of a matrix. While a perfect matching in a graph can be found in polynomial

44 3 Dynamic Programming

time, the counting version, even for bipartite graphs, is in #P, which is the counting
counterpart of NP-hard problems.

A natural approach to count the k-partitions of an input (U ,S) works as follows.
Let OPT [U ; j] be the number of unordered j-partitions of (U,S) for every nonempty
subset U ⊆ U and j ≥ 1. As in the previous sections, the value OPT [U ,k], i.e. the
number of unordered k-partitions of (U ,S), can be computed by dynamic program-
ming. Clearly, OPT [U ;1] = 1 if U ∈ S, and OPT [U ;1] = 0 otherwise. For j > 1,

OPT [U ; j] = ∑
X⊆U,X∈S

OPT [U \X ; j−1] (3.6)

When |S| is small the running time required to compute (3.6) for all subsets of U is
O∗(2n|S|). When |S| is large, the running time of the algorithm becomes O∗(3n).

In Chaps 4 and 7, we present O∗(2n) time algorithms counting the k-partitions
of an input (U ,S) by the use of inclusion-exclusion and subset convolution, respec-
tively. No faster algorithm is known for counting k-partitions in general.

In this section we consider the problem of counting k-partitions when restricted
to inputs (U ,S) satisfying |S| ≤ r for every S ∈ S, where r≥ 2 is a fixed integer. We
show that it is possible to modify the dynamic programming algorithm above so as
to count the k-partitions in time O∗((2− ε)n) for some ε > 0.

Theorem 3.22. Let U be an n-element set, r ≥ 1 be an integer, and S be a family
of subsets of U such that every S ∈ S is of size at most r. Then for any k ≥ 1, the
number of k-partitions of (U ,S) can be computed in time

O∗
(

k

∑
i=1

ir

∑
j=i

(
n− i
j− i

)
· |S|

)
.

Proof. We fix an ordering u1 < u2 < · · · < un of the elements of U . This ordering
establishes the lexicographical order ≺ over the subsets of S. Thus for sets S1,S2 ∈
S, we have S1 ≺ S2 when either the minimum element of S1 \ S2 is less than the
minimum element of S2 \S1, or when S1 ⊂ S2. For example,

{u1,u5} ≺ {u1,u5,u10} ≺ {u3,u8} ≺ {u3,u9}.

We say that an ordered k-partition (S1,S2, . . . ,Sk) is lexicographically ordered if
S1 ≺ S2 ≺ ·· · ≺ Sk. Let Lk be the set of all lexicographically ordered k-partitions
of (U ,S). The crucial observation is that |Lk| is equal to the number of (unordered)
k-partitions of (U ,S). Indeed, for every k-partition {S1,S2, . . . ,Sk}, the lexicograph-
ical ordering of sets Si, 1 ≤ i ≤ k, is unique. Also every lexicographically ordered
k-partition (S1,S2, . . . ,Sk) forms a unique unordered k-partition. Thus there is a bi-
jection from Lk to the set of all unordered k-partitions, which means that the cardi-
nalities of these sets are equal.

We compute |Lk| very similarly to (3.6). The main difference to (3.6) is that we
do not have to go through all subsets of U . We are looking only for lexicographi-
cally ordered sets, and this strongly reduces the search space and eliminates many

3.4 Partition into Sets of Bounded Cardinality 45

non-relevant subsets. For example, for any (S1,S2, . . . ,Sk) ∈ Lk, set S1 must con-
tain u1. For j > 1, the set S j must contain the minimum element not covered by
S1,S2, . . . ,S j−1.

Let us formally define over which subsets we proceed with the dynamic pro-
gramming. The family of relevant sets for j, R j, j ≥ 1, is defined recursively. We
put

R1 = {S ∈ S : u1 ∈ S},
and for j ≥ 2, the familyR j consists of all sets S∪S∗ such that

• S∩S∗ = /0;
• S ∈R j−1;
• S∗ ∈ S;
• The minimum element of U \⋃1≤i≤ j−1 Si belongs to S j.

Thus every set in R j contains u1, . . . ,u j and for every lexicographically ordered
k-partition (S1,S2, . . . ,Sk) of U , the set S1∪·· ·∪S j is a relevant set for j.

For a relevant set U ⊆ U and j ≥ 1, let OPT [U ; j] be the number of lexicograph-
ically ordered j-partitions of (U,S). Thus OPT [U ;k] = |Lk|. Then OPT [U ;1] = 1
if U ∈R1, and OPT [U ;1] = 0 otherwise. For j > 1 and U ∈R j,

OPT [U ; j] = ∑
X

OPT [U \X ; j−1], (3.7)

where summation is taken over all sets X ⊆U such that

• U \X ∈R j−1;
• X ∈ S;
• X contains the minimum element of U \ (U \X).

Indeed, by the above discussions, every lexicographically ordered j-partition of a
relevant set U is a union of U ′ ∪X , where U ′ is a relevant set for j− 1, and X ∈ S
is a set containing the minimum element of U \U ′. Thus (3.7) correctly computes
OPT [U ; j].

Consider the complexity of computing (3.7). We have to verify all subsets X ⊆U
which belong to S . For each such X , we check whether U \X ∈ R j−1 and whether
X contains the minimum element of U \ (U \X). Thus the running time of the algo-
rithm is

O∗(|S| · (|R1|+ |R2|+ · · ·+ |Rk|)). (3.8)

Finally, we claim that

|Ri| ≤
ir

∑
j=i

(
n− i
j− i

)
. (3.9)

Indeed, every set S fromRi contains u1,u2, . . . ,ui. Also because the size of every set
from S is at most r, we have that |S| ≤ ir. Thus S contains at most i(r−1) elements
from ui+1,ui+2, . . . ,un and (3.9) follows.

Putting together (3.8) and (3.9), we conclude the proof of the theorem. ut

46 3 Dynamic Programming

To estimate the values given in Theorem 3.22, we use the classical combinato-
rial results on Fibonacci numbers. The sequence of Fibonacci numbers {Fn}n≥0 is
recursively defined as follows: F(0) = 0, F(1) = 1, and Fn+2 = Fn+1 +Fn. Thus, for
example, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, etc. For more information on the
Fibonacci numbers the reader is referred to the Notes. It is possible to give a closed
form expression for Fibonacci numbers.

Lemma 3.23 (Fibonacci numbers). For n≥ 0,

F(n+1) =
⌊

ϕn+1
√

5
+

1
2

⌋
,

where ϕ = (1+
√

5)/2 is the Golden Ratio.

We will need another identity for Fibonacci numbers.

Lemma 3.24.

F(n+1) =
bn/2c
∑
k=1

(
n− k

k

)
.

Proof. Let an be the number of binary strings (i.e. sequences of 0s and 1s) of length
n with no consecutive 0s. For example, below are all such strings of length 4

0111 0101 0110 1111
1011 1010 1101 1110

To prove the lemma, we will compute an in two different ways.
One can verify that a1 = 2, a2 = 3, a3 = 5, a4 = 8, and it is natural guess that

an = Fn+2. Indeed, the number of strings of length n with no consecutive 0s which
start from 1 is an−1 and the number of such strings starting from 0 is an−2. Thus
an = an−1 +an−2, and we have that an = Fn+2.

On the other hand, the number of strings of length k + r with k ones and r zeros
such that no two zeros are consecutive, is equal to

(
k +1

r

)
.

Indeed, every such string is formed from a string of length k of 1s by inserting r
0s. But there are exactly k + 1 places to insert 0s: before the first 1, after the last 1,
or between adjacent 1s. Thus the number of such strings of length n with exactly r
zeros is (

n− r +1
r

)
,

and we conclude that

an =
n

∑
r=0

(
n− r +1

r

)
.

Putting together the two identities for an, we have that

3.4 Partition into Sets of Bounded Cardinality 47

an = Fn+2 =
n

∑
r=0

(
n− r +1

r

)

and by replacing n by n−1, we have that

Fn+1 =
n

∑
r=0

(
n− r

r

)
.

Finally, for r > bn/2c, every string of length n with r 0s has two consecutive 0s, and
thus

F(n+1) =
bn/2c
∑
k=1

(
n− k

k

)
.

ut

Let us give an application of Theorem 3.22. Counting perfect matchings in an
n-vertex graph is the case of Theorem 3.22 with r = 2 and k = n/2 (we assume that
n is even).

Corollary 3.25. The number of perfect matchings in an n-vertex graph can be com-
puted in time O(1.6181n).

Proof. The running time of the algorithm is proportional, up to a polynomial factor,
to

max
1≤i≤n/2

ir

∑
j=i

(
n− i
j− i

)
= max

1≤i≤n/2

2i

∑
j=i

(
n− i
j− i

)
.

If i≥ n/3, then
2i

∑
j=i

(
n− i
j− i

)
≤ 2n−i ≤ 22n/3.

If i≤ n/3, then
2i

∑
j=i

(
n− i
j− i

)
=

i

∑
k=1

(
n− i

k

)
≤ i ·

(
n− i

i

)
.

By Lemma 3.24,

bn/2c
∑
k=1

(
n− k

k

)
= F(n+1),

where

F(n+1) =
⌊

ϕn+1
√

5
+

1
2

⌋

is the (n+1)th Fibonacci number and ϕ = (1+
√

5)/2 is the Golden Ratio. Then

48 3 Dynamic Programming

r 2 3 4 5 6 7 20 50
cr 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9651 1.9861

Fig. 3.2 Running timeO(cr
n) for some values of r

2i

∑
j=i

(
n− i
j− i

)
≤ i ·

(
n− i

i

)

< iϕn+1 =O(n ·1.6181n).

ut

In Fig. 3.2 a table with the bases of the exponential running time for certain
values of r is given.

Notes

Dynamic programming is one of the fundamental techniques for designing algo-
rithms. The term dynamic programming is due to Richard Bellman [15]. The text-
books of Cormen, Leiserson, Rivest and Stein [52] and Kleinberg and Tardos [129]
provide nice introductions to dynamic programming.

One of the earliest exact algorithms for a permutation problem are dynamic pro-
gramming algorithms of Bellman [16, 16] and of Held and Karp [111] for the TRAV-
ELLING SALESMAN (TSP) problem. The dynamic programming algorithm for the
DIRECTED FEEDBACK ARC SET problem is a classical result from 1964 due to
Lawler [149].

Dynamic programming over subsets does not seem to work for every permutation
problem. For example, it is not clear how to apply it directly to the BANDWIDTH
MINIMIZATION problem (see also Sect. 11.1) or to the SUBGRAPH ISOMORPHISM
problem (see also Sect. 4.4). It is an open problem whether the BANDWIDTH MIN-
IMIZATION problem can be solved in time O∗(2n). For SUBGRAPH ISOMORPHISM
no algorithm of running time 2o(n logn) is known. Improving the O∗(2n) running
time for solving the HAMILTONIAN PATH problem and the TSP problem is a long
standing open problem.

For some other problems, like TREEWIDTH and PATHWIDTH (which can be
seen as permutation problems) faster algorithms than theO∗(2n) dynamic program-
ming algorithms are known. The treewidth of a graph can be computed in time
O(1.7549n) [90, 95]. Suchan and Villanger showed how to compute the pathwidth
of a graph in time O(1.9657n) [211]. An attempt to classify permutation problems
which can be solved by dynamic programming over subsets together with some
implementations can be found in [31].

For a nice treatment of computational and combinatorial issues of Stirling for-
mula and Fibonacci numbers we recommend the book of Graham, Knuth, and
Patashnik [104]. Theorem 3.10 is from [91]. Theorem 3.11 and Corollary 3.14 are

3.4 Partition into Sets of Bounded Cardinality 49

due to Liedloff [152]. In Chap. 6, a faster algorithm for MINIMUM DOMINATING
SET of running timeO(1.5259n) is provided by making use of Measure & Conquer.

The first dynamic programming algorithm computing an optimal graph coloring
of running time O(2.4423n) was published by Lawler in 1976 [150]. The running
time of Lawler’s algorithm was improved for the first time only in 2001 by Eppstein
[69, 70] and then by Byskov [42] who refined Eppstein’s idea and obtained a running
time of O(2.4023n). All these results were significantly improved by Björklund,
Husfeldt and Koivisto by making use of inclusion-exclusion (see Chap. 4) [24, 30,
137]. Deciding whether a graph is 3-colorable can be done by making use of the
algorithm of Beigel and Eppstein [14] in time O(1.3289n). Exact algorithms for
counting 3- and 4-colorings can be found in [6, 80, 99].

Jensen’s inequality can be found in any classical book on analysis, see, e.g. [193].
Shearer’s Lemma appeared in [49]. For a proof, see the book of Alon and Spencer
[4]. The lemma was used by Björklund, Husfeldt, Kaski and Koivisto [28] to obtain
aO∗((2−ε)n) algorithms for coloring and other partition and covering problems on
graphs of bounded degrees. The proof of Theorem 3.21 is taken from [28]. The run-
ning time in Theorem 3.21 can be improved by considering not only connected sets,
but also dominating sets with specific properties. For graphs of maximum degree 3,
improved algorithms for TSP were obtained by Eppstein [73] and Iwama [123]. See
also the work of Björklund, Husfeldt, Kaski and Koivisto [29] forO∗((2−ε)n) time
algorithms for different partition problems on graphs with bounded vertex degrees.
Another class of graphs on which deciding Hamiltonicity can be done faster than
Θ(2n) is the class of claw-free graphs [40]. Theorem 3.22 and Corollary 3.25 are
due to Koivisto [138]. For a version of EXACT SET COVER, where every set is of
size at most k, Björklund obtained a randomized algorithm of running time O(cn

k),
where c3 ≤ 1.496, c4 ≤ 1.642, and c5 ≤ 1.721 [23].

Chapter 4
Inclusion-Exclusion

Inclusion-exclusion is a fascinating technique used in the design of fast exponential
time algorithms. It is based on the inclusion-exclusion principle which is a funda-
mental counting principle in combinatorics; it allows us to count combinatorial ob-
jects in a somewhat indirect way that is applied in particular when direct counting
is not possible. This counting principle is the main tool when designing inclusion-
exclusion algorithms. It seems that this algorithm design paradigm is suited very
well to constructing fast exponential time algorithms since it naturally produces ex-
ponential time algorithms.

Similar to dynamic programming, inclusion-exclusion based algorithms go thro-
ugh all possible subsets but the significant difference is that they do not require expo-
nential space. Thus like dynamic programming, inclusion-exclusion algorithms can
often be used not only to solve NP-hard problems but also to solve seemingly harder
counting problems. Combined with dynamic programming, inclusion-exclusion is
the basis of several fast transforms, i.e. transformations of a set function to another
set function. In this chapter we use such a combination to explain the breakthrough
O∗(2n) graph coloring algorithms of Björklund and Husfeldt [24] and Koivisto
[137]. In Chap. 7 we give several fast transforms based on inclusion-exclusion.

4.1 The Inclusion-Exclusion Principle

In this section we present the inclusion-exclusion principle of counting. We start
with a simple example. Let S be a set and A, B be some properties of elements
of S. Each of the elements of S can have one, both or none of the properties. We
denote by N(0) the number of elements having no properties, by NA (NB) the number
of elements with property A (B), and by NA∩B the number of elements with both
properties. Because each of the elements with both properties is counted twice in
the sum NA +NB, we have that

N(0) = N− (NA +NB)+NA∩B.

51

52 4 Inclusion-Exclusion

The following theorem generalizes our example.

Theorem 4.1. Given a collection of N combinatorial objects and properties P(1),
P(2), . . . ,P(n) such that for every i∈ {1,2, . . . ,n} each object does or does not have
property P(i). Hence each of the objects has some subset of those properties: none,
several or all of P(1),P(2), . . . ,P(n).

For every r ≥ 1 and {i1, i2, . . . , ir} ⊆ {1,2, . . . ,n}, we denote by Ni1,i2,...,ir the
number of objects having (at least) all the properties P(i1),P(i2), . . . , and P(ir).
Then N(0), the number of objects having none of the properties, can be determined
by the following formula of inclusion-exclusion:

N(0) = N−
n

∑
i=1

Ni + ∑
i1<i2

Ni1,i2 − ∑
i1<i2<i3

Ni1,i2,i3 + · · ·

· · ·+(−1) j
∑

i1<i2<···<i j

Ni1,i2,...,i j + · · ·+(−1)nN1,2,...,n (4.1)

Proof. For every object we verify how often it is counted on each of the two sides
of equation (4.1).

If an object has none of the properties then it is counted once on the left hand side
and once on the right hand side (for N). Now suppose that an object has precisely
the properties P(j1),P(j2), . . . ,P(js), s≥ 1. On the right hand side such an object is
counted precisely for those Ni1,i2,...,ir satisfying { j1, j2, . . . , js} ⊆ {i1, i2, . . . , ir}, i.e.
it is counted once for Ni1,i2,...,ir for each superset {i1, i2, . . . , ir} of { j1, j2, . . . , js}.
Hence for each r ≥ s, such an object is counted

(n−s
r−s

)
times, since s objects, i.e.

j1, j2, . . . , js of all sets to count, are fixed in advance. Finally, due to the alternation
of the signs + and − in equation (4.1), the contribution of such an object is

∑
{ j1, j2,..., js}⊆{i1,i2,...,ir}

Ni1,i2,...,ir =
n

∑
r=s

(−1)r
(

n− s
r− s

)

=
n−s

∑
k=0

(−1)k
(

n− s
k

)
= 0.

This completes the proof. ut

In combinatorics the inclusion-exclusion principle is used when it is difficult
to determine the number of objects without any of the properties directly while it
is much easier to determine all the numbers Ni1,i2,...,ir . While inclusion-exclusion
is a powerful and relatively simple counting principle, algorithms using inclusion-
exclusion have to run through all subsets of the ground set, which results in expo-
nential running time.

The following theorem is another version of the inclusion-exclusion principle
which is somewhat complementary to the one given above in Theorem 4.1.

Theorem 4.2. Given a collection of N combinatorial objects and properties Q(1),
Q(2), . . . ,Q(n) such that each of the objects has a subset of those properties. For

4.2 Some Inclusion-Exclusion Algorithms 53

any subset W ⊆ {1,2, . . . ,n}, let N(W) be the number of objects having none of the
properties Q(w) with w ∈W (but possibly some of the others). Let X be the number
of objects having all properties Q(1),Q(2), . . . ,Q(n). Then

X = ∑
W⊆{1,2,...,n}

(−1)|W |N(W) (4.2)

Proof. To apply Theorem 4.1, we say that an object has property P(i) if and only
if it does not have property Q(i), where 1 ≤ i ≤ n. Hence the number of objects
with properties P(i1),P(i2), . . . ,P(ir) (and maybe some other properties) is equal to
the number of objects having none of the properties Q(i1),Q(i2), . . . ,Q(ir). Then
Theorem 4.1 implies (4.2). ut

Let us emphasize that when inclusion-exclusion is used to construct fast expo-
nential time algorithms usually the version in Theorem 4.2 is applied. How to choose
objects and properties for a particular (counting) problem will become clear in the
subsequent sections.

4.2 Some Inclusion-Exclusion Algorithms

In this section we give several examples of how inclusion-exclusion ideas can be
used to design exact algorithms. The idea of the first example, computing the per-
manent of the matrix or counting perfect matchings in a bipartite graph, goes back
to the work of Ryser [194]. The second example, the HAMILTONIAN PATH problem,
is a special case of the TSP problem, which was discussed in Chap. 1 and 3. The
application of inclusion-exclusion to TSP and its variants like the Hamiltonian cycle
and the Hamiltonian path problem was rediscovered several times [136, 127, 11].
Our third example is the BIN PACKING problem.

The running time of the inclusion-exclusion algorithm is almost the same as the
time used by the dynamic programming algorithm similar to the one for TSP from
Chap. 1. However the dynamic programming algorithm needs exponential space
while the inclusion-exclusion algorithm uses polynomial space. We will discuss the
importance of space bounds and the possibilities of time and space exchange in
Chap. 10.

4.2.1 Computing the Permanent of a Matrix

Let A = [ai j], i, j ∈ {1, . . . ,n}, be a binary n×n matrix, i.e. a matrix in which each
entry ai j is either zero or one. An important characteristic of a matrix is its perma-
nent defined as

perm(A) = ∑
π∈Sn

n

∏
i=1

ai,π(i),

54 4 Inclusion-Exclusion

where Sn is the set of all permutations of {1, . . . ,n}. For example, the permanent of
matrix

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33




is

perm(A) = a11a22a33 +a11a32a23 +a21a12a33 +a21a32a13

+ a31a12a23 +a31a22a13.

While the formula of the permanent looks very similar to the formula of the de-
terminant, the computational complexity of these two characteristics is drastically
different. The trivial algorithm computing the permanent of a matrix would be to try
all possible permutations π , and compute for each permutation the corresponding
sum, which results in running time O∗(n!).

Computing the permanent of a binary matrix can be expressed in the language
of Graph Theory as a problem of counting perfect matchings in bipartite graphs.
A matching M of a graph G = (V,E) is perfect if M is an edge cover of G. In
other words, every vertex of G is incident to precisely one edge of M. Deciding
whether a graph has a perfect matching is a classical combinatorial problem and is
solvable in polynomial time. However, counting perfect matchings is known to be a
#P-complete problem.

Let G = (V,E) be a bipartite graph with bipartition (X ,Y), X = {x1,x2, . . . ,xn},
Y = {y1,y2, . . . ,yn}. Let AG = [ai j], i, j ∈ {1, . . . ,n} be the adjacency matrix of G,
the n× n binary matrix whose entry ai j is 1 if {xi,y j} ∈ E and 0 otherwise. Let us
define the characteristic function

f (xi,y j) =

{
1 if {xi,y j} ∈ E,

0 otherwise.

Then the number of perfect matchings in G is equal to

∑
π∈Sn

n

∏
i=1

f (xi,yπ(i)).

The main observation here is that for every permutation π ∈ Sn, a set of edges
M = {{x1,yπ(1)},{x2,yπ(2)}, . . . ,{xn,yπ(n)}} is a perfect matching if and only if
a1π(1)a2π(2) · · ·anπ(n) = 1. Thus the number of perfect matchings in G is equal to

∑
π∈Sn

n

∏
i=1

aiπ(i) = perm(AG).

An example is given in Fig. 4.1.

Using inclusion-exclusion and the scenario of Theorem 4.2 we prove the follow-
ing lemma.

4.2 Some Inclusion-Exclusion Algorithms 55

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

x1

x2

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

x1

x2

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

y1

y2

y3

x3

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

y1

y2

y3

x3

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

y1

y2

y3

x3

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

y1

y2

y3

x3

Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

58 CHAPTER 4. INCLUSION-EXCLUSION

We comput permanent by making use of this formula. Each of the values

n�

i=1

�

j �∈W

f(i, j)

is computable in polynomial time, and thus the running time required to
compute the permanent is O∗(2n).

AG =




1 0 0
1 1 1
0 1 1




Directed Hamiltonian s, t-Path In the Directed Hamiltonian s, t-Path
problem we are given a directed and simple graph G = (V, E) with vertex
set {s, t}∪{v1, v2, . . . , vn} and edge set E. The task is to determine whether
there is a hamiltonian path from s to t in G, i.e. a directed path P = (s, . . . , t)
of length n + 1 in G such that each vertex of G occurs precisely once in P .

To solve this decision problem the inclusion-exclusion algorithm actually
solves a counting problem.

Theorem 4.5. The number of directed hamiltonian s, t-paths in a graph can
be computed in time O∗(2n) and in polynomial space.

Proof. To solve this decision problem we actually solve the corresponding
counting problem. Our algorithm will determine the number of hamiltonian
paths from s to t in G. To apply the inclusion-exclusion principle of counting,
we use the scenario of Theorem 4.2. The objects are directed walks from
s to t of length n + 1. A directed walk from s to t of length n + 1 is a
sequence s, v1, ..., vn, t of vertices such that every pair of consecutive vertices
is connected by an edge; vertices and edges may show up repeatedly in a
walk. A walk (or an object) has property Q(i) if it contains vertex vi. Hence
for every subset W ⊆ {1, 2, . . . , n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈ W . In other words, N(W) is the
number of directed walks of length n + 1 from s to t containing no vertex
vi with i ∈ W . We define X to be the number of directed walks of length
n + 1 containing all vertices of {v1, v2, . . . vn}. Thus X is the number of
hamiltonian paths from s to t. By the inclusion-exclusion principle as given
in Theorem 4.2, we have that

X =
�

W⊆{1,2,...,n}
(−1)|W |N(W). (4.3)

Fig. 4.1 A bipartite graph G and its adjacency matrix. The graph G has two perfect matchings,
namely, {x1,y1},{x2,y2},{x3,y3} and {x1,y1},{x2,y3},{x3,y2}. The permanent of AG is 2.

Lemma 4.3. Let G be a bipartite graph and AG be its adjacency matrix. Then

perm(AG) = ∑
W⊆{1,2,...,n}

(−1)|W |
n

∏
i=1

∑
j 6∈W

f (i, j).

Proof. Following the notation of Theorem 4.2, we define the collection N of the
following objects. Each object M ∈ N is a set of n edges of G, such that for every
i ∈ {1,2, . . . ,n}, the vertex xi is an endpoint of some edge of M. The property Q(j)
is that the vertex y j is an endpoint of some edge of M. In this language, an object
M has all properties Q(1),Q(2), . . . ,Q(n) iff it is a perfect matching of G. For W ⊆
{1,2, . . . ,n}, the number of objects N(W) having none of the properties Q(w), w ∈
W , is equal to

N(W) =
n

∏
i=1

∑
j 6∈W

f (i, j).

Indeed, for every vertex xi, to form an object M, we can select exactly one edge
with an endpoint xi whose second endpoint is not in W . Now, by (4.2), the number
X of objects having all properties, i.e. the number of perfect matchings in G or the
permanent of AG, is equal to

perm(AG) = X =

∑
W⊆{1,2,...,n}

(−1)|W |N(W) = ∑
W⊆{1,2,...,n}

(−1)|W |
n

∏
i=1

∑
j 6∈W

f (i, j).

ut

Putting all together, we obtain the following theorem.

Theorem 4.4. The permanent of a binary n× n matrix can be computed in time
O∗(2n) and polynomial space.

Proof. For a binary matrix A, we construct the bipartite graph G, such that A is its
adjacency matrix. Then by Lemma 4.3,

56 4 Inclusion-Exclusion

perm(AG) = ∑
W⊆{1,2,...,n}

(−1)|W |
n

∏
i=1

∑
j 6∈W

f (i, j). (4.3)

We compute the permanent by making use of this formula. Each of the values

n

∏
i=1

∑
j 6∈W

f (i, j)

is computable in polynomial time, and thus the running time required to compute
the permanent is O∗(2n). ut

4.2.2 Directed Hamiltonian Path

In the DIRECTED HAMILTONIAN s, t-PATH problem we are given a directed and
simple graph G = (V,E) with vertex set {s, t}∪{v1,v2, . . . ,vn} and edge set E, |E|=
m. The task is to determine whether there is a Hamiltonian path from s to t in G, i.e.
a directed path P = (s, . . . , t) of length n+1 in G such that each vertex of G occurs
precisely once in P.

To solve the decision problem DIRECTED HAMILTONIAN s, t-PATH we actually
solve the corresponding counting problem.

Theorem 4.5. The number of directed Hamiltonian s, t-paths in a graph can be com-
puted in time O∗(2n) and in polynomial space.

Proof. Our algorithm will determine the number of Hamiltonian paths from s to t
in G. To apply the inclusion-exclusion principle of counting, we use the scenario of
Theorem 4.2. The objects are directed walks from s to t of length n+1. A directed
walk from s to t of length n+1 is a sequence s,v1, . . . ,vn, t of vertices such that every
pair of consecutive vertices is connected by an edge; vertices and edges may show
up repeatedly in a walk. A walk (or an object) has property Q(i) if it contains vertex
vi. Hence for every subset W ⊆ {1,2, . . . ,n}, N(W) is the number of objects having
none of the properties Q(i), for all i ∈W . In other words, N(W) is the number of
directed walks of length n + 1 from s to t containing no vertex vi with i ∈W . We
define X to be the number of directed walks of length n + 1 containing all vertices
of {v1,v2, . . . ,vn}. Thus X is the number of Hamiltonian paths from s to t. By the
inclusion-exclusion principle as given in Theorem 4.2, we have that

X = ∑
W⊆{1,2,...,n}

(−1)|W |N(W). (4.4)

Now all that remains is to compute N(W) for every subset W ⊆ {1,2, . . . ,n}. For
every fixed subset W this is easy, and actually can be performed in polynomial time.
There are several ways of computing N(W).

4.2 Some Inclusion-Exclusion Algorithms 57

One way is to use adjacency matrices. Let A be the adjacency matrix of G \W .
Recall that in the kth power Ak of A, the entry at the intersection of row i and column
j counts the number of walks with k + 1 vertices in G \W that start at vertex i and
end at vertex j. Therefore, the number N(W) can be extracted from An+1 which can
be computed in polynomial time.

Another way of computing N(W) is via dynamic programming. For a subset
W ⊆ {1,2, . . . ,n} and vertex u ∈ {vi : i 6∈W} ∪ {t}, we define PW (u,k) to be the
number of directed walks of length k from s to u avoiding all vertices vi with i ∈W .
With such a notation we have N(W) = PW (t,n+1).

The dynamic programming algorithm is based on the following recurrence.

PW (u,0) =

{
0, if u 6= s
1, if u = s

PW (u,k) = ∑
{vi:(vi,u)∈E, and i 6∈W}

PW (vi,k−1), for 1≤ k ≤ n+1.

For each subset W , the dynamic programming algorithm based on the above
recurrence performs O(nm) operations with integer-valued variables of the type
PW (u,k). Thus the running time on the unit-cost RAM is O(nm). On the log-cost
RAM the running time of this step is slightly different: The number of walks is
at most 2m, and thus each integer-value of a variable PW (u,k) can be encoded by
making use of O(m) bits resulting in O(nm2) time.

Note that at a typical point during the execution of the algorithm it stores for all
suitable vertices u, the values PW (u,k) to be computed and the values PW (u,k− 1)
needed for the computation of the values of PW (u,k). Hence the required space is
O(nm).

The overall inclusion-exclusion algorithm needs to plug all the 2n values of N(W)
computed by the polynomial time dynamic programming algorithm into the for-
mula (4.4). Hence its running time is O(nm2n). Moreover the algorithm uses only
space O(nm) because it may use the same space for each computation of N(W),
(−1)|S|N(S) and the corresponding partial sum. ut

Self-reduction. It is natural to wonder whether such an algorithm counting the
Hamiltonian paths from s to t via an inclusion-exclusion formula and via count-
ing s, t-walks can actually compute at least one Hamiltonian path from s to t if there
is one. Indeed using an inclusion-exclusion algorithm to compute a (optimal) solu-
tion can often be done by a method called self-reduction. For the Hamiltonian path
it can be done at the cost of an additional multiplicative factor logn and still within
polynomial space.

Let us sketch the idea. By Theorem 4.5, we can count the number of Hamiltonian
paths in time O(p(n)2n), where p(n) is some polynomial in n. If the algorithm
outputs that the number of Hamiltonian paths in some input directed graph G is
positive, we know that there exists at least one such path in G. We take an edge e of
the input graph G, delete it from G and run the counting algorithm on the modified

58 4 Inclusion-Exclusion

instance. If the number of paths in the new graph is positive, then we conclude that
there is at least one Hamiltonian path in G that does not contain e. In this case
we proceed recursively, i.e. pick another edge of the new graph, remove it, count the
number of paths in the reduced instance, etc. If the graph G\{e} has no Hamiltonian
path, we conclude that every Hamiltonian path in G goes through e. In this case we
put e back into G, label it as an edge of the Hamiltonian path, so we never try to
remove it again from the graph, and recursively try to remove another edge. By the
end of this procedure we are left with a Hamiltonian path of G. However, such an
approach requires to run the counting algorithm m times, resulting in running time
O(m · p(n) ·2n).

We first show how to decrease the number of runs from m to n. Instead of trying
all edges, we start from trying only edges going from s. There are at most n−
1 such edges, and if for some of the edges, say (s,s′), we have that the amounts
of Hamiltonian paths from s to t in graphs G and G \ {(s,s′)} are different, we
know that there is at least one path in G using (s,s′). Moreover, in this path (s,s′)
is the only edge going from or to s. Thus in this case we can remove s with all
incident edges and proceed constructing a Hamiltonian path from s′ to t in G \ {s}
recursively. For a subgraph F of G on k vertices, we count the number of paths in F
in time O(p(k) ·2k) =O(p(n) ·2k), and thus the running time of the algorithm can
be estimated as

O(n · p(n) · (2n +2n−1 + · · ·+20)) =O(n · p(n) ·2n).

Finally, to speed up the algorithm, we can search for an edge (s,s′) whose removal
changes the number of paths by performing binary search. We partition the set of
edges incident to s into sets A and B of equal sizes and run counting algorithm on
the graph G \A resulting from G by removing all edges from A. If the number of
paths in G and G \A are the same, then (s,s′) must be in B. Otherwise, it should
be in A. In this way, we can find (s,s′) in O(logn · p(n) · 2n) time, resulting in the
running time

O(logn · p(n) · (2n +2n−1 + · · ·+20)) =O(logn · p(n) ·2n).

We would like to emphasize that with few modifications the algorithm to count
the s, t-Hamiltonian paths of a directed graph also works for the Hamiltonian cycle
problem on directed and also on undirected graphs. It also can easily be modified
to solve the TSP problem. However when distances between cities might be expo-
nential in n (the number of cities), then the algorithm will require exponential space
as well. More precisely, with the maximum distance between cities W , the running
time of the inclusion-exlcusion algorithm is O∗(2nW), while the space required is
O∗(W). Since the input length is O(n logW), the space requirement is exponential.
The existence of a polynomial space algorithm solving the TSP problem in time
O∗(2n) is an interesting open problem. In Chap. 10 we discuss techniques allowing
us to solve the TSP problem in polynomial space, but with worse running time.

4.2 Some Inclusion-Exclusion Algorithms 59

4.2.3 Bin Packing

Here is another example of how to apply inclusion-exclusion to solve a decision
problem.

Bin Packing. In the BIN PACKING problem, we are given a positive integer bin
capacity B, a positive integer k giving the number of available bins, and n items,
where the size of item i is given by a positive integer s(i). The task is to determine
whether the set of items can be partitioned into sets U1,U2, . . . ,Uk such that the sum
of the sizes of the items in each U j, 1≤ j ≤ k, is at most B.

Theorem 4.6. There is an algorithm that decides in time O(nB2n) and space
O(maxn

i=1 s(i)) whether the bin packing problem with n items has a solution.

Proof. A partition U1,U2, . . . ,Uk of the items is called a feasible solution if the sum
of the sizes of the items in each U j is at most B. Since only the decision problem
needs to be solved, we may relax the notion of a feasible solution such that items
may appear more than once either in the same bin or in different bins. Thus if there
is a relaxed feasible solution then there is also a feasible solution, and therefore it
is sufficient to decide whether there is a relaxed feasible solution, and this will be
done by counting the relaxed feasible solutions.

A relaxed feasible solution may be viewed as an ordered set of k finite lists of
elements from {1,2, . . . ,n} such that

(a) for each of such list a1,a2, . . . ,ap, ∑
p
h=1 s(ah)≤ B, and

(b) each of the elements of {1,2, . . . ,n} appears in at least one of the list.

To count the number of relaxed feasible solutions, we apply the inclusion-
exclusion principle of Theorem 4.2. To apply Theorem 4.2, we define objects as
ordered sets of k finite lists of elements from {1,2, . . . ,n} such that if a1,a2, . . . ,ap is
one of the lists, then ∑

p
h=1 s(ah)≤ B. We specify the properties Q(1),Q(2), . . . ,Q(n)

of objects as follows. For w∈{1,2, . . . ,n}, an object has the property Q(w) if at least
one of its lists contains the element w. For a subset W ⊆ {1,2, . . . ,n}, we define
N(W) to be the number of objects not having property Q(w), for all w ∈W . Then
by Theorem 4.2, the number of all relaxed feasible solutions, which is the number
of objects possessing all properties, is

X = ∑
W⊆{1,2,...,n}

(−1)|W |N(W).

For W ⊆ {1,2, . . . ,n}, we define A(W) as the number of lists a1,a2, . . . ,ap of
elements not in W such that ∑

p
h=1 s(ah) ≤ B. Then N(W) = A(W)k because the list

for each of the k bins can contain only items for which the sum of their sizes is
at most B. We denote by PW (j), 0 ≤ j ≤ B, the number of lists a1,a2, . . . ,ap of
elements not in W such that ∑

p
h=1 s(ah) = j. Hence A(W) = ∑

B
j=0 PW (j).

It is convenient to extend the definition of PW (`) for negative ` by putting

PW (`) = 0 for all ` < 0.

60 4 Inclusion-Exclusion

For every fixed W , there is only one (empty) list with sums of its elements equal to
0. Thus

PW (0) = 1.

The values PW (j), j≥ 1, can be computed by a simple dynamic programming algo-
rithm based on the following recurrence

PW (j) = ∑
i 6∈W

PW (j− s(i)).

Hence, for every fixed W , N(W) can be computed in time O(nB). The space
required for the computation is O(maxn

i=1 s(i)) because only the last maxn
i=1 s(i)

values of PW (i) have to be stored for computing PW (j). Consequently the num-
ber of relaxed feasible solutions can be computed using time O(nB2n) and space
O(maxn

i=1 s(i)). ut

4.3 Coverings and Partitions

The BIN PACKING problem can be seen as a covering problem, where one wants to
cover the set {1,2, . . . ,n}with at most k sequences such that the sum of the elements
in every sequence is at most B. While for the BIN PACKING problem the inclusion-
exclusion algorithm requires the same time as known dynamic programming al-
gorithms, for some of the covering problems discussed below inclusion-exclusion
allows a significant speed-up.

In this section we present inclusion-exclusion algorithms for covering and parti-
tion problems. Such an algorithm is typically significantly faster than the best known
dynamic programming algorithm for the corresponding problem. In particular, we
present aO∗(2n) time algorithm to compute the chromatic number of a graph and to
solve the well-known coloring problem. These results were obtained independently
in 2006 by Björklund and Husfeldt [24] and Koivisto [137].

Let us recall (see page 36) that in the MINIMUM SET COVER problem (MSC)
we are given a universe U of elements and a collection S of (non-empty) subsets of
U , and the task is to find a subset of S of minimum cardinality covering all elements
of U .

Let U be a set of n elements and let S be a family of subsets of U . We shall often
denote such an input by (U ,S). Additionally we assume that (all the elements of)
S can be enumerated in time O∗(2n). Typically S is implicitly defined by a polyno-
mial time computable predicate. This additional assumption is needed to guarantee
that the overall running time O∗(2n) of the inclusion-exclusion algorithm can be
established.

We often refer to a set cover of cardinality k as to a k-cover. In other words,
S1,S2, . . . ,Sk is a k-cover of (U ,S) if Si ∈ S, 1≤ i≤ k, and S1∪S2∪·· ·∪Sk = U .

4.3 Coverings and Partitions 61

Similarly, S1,S2, . . . ,Sk is a k-partition of (U ,S) if Si ∈S, 1≤ i≤ k, and S1∪S2∪
·· ·∪Sk =U , and Si∩S j = /0 for all i 6= j. Thus in a k-cover sets Si and S j may overlap
while in a k-partition all sets are pairwise disjoint. Of course, each k-partition is also
a k-cover.

Graph coloring, defined in Sect. 3.1.2, is a nice example of k-partitions and k-
covers. Let us recall that a feasible coloring of an undirected graph G = (V,E) as-
signs a color to each vertex of G such that each pair of adjacent vertices has different
colors. The smallest number of colors in a feasible coloring of G is called the chro-
matic number of G.

Let us consider graph coloring via k-partitions and k-covers. The set of vertices
of a graph G obtaining the same color under a feasible coloring, called a color class,
is an independent set of G. Hence a coloring using k colors, called a k-coloring,
corresponds to a partition of V into k independent sets. Thus a k-coloring is a k-
partition of (V,I) where V is the vertex set of the graph G and I is the set of all
independent sets of G. On the other hand, given a k-cover of (V,I) it is easy to
derive a k-coloring of G. If I1, I2, . . . , Ik is a k-cover of (V,I), then a k-partition of
(V,I) and hence, a k-coloring of G can be obtained by simply removing from I2 the
vertices of I1, from I3 the vertices of I1∪ I2, etc. Therefore, to decide whether G has
a k-coloring, it is sufficient to decide whether (V,I) has a k-cover (or k-partition).
Actually, by making use of inclusion-exclusion it is possible not only to decide
whether (V,I) has a k-cover (k-partition), but also to count the number of k-covers
(k-partitions) of (V,I).

4.3.1 Coverings and Graph Coloring

The main goal of this subsection is to present and analyse an inclusion-exclusion
algorithm to count the number of k-covers of an input (U ,S). We denote by
ck = ck(S) the number of ordered k-covers of (U ,S). Hence S1,S2, . . . ,Sk and
Sπ(1),Sπ(2), . . . ,Sπ(k) are considered to be different k-covers for any permutation π

different from the identity. Note that the number of unordered k-covers of (U ,S) is
ck(S)/k!.

For W ⊆ U , we define

S[W] = {S ∈ S : S∩W = /0}.

In other words, S[W] is the subfamily of S avoiding W . We denote by s[W] the
cardinality of S[W].

First we present an inclusion-exclusion formula for ck the number of ordered k-
covers of (U ,S). Note that the number of ordered k-covers of (U ,S) is the number
of ways to choose S1,S2, . . . ,Sk ∈ S with replacement (also called a k-permutation
of S with repetition) such that S1∪S2∪·· ·∪Sk = U .

Lemma 4.7. The number of k-covers of a set system (U ,S) is

62 4 Inclusion-Exclusion

ck = ∑
W⊆U

(−1)|W |s[W]k. (4.5)

Proof. We show how to establish the formula (4.5) using Theorem 4.2. Using the
terminology of Theorem 4.2, we first define the objects. Each object is an ordered
set O = (S1,S2, . . . ,Sk), Si ∈ S. Let us remark that we do not exclude that Si = S j
for some i and j. Thus the number of objects is equal to |S|k, which is the number
of ways of choosing S1,S2, . . . ,Sk ∈ S with replacements.

Now we have to define the properties that our objects may or may not have. We
say that for u∈ U an object O = (S1,S2, . . . ,Sk) has property Q(u) if u∈∪n

i=1Si. Ev-
ery object having all properties Q(u) for all u ∈ U corresponds to a k-cover because
∪n

j=1S j = U . Thus X , which is the number of objects having all properties Q(u) for
all u ∈ U , is equal to ck. Finally, to use Theorem 4.2, we observe that N(W), the
number of objects that do not have any of the properties Q(w) for w ∈W , is equal
to s[W]k. (This is just the number of ways one can choose sets S1,S2, . . . ,Sk ∈ S[W]
with replacements.) By Theorem 4.2,

X = ∑
W⊆{1,2,...,n}

(−1)|W |N(W)

and the lemma follows.
ut

Theorem 4.8. There is an algorithm computing ck(S), the number of (ordered) k-
covers of a set system (U ,S) with n elements, in timeO∗(2n) and exponential space.

Proof. The algorithm computing ck is based on the inclusion-exclusion formula of
Lemma 4.7 and works as follows.

1. First it builds a table with 2n entries containing s[W], the number of sets of S
avoiding W , for all W ⊆ U ;

2. Then it evaluates (4.5).

The second part of the algorithm is easy. In fact, it is essentially the same for any
inclusion-exclusion algorithm based on such an inclusion-exclusion formula. This
evaluation by computing the partial sums iteratively can easily be done in time
O∗(2n). Since the running time of the second part of the algorithm is O∗(2n), it
is sufficient to show how to construct the required table of s[W] for all W ⊆ U in
time O∗(2n). We use dynamic programming to construct the table.

The value s[W] can be expressed as

s[W] = ∑
S⊆U\W

f (S),

where f is the characteristic function

f (S) =

{
1, if S ∈ S,

0, otherwise.

4.3 Coverings and Partitions 63

Let u1,u2, . . . ,un be any ordering of the elements of U . For i ∈ {0, . . . ,n} and
W ⊆ U , we define gi(W) as the number of subsets of S avoiding W , and containing
all elements from {ui+1, . . . ,un}\W . In other words,

gi(W) = ∑
U\(W∪{u1,...,ui})⊆S⊆U\W

f (S).

By the definition of gi, we have that

g0(W) = f (U \W)

and
gn(W) = ∑

S⊆U\W
f (S) = s[W].

To compute gn(W), we observe that for i≥ 1,

gi(W) =

{
gi−1(W) if ui ∈W,

gi−1(W ∪{i})+gi−1(W) otherwise.

Indeed, if ui ∈W then

U \ (W ∪{u1, . . . ,ui}) = U \ (W ∪{u1, . . . ,ui−1}).

If ui 6∈W , then gi−1(W) counts all sets from gi(W) containing ui, and gi−1(W ∪{ui})
all sets that do not contain ui.

Thus computation of the values gn(W) = s[W], for all W ⊆ U , can be done in
time O∗(2n). ut

In Chap. 7, we will see how the ideas from Theorem 4.8 can be used to obtain
algorithm for fast zeta and Möbius transforms. The algorithm described in Theo-
rem 4.8 requires exponential space. It is an interesting open problem whether the
running time O∗(2n) can be achieved by a polynomial space algorithm.

The inclusion-exclusion algorithm to count the number of k-covers can be used
to establish an algorithm solving the coloring problem. Notice that the chromatic
number of a graph G = (V,E) is the smallest k for which ck(V,I) > 0, where I is
the collection of all independent sets of the input graph G = (V,E).

Theorem 4.9. There is an algorithm computing the chromatic number of a graph in
time O∗(2n) and exponential space.

Theorem 4.9 is a big improvement on the previously best known algorithms.
Lawler’s dynamic programming coloring algorithm (see Chap. 3) has running time
O(2.4423n) and had only been marginally improved before 2006 by refined dy-
namic programming algorithms.

64 4 Inclusion-Exclusion

4.3.2 Partitions

In this subsection we present an inclusion-exclusion algorithm to count k-partitions
which is strongly related to the algorithm counting k-coverings in the previous sub-
section.

Let us recall the problem to be solved. Let U be a set of n elements and let S be
a collection of subsets of U . We assume that S can be enumerated in time O∗(2n).
Now a collection of nonempty subsets S1,S2, . . . ,Sk is said to be a k-partition of
(U ,S) if Si ∈ S for all i ∈ {1,2, . . . ,k}, S1∪S2∪·· ·∪Sk = U and Si∩S j = /0 for all
i 6= j. We denote by pk = pk(S) the number of unordered k-partitions of (U ,S) and
thus S1,S2, . . . ,Sk and Sπ(1),Sπ(2), . . . ,Sπ(n) are considered to be the same partition
for any permutation π . Note that the number of ordered k-partitons of (U ,S) is
k! · pk(S). Our goal is to present an inclusion-exclusion algorithm to compute pk(S).

We start with an inclusion-exclusion formula for pk = pk(S), the number of un-
ordered k-partitions S1,S2, . . . ,Sk ∈ S of (U ,S).

Lemma 4.10. The number of k-partitons of a set system (U ,S) is

pk = ∑
W⊆U

(−1)|W |ak[W], (4.6)

where ak[W] denotes the number of combinations with repetition of k sets S1,S2, . . . ,Sk ∈
S[W] satisfying |S1|+ |S2|+ · · ·+ |Sk|= n.

Proof. The proof is based on Theorem 4.2. We choose as combinatorial objects
all combinations with repetition S1,S2, . . . ,Sk of k sets of S satisfying |S1|+ |S2|+
· · ·+ |Sk| = n. Such an object S1,S2, . . . ,Sk has property Q(u) for some u ∈ U if
u ∈ ∪k

j=1S j.
Thus an object S1,S2, . . . ,Sk has property Q(u) for all u ∈ U iff ∪k

j=1S j = U , and
therefore, because |S1|+ |S2|+ · · ·+ |Sk| = n, these are precisely the k-partitions.
Finally N(W) is the number of those objects having none of the properties Q(w)
with w ∈W . Hence these are the objects S1,S2, . . . ,Sk satisfying ∪k

j=1S j ∩W = /0,
which is the case iff S1,S2, . . . ,Sk is a combination of k sets of S[W]. Now when
substituting all this into the formula (4.2), we obtain (4.6). ut

Similarly to the previous section, an algorithm to compute pk = pk(S) based on the
inclusion-exclusion formula of Lemma 4.10 works as follows:

1. First it builds a table with 2n entries containing ak[W] for all W ⊆ U .
2. Then it evaluates (4.6).

The evaluation of the formula (4.6) is done by iteratively computing the partial sums
which can easily be done in time O∗(2n) and needs only polynomial space.

The crucial part of the inclusion-exclusion algorithm to count the k-partitions of
(U ,S) is the computation of ak[W] for all W ⊆ U . This is done in two steps, both of
them using a dynamic programming algorithm.

4.3 Coverings and Partitions 65

For i = 0,1,2, . . .n, we denote by S(i)[W] the collection of all sets S ∈ S[W] of
cardinality i, and we denote by s(i)[W] the number of sets in S(i)[W]. In the first
step the algorithm computes s(i)[W] for all W ⊆U and all i ∈ {1,2, . . . ,n}. Note that
these are n2n values in total. This is a ranked version of the O∗(2n) time algorithm
of the previous section which computes s[W] for all W ⊆ U . Simply applying this
algorithm to the set system (U ,S(i)) for any fixed i ∈ {1,2, . . . ,n} computes s(i)[W]
for all W ⊆U . Thus, since for every i∈ {1,2, . . . ,n}, S(i) can be enumerated in time
O∗(2n), the values s(i)[W] for all W ⊆U and all i ∈ {1,2, . . . ,n} can be computed in
time O∗(2n).

In the second step a dynamic programming algorithm computes ak[W] for all
W ⊆U using the tables with entries s(i)[W] for all i∈ {0,1, . . . ,n} and all W ⊆U . Let
A(`,m,W) denote the number of permutations with repetition of ` sets S1, . . . ,S` ∈
S[W] satisfying |S1|+ · · ·+ |S`| = m. Thus A(k,n,W) is the number of ordered k-
partitions avoiding W , and therefore ak[W] = A(k,n,W)/k! since ak[W] is the num-
ber of unordered k-partitions avoiding W .

To compute A(`,m,W) for all ` = 1,2, . . . ,k, for all m = 1,2, . . . ,n and all W ⊆U
we use a dynamic programming algorithm based on the following recurrence

A(1,m,W) = s(m)[W] (4.7)

A(`,m,W) =
m−1

∑
i=1

s(m−i)[W] ·A(`−1, i,W). (4.8)

Clearly the dynamic programming algorithm of the second step runs in timeO∗(2n)
and needs exponential space. It computes ak[W] for all W ⊆ U . Hence pk can be
obtained by evaluating (4.6).

Theorem 4.11. There is an ialgorithm computing pk(S), the number of (unordered)
k-partitions of a set system (U ,S), in time O∗(2n) and exponential space.

The approach can also be applied to various other NP-hard graph problems as
e.g. partition into Hamiltonian subgraphs, partition into forests and partition into
matchings.

Exercise 4.12. In the DOMATIC NUMBER problem we are given an undirected
graph G = (V,E). The task is to compute the domatic number of G which is
the largest integer k such that there is a partition of V into pairwise disjoint sets
V1,V2, . . .Vk such that V1 ∪V2 ∪ ·· · ∪Vk = V and each Vi is a dominating set of G.
Construct an O∗(2n) time algorithm to compute the domatic number of the given
graph.

In Chap. 7 we show how to count k-partitions by a O∗(2n) algorithm based on
subset convolution. This algorithm as well as the one in this subsection needs ex-
ponential space. Polynomial space algorithms to compute ck and pk of a given set
system (U ,S) will be studied in the next subsection.

66 4 Inclusion-Exclusion

4.3.3 Polynomial Space Algorithms

The inclusion-exclusion algorithms to compute ck and pk in running time O∗(2n),
presented in the preceeding subsections, need exponential space. For both algo-
rithms it is necessary that S can be enumerated in time O∗(2n) and exponential
space.

To establish polynomial space algorithms to compute ck and pk it is necessary
that S can be enumerated in polynomial space. Then the inclusion-exclusion for-
mulas of Sects. 4.3.1 and 4.3.2 imply polynomial space algorithms of running time
O∗(cn) with c≤ 4 for computing ck and pk. The following theorem nicely summa-
rizes the running times of polynomial space algorithms to be established.

Theorem 4.13. The number of k-covers ck and k-partitions pk of (U ,S) can be com-
puted in polynomial space and

(i) 2n|S|nO(1) time, assuming that S can be enumerated in polynomial space with
polynomial time delay

(ii) 3nnO(1) time, assuming membership in S, i.e. “S ∈ S?”, can be decided in
polynomial time, and

(iii) ∑
n
j=0
(n

j

)
TS(j) time, assuming that there is a TS(j) time and polynomial

space algorithm to count for any j-element subset W ⊆ U the number of sets
S ∈ S satisfying S∩W = /0.

Proof. First we show how to compute ck. The exponential space algorithm given in
Sect. 4.3.1 is based on Lemma 4.7 and the inclusion-exclusion formula (4.5)

ck = ∑
W⊆U

(−1)|W |s[W]k,

where s[W] is the number of S ∈ S not intersecting W .
The polynomial space algorithm to compute ck iterates over all W ⊆ U , adding

the value of (−1)|W |s[W]k to a running total sum. The difficulty is to compute s[W]
which is done separately for all W ⊆ U . We distinguish three cases.

(i) For each W ⊆ U , the polynomial delay and polynomial space enumeration
algorithm is used to enumerate S in time O∗(|S|), and to verify for each S ∈ S
whether S∩W = /0, and thus for any W the value of s[W] can be computed in
time O∗(|S|). Therefore the overall running time of the algorithm computing ck
is 2n|S|nO(1).

(ii) For each W ⊆ U , the algorithm tests all 2n−|W | subsets S of W for member-
ship in S, each one in polynomial time. This amounts to a total running time of
∑

n
i=1
(n

n−i

)
2n−inO(1) =O∗(3n).

(iii) By assumption, there is a polynomial space algorithm to compute s[W] in
time TS(j) for every W ⊆ U with |W | = j. Using this algorithm for any W ,
the total running time of the inclusion-exclusion algorithm to compute ck is
∑

n
j=0
(n

j

)
TS(j).

4.3 Coverings and Partitions 67

Now we show how to compute pk. The algorithm given in Sect. 4.3.2 is based on
the inclusion-exclusion formula (4.6)

pk = ∑
W⊆U

(−1)|W |ak(W),

where ak(W) denotes the number of ways to choose k sets S1,S2, . . . ,Sk ∈ S[W],
possibly overlapping, such that |S1|+ |S2|+ · · ·+ |Sk| = n. The exponential space
algorithm comprises two dynamic programming algorithms. First for all W ⊆U and
all i = 0,1, . . .n, the number of sets S ∈ S[W] of cardinality i, denoted by s(i)[W], is
computed. Based on the values of s(i)[W] for all W ⊆ U and all i ∈ {0,1, . . . ,n}, the
second dynamic programming algorithm computes ak(W) for every W ⊆ U based
on the recurrences (4.7) and (4.8).

The polynomial space algorithm, like the exponential space algorithm, iterates
over all W ⊆ U , adding the value of (−1)|W |ak(W) to a running total sum. The
difficulty is to compute ak(W) for all W ⊆ U in polynomial space. Fortunately the
second dynamic programming algorithm based on recurrences (4.7) and (4.8) can
be done separately for each W ⊆ U , and is thus a polynomial space algorithm with
running time O∗(2n). Hence it remains to show how to compute s(i)[W] for all W ⊆
U and all i∈ {0,1, . . . ,n} in polynomial space. We distinguish three cases. Note that
in all cases the computation is done separately for different W ⊆ U .

(i) For every W ⊆U and all i∈ {0,1, . . . ,n}, the polynomial delay and polynomial
space enumeration algorithm is used to enumerate S in time O∗(|S|), and to
verify for each S ∈ S with |S| = i whether S∩W = /0, and thus for any W , the
value of s(i)[W] can be computed in time O∗(|S|). Therefore the overall running
time of the algorithm computing ck is 2n|S|nO(1).

(ii) For every W ⊆ U and all i ∈ {0,1, . . . ,n}, the algorithm tests altogether all
2n−|W | subsets S of W for membership in S, each one in polynomial time. This
amounts to a total running time of ∑

n
i=1
(n

n−i

)
2n−inO(1) =O∗(3n).

(iii) By assumption, there is a TS(j) time and polynomial space algorithm to
count for any j-element subset W ⊆ U the number of sets S ∈ S(i) satisfying
S∩W = /0, which is precisely s(i)[W]. Using this algorithm, for any W ⊆ U and
all i∈ {0,1, . . . ,n}, the total running time of the inclusion-exclusion algorithm to
compute pk is ∑

n
j=0
(n

j

)
TS(j).

ut

Theorem 4.13 provides a framework for designing polynomial space algorithms
for covering and partition problems. Let us reconsider the graph coloring problem
for which an exponential space algorithm is given in Chap. 3.

Corollary 4.14. The chromatic number of a graph can be computed by a polynomial
space algorithm in time O(2.2461n).

Proof. The polynomial space algorithm to compute the chromatic number is based
on a polynomial space algorithm to compute s[W] for all W ⊆U , which is an al-
gorithm to count all independent sets S in the graph G \W . This is a polynomial

68 4 Inclusion-Exclusion

space O(1.2461n) time algorithm to count the number of independent sets in an n-
vertex graph [99]. By Theorem 4.13 (iii), this implies a polynomial space algorithm
to compute ck(I) of running time

n

∑
j=0

(
n

n− j

)
O(1.2461 j) = O(2.2461n).

Thus the chromatic number can be computed in time O(2.2461n).
ut

Exercise 4.15. Find a polynomial space algorithm to compute the domatic number
of a given graph.

4.4 Counting Subgraph Isomorphisms

The HAMILTONIAN PATH problem studied in previous sections is a special case of
a more general problem, namely the SUBGRAPH ISOMORPHISM problem.

In the SUBGRAPH ISOMORPHISM problem we are given two (directed or undi-
rected) graphs F = (VF ,EF) and G = (VG,EG). The question is whether G con-
tains a copy of F , or in other words, whether G has a subgraph isomorphic to F .
More formally, we say that a graph G has a subgraph H = (VH ,EH) isomorphic to
F = (VF ,EF), if there is a bijection f : VF →VH such that for every pair of vertices
u,v∈VF , the vertices f (u) and f (v) are adjacent in H if and only if {u,v} is an edge
of F .

2 4

1 3

a

c e

b

f
F: G:

Fig. 4.2 Graph G has two subgraphs isomorphic to F : the graph formed by the edges {a,b}, {b,e},
{b, f}, and the graph formed by edges {c,e}, {b,e}, {e, f}.

To give an example, if F is a (chordless) cycle on n = |VG| vertices, then the
question whether G has a subgraph isomorphic to F is equivalent to the question if
G contains a cycle passing through all its vertices, i.e. whether G has a Hamiltonian
cycle. Another example is given in Fig. 4.2.

While COLORING is not a subgraph isomorphism problem, it can be reduced to
SUBGRAPH ISOMORPHISM. Let G be the complement of G, i.e. the graph on the
same vertex set as G, and for every pair u 6= v of vertices, {u,v} is an edge in G if

4.4 Counting Subgraph Isomorphisms 69

and only if {u,v} is not an edge of G. Then G can be colored in k colors if and only
if the vertices of G can be covered by k disjoint cliques. In other words, χ(G) ≤ k
if and only if G contains as subgraph a graph F which is a disjoint union of cliques
Kt1 ,Kt2 , · · · ,Ktk , such that t1 + t2 + · · ·+ tk = n. See Fig. 4.3.

2 4

1 3

2 4

1 3

4.6. COUNTING SUBGRAPH ISOMORPHISMS 67

2 4

1 3

a

c e

b

f
F: G:

Figure 4.1: Graph G contains two subgraphs isomorphic to F : Graph formed
by edges {a, b}, {b, e}, {b, f} and the graph formed by edges {c, e}, {b, e},
{e, f} .

In Chapter 7 we show how to count k-partitions by a O∗(2n) algorithm
based on subset convolution. This algorithm as well as the one of this section
need exponential space. Polynomial space algorithms to compute ck and pk

of a given set system will be studied in Chapter 10.

4.6 Counting subgraph isomorphisms

LAST UPDATED: 02.03-2009 (FF).

DK: THIS SECTION NEEDS A MAJOR REVISION.

The Hamiltonian path problem studied in the previous sections is the
special case of a more general problem, namely Subgraph Isomorphism. In
the Subgraph Isomorphism problem we are given two (directed or undirected)
graphs F = (VF , EF) and G = (VG, EG). The question is if G contains a copy
of F , or in other words, if G has a subgraph isomorphic to F .

For example, in a case F is a cycle on n = |VG| vertices, the question if G
has a subgraph isomorphic to F is equivalent to the question if G contains a
cycle passing through all its vertices, i.e. if G has a Hamiltonian cycle. See
Fig. 4.1 for another example of subgraph isomorphism.

G :

G :

While Graph Coloring is not a subgraph isomorphism problem, it can
be reduced to Subgraph Isomorphism. Let G be the complement of G, i.e.
the graph on the same vertex set VG as G, and for every pair u, v of VG,
(u, v) is an edge in G if and only if (u, v) is not an edge of G. Then G can be
colored in k colors if and only if the vertices of G can be covered by k disjoint
cliques. In other words, χ(G) ≤ k if and only if G contains as a subgraph

4.6. COUNTING SUBGRAPH ISOMORPHISMS 67

2 4

1 3

a

c e

b

f
F: G:

Figure 4.1: Graph G contains two subgraphs isomorphic to F : Graph formed
by edges {a, b}, {b, e}, {b, f} and the graph formed by edges {c, e}, {b, e},
{e, f} .

In Chapter 7 we show how to count k-partitions by a O∗(2n) algorithm
based on subset convolution. This algorithm as well as the one of this section
need exponential space. Polynomial space algorithms to compute ck and pk

of a given set system will be studied in Chapter 10.

4.6 Counting subgraph isomorphisms

LAST UPDATED: 02.03-2009 (FF).

DK: THIS SECTION NEEDS A MAJOR REVISION.

The Hamiltonian path problem studied in the previous sections is the
special case of a more general problem, namely Subgraph Isomorphism. In
the Subgraph Isomorphism problem we are given two (directed or undirected)
graphs F = (VF , EF) and G = (VG, EG). The question is if G contains a copy
of F , or in other words, if G has a subgraph isomorphic to F .

For example, in a case F is a cycle on n = |VG| vertices, the question if G
has a subgraph isomorphic to F is equivalent to the question if G contains a
cycle passing through all its vertices, i.e. if G has a Hamiltonian cycle. See
Fig. 4.1 for another example of subgraph isomorphism.

G :

G :

While Graph Coloring is not a subgraph isomorphism problem, it can
be reduced to Subgraph Isomorphism. Let G be the complement of G, i.e.
the graph on the same vertex set VG as G, and for every pair u, v of VG,
(u, v) is an edge in G if and only if (u, v) is not an edge of G. Then G can be
colored in k colors if and only if the vertices of G can be covered by k disjoint
cliques. In other words, χ(G) ≤ k if and only if G contains as a subgraph

4.6. COUNTING SUBGRAPH ISOMORPHISMS 67

2 4

1 3

a

c e

b

f
F: G:

Figure 4.1: Graph G contains two subgraphs isomorphic to F : Graph formed
by edges {a, b}, {b, e}, {b, f} and the graph formed by edges {c, e}, {b, e},
{e, f} .

In Chapter 7 we show how to count k-partitions by a O∗(2n) algorithm
based on subset convolution. This algorithm as well as the one of this section
need exponential space. Polynomial space algorithms to compute ck and pk

of a given set system will be studied in Chapter 10.

4.6 Counting subgraph isomorphisms

LAST UPDATED: 02.03-2009 (FF).

DK: THIS SECTION NEEDS A MAJOR REVISION.

The Hamiltonian path problem studied in the previous sections is the
special case of a more general problem, namely Subgraph Isomorphism. In
the Subgraph Isomorphism problem we are given two (directed or undirected)
graphs F = (VF , EF) and G = (VG, EG). The question is if G contains a copy
of F , or in other words, if G has a subgraph isomorphic to F .

For example, in a case F is a cycle on n = |VG| vertices, the question if G
has a subgraph isomorphic to F is equivalent to the question if G contains a
cycle passing through all its vertices, i.e. if G has a Hamiltonian cycle. See
Fig. 4.1 for another example of subgraph isomorphism.

G :

F :

While Graph Coloring is not a subgraph isomorphism problem, it can
be reduced to Subgraph Isomorphism. Let G be the complement of G, i.e.
the graph on the same vertex set VG as G, and for every pair u, v of VG,
(u, v) is an edge in G if and only if (u, v) is not an edge of G. Then G can be
colored in k colors if and only if the vertices of G can be covered by k disjoint
cliques. In other words, χ(G) ≤ k if and only if G contains as a subgraph

Fig. 4.3 The complement G of G contains a subgraph isomorphic to F , which is a disjoint union
of cliques K1, K1, and K2. Moreover, the number of vertices in F is equal to 1+1+2, the number
of vertices in G. Thus G can be colored with 3 colors.

In this section we discuss algorithms for counting the number of copies of a
given graph F in a graph G, or in other words, counting the subgraphs isomorphic
to F in G. This counting problem becomes hard even for very simple graphs F .
For example, when the number of vertices of G is 2n, and the graph F is a disjoint
union of n edges, then the number of subgraphs of G isomorphic to F is exactly the
number of perfect matchings in G. Counting perfect matchings in a graph is a well
known #P-complete problem.

To count perfect matching, Hamiltonian paths, and colorings in this chapter, we
counted objects that were easier to deal with, and then used inclusion-exclusion. The
same strategy can be applied to count isomorphic subgraphs, and the role of “sim-
ple” objects is given to graphs with “easily” computable homomorphisms. From
this perspective, graph homomorphism is a generic approach to several algorithmic
results including Theorems 4.4, 4.5, and 4.9. In what follows, we explain how graph
homomorphisms can be used to prove Theorems 4.5 and4.9. In Sect. 5.3, we use
the ideas from this section about graph homomorphisms to count more complicated
subgraphs in a graph than cycles and cliques.

Let F = (VF ,EF) and G = (VG,EG) be two (directed or undirected) graphs. A
homomorphism from F to G is a mapping f from VF to VG, that is f : VF → VG,
such that if {u,v} ∈ EF then { f (u), f (v)} ∈ EG. Furthermore, if the mapping f
is injective then f is called an injective homomorphism. Let us note that there is an
injective homomorphism from F to G if an only if G contains a subgraph isomorphic
to F .

For example, for the graphs in Fig. 4.2, the mapping f with f (2) = a, f (1) =
f (3) = f (4) = b is a homomorphism from F to G. Furthermore the mapping g with
g(1) = a, g(2) = b, g(3) = e, and g(4) = f is an injective homomorphism from
F to G. Let us note that in the case of an injective homomorphism, the image of
F in G is isomorphic to F . For another example, if f is a homomorphism from F

70 4 Inclusion-Exclusion

to G, and F is a clique on p vertices, then f (F) is also a clique on p vertices in
G. If F = (v1,v2, . . . ,vp) is a path of length p− 1, then (f (v1), f (v2), . . . , f (vp))
is a walk of length p− 1 in G. If f is an injective homomorphism from the path
F = (v1,v2, . . . ,vp) to G, then the image of F in G is also a path of length p−1.

We use hom(F,G), inj(F,G) and sub(F,G) to denote the number of homomor-
phisms from F to G, the number of injective homomorphisms from F to G and the
number of distinct copies of F in G, respectively. Let us remark that while G has a
subgraph isomorphic to F if and only if there is an injective homomorphism from F
to G, the numbers inj(F,G) and sub(F,G) can be quite different. For example, take
the graph F depicted in Fig. 4.2 and the graph G = F . Of course, every graph is iso-
morphic to itself, and G contains exactly one copy of F . However, there are several
injective homomorphisms from F to F , also called automorphisms of F . For the
graph F in Fig. 4.2 there are 3! = 6 injective homomorphisms. Each of these homo-
morphisms has as a fixed point vertex 2 but the leaves of the tree are not necessarily
fixed.

Let aut(F) be the number of automorphisms of F , i.e. the number of injective
homomorphisms from F to F . The values inj(F,G) and sub(F,G) are related to
each other by the following proposition which follows directly from the definitions
of inj(F,G), sub(F,G), and aut(F).

Proposition 4.16. Let F and G be two graphs. Then

sub(F,G) =
inj(F,G)
aut(F)

.

The following is a general result relating the number of injective homomorphisms
and the number of homomorphisms from F to G using an inclusion-exclusion for-
mula.

Theorem 4.17. Let F = (VF ,EF) and G = (VG,EG) be two graphs with |VG|= |VF |.
Then

inj(F,G) = ∑
W⊆VG

(−1)|W | hom(F,G\W).

Proof. Let us see how to obtain the proof of the theorem from Theorem 4.2. Using
the notation of Theorem 4.2, the set of objects is the set of homomorphisms from
F to G. For a homomorphism f and a vertex v ∈ VG we define the property Q(v)
as the property that v does not belong to the image f (VF). In other words, f has
property Q(v) if v 6∈ ∪x∈VF f (x). Then for a subset W ⊆ VG, N(W) is the number
of homomorphism f such that the image f (VF) does not contain a vertex from W .
Thus N(W) = hom(F,G \W). The number X is the number of homomorphisms
possessing none of the properties Q(v), v ∈ VG. But this is exactly the number of
injective homomorphisms and thus X = inj(F,G). Now the theorem follows from
(4.2). ut

How to use Theorem 4.17 algorithmically? Assume that for some graph F we
can compute the number of graph homomorphisms from F to all the graphs G[W] in

4.4 Counting Subgraph Isomorphisms 71

time t(n), where |VF | ≤ |VG| and W ⊆VG. Then, as a consequence of Theorem 4.17
, we can compute the value of inj(F,G) in timeO(2n · t(n)) when |VF |= |VG|= n. A
natural question arising here is to extend this to the case when the size of VF , say nF ,
is less than n = |VG|. The easiest solution will be to enumerate all subsets V ′ of size
nF of VG and then to compute inj(F,G[V ′]). But this will take time O(

(n
nF

)
2nF t(n)),

which in the worst case, is O(3n · t(n)). In the next theorem we show how to extend
Theorem 4.17 to the case nF < n.

Theorem 4.18. Let F = (VF ,EF) and G = (VG,EG) be two graphs with |VF |= nF ≤
|VG|= n. Then

inj(F,G) = ∑
Y⊆VG,|Y |≤nF

(−1)nF−|Y |
(

n−|Y |
nF −|Y |

)
hom(F,G[Y]).

Proof. By Theorem 4.17,

inj(F,G) = ∑
W⊆VG

(−1)|V |−|W | hom(F,G[W]). (4.9)

Now

inj(F,G) = ∑
W⊆V (G),|W |=nF

inj(F,G[W])

by (4.9)
= ∑

W⊆VG,|W |=nF

(
∑

Y⊆W
(−1)|W |−|Y | hom(F,G[Y])

)

= ∑
W⊆VG,|W |=nF

(
∑

Y⊆W
(−1)nF−|Y | hom(F,G[Y])

)

= ∑
Y⊆VG,|Y |≤nF

(−1)nF−|Y |
(

n−|Y |
nF −|Y |

)
hom(F,G[Y]).

The last equality follows from the fact that for any subset Y with |Y | ≤ nF , the
value of hom(F,G[Y]) is counted precisely for all those subsets W for which Y ⊆
W and |W | = nF . On the other hand, for every fixed Y , hom(F,G[Y]) is counted
once in the above sum for every superset W of Y of size nF . The number of such
sets W is precisely

(n−|Y |
nF−|Y |

)
. Furthermore, for all such sets, we have the same sign

corresponding to Y , that is, (−1)nF−|Y |. This completes the proof. ut

In what follows, we give two examples of the use of graph homomorphisms:
Counting Hamiltonian cycles and counting colorings. We come back to graph ho-
momorphisms with applications to graphs of bounded treewidth in Chap. 5.

Let #HAM(G) denote the number of Hamiltonian cycles in a graph G = (V,E),
|V |= n, and F = Cn be a cycle of length n. To compute sub(F,G) = #HAM(G), we
want to use Theorem 4.17 with Proposition 4.16. To use them we need to compute
aut(Cn) and hom(Cn,G).

72 4 Inclusion-Exclusion

The cycle Cn can be represented as the 1-skeleton of a regular n-gon in the plane.
All its automorphisms corresponds to rotations and reflections of a regular n-gon.
We leave the proof of the following fact, that implies aut(Cn) = 2n, as an exercise.

Exercise 4.19. There are n rotations and n reflections of a regular n-gon.

There are several ways of computing hom(Cn,G). One way is to observe that for
every homomorphism the image of Cn in G is a closed walk of length n in G, i.e. the
walk {v1,v2, . . . ,vn}, where v1 = vn. The number of closed walks of a given length
can be computed in polynomial time by dynamic programming exactly as was done
in the proof of Theorem 4.5 for (not closed) walks. Another way is to prove that
hom(Cn,G) = ∑

n
i=1 λ n

i , where λ1, . . . ,λn are the eigenvalues of the adjacency matrix
of G. The third way of counting hom(Cn,G) is based on dynamic programming
on graphs of bounded treewidth. The treewidth of Cn is two, and hom(Cn,G) is
computable in polynomial time by techniques that will be described in Chap. 5.

Summarizing, hom(Cn,G) and aut(Cn) are computable in polynomial time. Thus
by Theorem 4.17, the number of Hamiltonian cycles in G can be found in time
which is proportional (up to a polynomial factor) to the number of subsets in V .
This implies

Theorem 4.20. The number of Hamiltonian cycles #HAM(G) in an n-vertex graph
G is computable in time O∗(2n).

We already discussed how the chromatic number of a graph can be computed in
timeO∗(2n). Let us see how (slightly worse) 2n+O(

√
n) running time can be achieved

by treating the problem as a special case of the COUNTING SUBGRAPH ISOMOR-
PHISMS problem, and thus by counting graph homomorphisms.

We denote by χ(G;k) the number of k-colorings of a graph G. For example, if
P3 is a path on 3 vertices, then χ(P3;0) = χ(P3;1) = 0, χ(P3;2) = 2, and χ(P3;3) =
12. Another example: for a complete graph Kk, χ(Kk;k) = k!. Then the chromatic
number of a graph G is the smallest integer k > 0 such that χ(G;k) > 0. It is well
known and easy to see that for an integer k ≥ 0, χ(G;k) = hom(G,Kk), where Kk is
a complete graph on k vertices. However to construct an exact algorithm, we have
to look at homomorphisms from “the other side”.

As we already discussed, a k-coloring of a graph G = (V,E) can be viewed as par-
titioning the vertex set of the given graph into k independent sets, that is, a partition
(V1, . . . ,Vk) of V such that for every i ∈ {1, . . . ,k}, the graph G[Vi] does not contain
an edge. For our purpose, we reformulate the COLORING problem as a problem of
partitioning the vertex set into k cliques in the complement graph. Let G = (V,E) be
the complement of G. Then G can be partitioned into k independent sets if and only
if G can be partitioned into k cliques. We model this as a problem of subgraph iso-
morphism as follows: we guess the sizes t1, t2, . . . , tk of these cliques, where ∑i ti = n.
Then G can be partitioned into cliques of sizes t1, t2, . . . , tk respectively if and only
if there is a subgraph of G isomorphic to

F = ∪k
i=1Kti .

4.4 Counting Subgraph Isomorphisms 73

To compute the value of χ(G;k) for a given graph G, we count the number of
partitions of G into k cliques. Indeed, every partition of G into k cliques corresponds
to k! colorings of G—we select one color for all vertices of the same clique, and the
number of different choices is k!. Let Pk(n) be the set of all unordered partitions of
n into k parts. For every partition ζ = (t1, t2, . . . , tk) ∈Pk(n), let F(ζ) = ∪k

i Kti . Then

χ(G;k) = ∑
ζ∈Pk(n)

k! · sub(F(ζ),G). (4.10)

Indeed, every subgraph of G isomorphic to F(ζ) corresponds to a partition of G
into cliques, which is a partition of G into independent sets. But every partition into
k independent sets corresponds to k! different colorings.

In order to obtain the desired running time, we need a classical result from num-
ber theory giving an upper bound on the number of unordered partitions of n into
k parts. Let p(n) be the partition function, i.e. the number of partitions of n. The
asymptotic behavior of p(n) was given by Hardy and Ramanujan in their paper in
which they develop the famous “circle method” [110].

Theorem 4.21. p(n)∼ eπ

√
2n
3 /4n

√
3, as n→ ∞.

Furthermore one can give an algorithm listing all different unordered partitions
of n into k parts in time 2O(

√
n). Actually, such a listing is possible even with poly-

nomial (time) delay. This type of algorithm is out of the scope of this book; we refer
to the book of Nijenhuis and Wilf for details [165].

Now our strategy to compute χ(G;k) is as follows. For every partition ζ =
(t1, t2, . . . , tk) ∈ Pk(n) we want to compute the inner sum in (4.10). To compute
(4.10), we have to compute the value of sub(F(ζ),G), and to do this we use Theo-
rem 4.17. To implement Theorem 4.17, we have to compute the values of

• aut(F(ζ)), and
• hom(F(ζ),G[V \W]), where W ⊆V .

The computation of aut(F(ζ)) is easy—the number of automorphisms of a com-
plete graph on t vertices is t!. If F(ζ) consists of several connected components,
then every automorphism either maps a component (complete graph) into itself, or
to a component of the same size. Let n(x) be the number of components of size x
in F(ζ) and let x1,x2, . . . ,xp, p≤ k, be the sizes of the components in F(ζ). Let us
note that xi is not necessarily equal to ti because it is possible in the partition ζ that
for some i 6= j, ti = t j. Then

aut(F(ζ)) = ∏
x∈{x1,x2,...,xp}

n(x)!x!,

and this value is computable in polynomial time for each ζ .
To compute hom(F(ζ),G[V \W]) we observe that it is sufficient to count the

homomorphisms from every component of F(ζ). The following result for a graph
F with several connected components is easy to obtain.

74 4 Inclusion-Exclusion

Proposition 4.22. Let F1, . . . , F̀ be the connected components of the graph F. Then
hom(F,G) = ∏

`
i=1 hom(Fi,G).

Since every component of F(ζ) is a complete graph, by Proposition 4.22 all we
need are the values of hom(Kt ,G[V \W]). For every homomorphism from Kt to
G[V \W]), the image of the complete graph Kt is a clique and

hom(Kt ,G[V \W]) = T [V \W][t]t!,

where T [V \W][t] is the number of cliques of size t in G[V \W].
Thus to finish all computations we have to find the number of cliques of size t in

a graph. By making use of dynamic programming over vertex subsets W ⊆ V , we
compute the numbers T [W][i], which is the number of cliques of size i in G[W]. Our
dynamic programming algorithm is based on the observation that for i > 0,

T [W][i] = T [W \{v}][i]+T [N(v)∩W][i−1]

for some vertex v. Indeed, for every clique of size i containing v, the neighborhood
of i contains a clique of size i−1. By making use of this observation, it is straight-
forward now to compute the values T [W][i] for all W ⊆ V and 0 ≤ i ≤ n in time
O(2nn2) using exponential space.

To conclude, we have shown that for every partition ζ , and all subsets W ⊆V , we
are able to compute hom(F(ζ),G[V \W]) in time O∗(2n). Thus by Theorem 4.17,
sub(F(ζ),G) is computable in time O∗(2n). By Theorem 4.21, the number of all
possible partitions ζ is 2O(

√
n), and thus by computing sub(F(ζ),G) for each parti-

tion, we compute χ(G,k) in time 2n+O(
√

n) by making use of (4.10).

Theorem 4.23. The number of k-colorings of a graph G, denoted by χ(G,k), can
be computed in time 2n+O(

√
n).

Notes

The principle of inclusion-exclusion is one of the basic tools in combinatorics. The
origin of the principle is not clear. Sometimes it is attributed to Sylvester. Almost
every textbook in combinatorics devotes a chapter to this method. We refer to books
of Aigner [2], Cameron, [46], van Lint and Wilson [153], Ryser [194], and Stanley
[207] for detailed discussions of the method.

The application of the inclusion-exclusion principle to exact algorithms was re-
discovered several times. In 1969, Kohn, Gottlieb, and Kohn [136] used it to obtain
exact algorithms for the TRAVELLING SALESMAN problem. It was used in 1982,
by Karp [127] and in 1993, by Bax [11, 12]. A generalization of inclusion-exclusion
by finite difference sets was proposed by Bax and Franklin in [10].

The book of Minc is devoted to the study of permanents [156]. The formula for
computing the permanent of a matrix is due to Ryser [194]. Exact algorithms to

4.4 Counting Subgraph Isomorphisms 75

compute the permanent of a matrix over rings and finite commutative semirings are
given in [128, 215]. The inclusion-exclusion algorithm of this chapter for count-
ing Hamiltonian paths can be generalized to solve the TSP problem on n cities
with maximum distance W between two cities to achieve running time O∗(W2n)
and space O∗(W). The self-reduction algorithm was communicated to us by Mikko
Koivisto.

Björklund and Husfeldt [24] and Koivisto [137] presented the first O∗(2n) time
algorithm to solve COLORING using inclusion-exclusion. The journal version [30]
of both conference papers presents a general approach that solves various parti-
tion problems. Our presentation follows [24]. Nederlof [162] and Lokshtanov and
Nederlof [154] further developed inclusion-exclusion based techniques to obtain
a number of polynomial space algorithms. The approach based on a combination
of branching and inclusion-exclusion is discussed in [190]. The use of homomor-
phisms for solving the COUNTING SUBGRAPH ISOMORPHISMS problem was stud-
ied by Amini, Fomin and Saurabh in [5].

Chapter 5
Treewidth

The treewidth of a graph is one of the most fundamental notions in graph theory and
graph algorithms. In this chapter, we give several applications of treewidth in exact
algorithms. We also provide an exact algorithm computing the treewidth of a graph.

5.1 Definition and Dynamic Programming

There are several equivalent definitions of treewidth. Here we follow the defini-
tion of Robertson and Seymour [182]. A tree decomposition of a graph G is a way
of representing G as a tree-like structure. In this chapter we will see how the tree
decompositions and path decompositions of graphs can be used as tools for exact
algorithms.

Tree decomposition. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I},T = (I,F)) with {Xi | i ∈ I} a collection of subsets of V , called bags, and T =
(I,F) a tree, such that

(T1) For every v ∈V , there exists i ∈ I with v ∈ Xi.
(T2) For every {v,w} ∈ E, there exists i ∈ I with v,w ∈ Xi.
(T3) For every v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subgraph

(subtree) of T .

The width of tree decomposition ({Xi | i∈ I},T = (I,F)) equals maxi∈I |Xi|−1. The
treewidth of a graph G, tw(G), is the minimum width of a tree decomposition of G.

To distinguish the vertices of the decomposition tree T and the vertices of the
graph G, we will refer to the vertices of T as to nodes.

Exercise 5.1. Prove that the treewidth of a tree with at least two vertices is 1, and
that the treewidth of a clique on n≥ 1 vertices is n−1.

The path decomposition of a graph is a tree decomposition with tree T being a
path. A path decomposition is often denoted by listing the successive sets

77

78 5 Treewidth

Fig. 5.1 A graph with a tree and a path decomposition

(X1,X2, . . . ,Xr).

Then the width of a path decomposition (X1,X2, . . . ,Xr) is max1≤i≤r |Xi| − 1. The
pathwidth of a graph G, denoted by pw(G), is the minimum width of a path decom-
position of G. Clearly for all graphs G, tw(G)≤ pw(G).

The property of tree decompositions which is important for performing dynamic
programming over tree decompositions is the following.

Exercise 5.2 (Treewidth separator). Let ({Xi | i ∈ I},T = (I,F)) be a tree decom-
position of a graph G and let i, j,k be nodes of T such that j is on the path from i to
k. Then vertex set X j separates Xi \X j and Xk \X j, which means that for every pair
of vertices u ∈ Xi \X j and v ∈ Xk \X j, every (u,v)-path in G contains a vertex from
X j.

The ideas of dynamic programming on graphs of bounded pathwidth and treewidth
are quite similar. However, for pathwidth the description of algorithms is signifi-
cantly simpler. We start with algorithms on graphs of bounded pathwidth.

It is convenient to work with nice decompositions. A path decomposition

(X1,X2, . . . ,Xr).

of a graph G is nice if |X1| = |Xr| = 1, and for every i ∈ {1,2, . . . ,r− 1} there is
a vertex v of G such that either Xi+1 = Xi ∪ {v}, or Xi+1 = Xi \ {v}. Let us note
that because of Property (T3) of tree decompositions, every vertex of G belongs to
consecutive sets of bags, and thus the number of bags in a nice path decomposition
is at most twice the number of vertices of G. See Fig. 5.2 for an example of a nice
path decomposition.

5.1 Definition and Dynamic Programming 79

a ab b bc c ce

cedcdcdfcf

ghighg

fg cfg

gh h

Fig. 5.2 Nice path decomposition of the graph from Fig. 5.1

Exercise 5.3. Let X be a given path decomposition of a graph G of width k. Then
G has a nice path decomposition of width k, moreover such a decomposition can be
constructed in linear time from X .

We exemplify the way dynamic programming on graphs of bounded pathwidth
works on the following NP-complete graph problem.

Maximum Cut. In the MAXIMUM CUT problem (Max-Cut), we are given an
undirected graph G = (V,E). For subsets of vertices V1 and V2 of G we define
CUT(V1,V2) as the number of edges between V1 and V2, i.e. the number of edges
having one endpoint in V1 and one endpoint in V2. The task is to find a set X ⊆ V
that maximizes the value of CUT(X ,V \X).

Lemma 5.4. Let G = (V,E) be a graph on n vertices with a given path decomposi-
tion of width at most k. Then the MAXIMUM CUT problem on G is solvable in time
O(2k · k ·n).

Proof. By making use of Exercise 5.3, we transform in linear time the given path
decomposition into a nice path decomposition

P = (X1,X2, . . . ,Xr)

of G of width k.
For i ∈ {1,2, . . . ,r}, we put

Vi =
i⋃

j=1

X j.

Thus Vr = V . For every possible partition of Xi into sets (A,B) we want to compute
the value ci(A,B), which is the maximum size of a cut in the graph G[Vi], where
the maximum is taken over all cuts (A′,B′) such that A ⊆ A′ and B ⊆ B′. In other
words, ci(A,B) is the maximum number of edges in a cut in G[Vi] in a partition of V
respecting the partition (A,B). Then the maximum number of edges in a cut in G is

80 5 Treewidth

max{cr(A,B) : (A,B) is a partition of Xr}.

We use dynamic programming to compute ci(A,B) for every partition (A,B) of
Xi. The case i = 1 is trivial, here X1 = v for some v∈V , and there are only two parti-
tions of X1, namely ({v}, /0) and (/0,{v}). In both cases, c1({v}, /0) = c1(/0,{v}) = 0.
For i > 1, we consider two cases

— Xi = Xi−1∪{v}, for some v ∈V . By Exercise 5.2, all neighbors of v in Vi must be
in Xi−1∩Xi (for every u ∈Vi−1 \Xi−1, the set Xi−1 must separate u and v). Then
for every partition (A,B) of Xi,

ci(A,B) =

{
ci−1(A\{v},B)+CUT ({v},B), if v ∈ A,

ci−1(A,B\{v})+CUT ({v},A), if v 6∈ A
(5.1)

— Xi = Xi−1 \{v}, for some v ∈V . In this case, for every partition (A,B) of Xi, we
have that

ci(A,B) = max{ci−1(A∪{v},B),ci−1(A,B∪{v})}. (5.2)

The computation of the values ci(A,B) in (5.1) and (5.2) can be done in time
O(2|Xi||Xi|) and by making use of space O(2|Xi|). Thus the total running time is

O(
r

∑
i=1

2|Xi||Xi|) =O(2k · k ·n).

ut

As another example of an algorithm on graphs of bounded pathwidth, we show
how to count the number of perfect matchings in a graph of bounded pathwidth.
Note that the problem COUNTING PERFECT MATCHINGS is #P-complete.

Lemma 5.5. Let G = (V,E) be a graph on n vertices with a given path decomposi-
tion of width at most k. Then the problem COUNTING PERFECT MATCHINGS can
be solved in time O(2k · k ·n).

Proof. As in Lemma 5.4, we construct a nice path decomposition

P = (X1,X2, . . . ,Xr)

of G of width k and for i ∈ {1,2, . . . ,r}, we put

Vi =
i⋃

j=1

X j.

For every partition (A,B) of Xi, we define mi(A,B) to be equal to the number of
matchings M in G[Vi] such that every vertex of Vi \B is an endpoint of some edge of
M, and none of the vertices of B is an endpoint of M. Let us note that the number of
perfect matchings in G is equal to mr(Xr, /0).

5.2 Graphs of Maximum Degree 3 81

For i = 1 the computation is trivial, m1(X1, /0) = m1(/0,X1) = 0. For i > 1, we
compute the values of all mi by making use of the following recursive formulas.
Two cases are possible.

— Xi = Xi−1 ∪{v}, for some v ∈ V . Then for every partition (A,B) of Xi, if v ∈ A,
we have that

mi(A,B) = ∑
u∈A
{u,v}∈E

mi−1(A\{u,v},B∪{u}),

and
mi(A,B) = mi−1(A,B\{v}),

if v 6∈ A.
— Xi = Xi−1 \{v}, for some v ∈V . In this case, for every partition (A,B) of Xi, we

have
mi(A,B) = {mi−1(A∪{v},B).

By making use of the recurrences, the computations of mi(A,B) for each i can be
done in timeO(2|Xi||Xi|) and by making use of spaceO(2|Xi|). Thus the total running
time is

O(
r

∑
i=1

2|Xi||Xi|) =O(2k · k ·n).

ut

Exercise 5.6. Prove that the perfect matchings in an n-vertex graph with an inde-
pendent set of size i can be counted in time O∗(2n−i). In particular, for bipartite
graphs in time O∗(2n/2). Hint: Prove that the pathwidth of such a graph is at most
n− i.

Another example is the MINIMUM BISECTION problem. In the MINIMUM BI-
SECTION problem, one is asked to partition the vertex set of a graph G = (V,E) into
two sets of almost equal size, i.e. the sets are of size d|V |/2e and b|V |/2c, such that
the number of edges between the sets is minimized.

Exercise 5.7. Let G = (V,E) be a graph on n vertices with a given path decomposi-
tion of width at most k. Prove that the following algorithms can be established.

• The MINIMUM BISECTION problem is solvable in time O(2k · k ·n3).
• The MAXIMUM INDEPENDENT SET problem is solvable in time O(2k · k ·n).
• The MINIMUM DOMINATING SET problem is solvable in time O(3k · k ·n).

5.2 Graphs of Maximum Degree 3

In this section we show how dynamic programming on graphs of small pathwidth
(or treewidth) combined with combinatorial bounds on the pathwidth can be used
to design exact algorithms. The main combinatorial bound we prove in this section

82 5 Treewidth

is that the pathwidth of an n-vertex graph with all vertices of degree at most 3, is
roughly at most n/6.

We need the following result.

Lemma 5.8. For any tree T on n≥ 3 vertices, pw(T)≤ log3 n.

Exercise 5.9. Prove Lemma 5.8.

The following deep result of Monien and Preis [158] is crucial for this section.

Theorem 5.10. For any ε > 0, there exists an integer nε < (4/ε) · ln(1/ε) · (1 +
1/ε2) such that for every graph G = (V,E) of maximum degree at most 3 satisfying
|V |> nε , there is a partition V1 and V2 of V with ||V1|− |V2|| ≤ 1 such that

CUT(V1,V2)≤ (1/6+ ε)|V |.

The following technical lemma says that for any vertex subset X of a graph of
maximum degree 3, it is possible to construct a path decomposition with the last bag
exactly X , and of width roughly at most max{|X |,bn/3c+1}.

Lemma 5.11. Let G = (V,E) be a graph on n vertices and with maximum degree at
most 3. Then for any vertex subset X ⊆V there is a path decomposition

P = (X1,X2, . . . ,Xr)

of G of width at most

max{|X |,bn/3c+1}+(2/3) log3 n+1

and such that X = Xr.

Proof. We prove the lemma by induction on the number of vertices in a graph. For
a graph on one vertex the lemma is trivial. Suppose that the lemma holds for all
graphs on fewer than n vertices for some n > 1.

Let G = (V,E) be a graph on n vertices and let X ⊆V . Different cases are possi-
ble.

Case 1. There is a vertex v∈X such that N(v)\X = /0, i.e. v has no neighbors outside
X . By the induction assumption, there is a path decomposition (X1,X2, . . . ,Xr) of
G\{v} of width at most

max{|X |−1,b(n−1)/3c}+(2/3) log3 (n−1)+1

and such that X \{v}= Xr. By adding v to the bag Xr we obtain a path decomposition
of G of width at most max{|X |,bn/3c}+(2/3) log3 n+1.

Case 2. There is a vertex v ∈ X such that |N(v) \ X | = 1, i.e. v has exactly one
neighbor outside X. Let u be such a neighbor. By the induction assumption for

5.2 Graphs of Maximum Degree 3 83

G\{v} and for X \{v}∪{u}, there is a path decomposition P′ = (X1,X2, . . . ,Xr) of
G\{v} of width at most

max{|X |,b(n−1)/3c}+(2/3) log3 (n−1)+1

and such that X \{v}∪{u}= Xr. We create a new path decomposition P from P′ by
adding bags Xr+1 = X ∪{u}, Xr+2 = X , i.e.

P = (X1,X2, . . . ,Xr,Xr+1,Xr+2).

The width of this decomposition is at most

max{|X |,bn/3c}+(2/3) log3 n+1.

Case 3. For every vertex v ∈ X, |N(v)\X | ≥ 2. We consider two subcases.

Subcase 3.A. |X | ≥ bn/3c+1. The number of vertices in G\X is n−|X |. The number
of edges in G\X is at most

3(n−|X |)−2|X |
2

=
3n−5|X |

2
= n−|X |+ n−3|X |

2

≤ n−|X |+ n−3(bn/3c+1)
2

< n−|X |+ n−3(n/3−1)+3
2

= n−|X |= |V \X |

Since the number of edges in the graph G\X is less than |V \X |, we have that there
is a connected component T = (VT ,ET) of G \X that is a tree. Note that |VT | ≤
(2n)/3. It is not difficult to prove by making use of induction on the height of the
tree T (see Exercise 5.8), that there is a path decomposition P1 = (X1,X2, . . . ,Xr)
of T of width at most (2/3) log3 n. By the induction assumption, there is a path
decomposition P2 = (Y1,Y2, . . . ,Yt = X) of G \VT of width at most |X |+ 1. The
desired path decomposition P of width≤ |X |+(2/3) log3 n+1 is formed by adding
X = Yt to all bags of P1 and appending the altered P1 to P2. In other words,

P = (Y1,Y2, . . . ,Yt ,X1∪X ,X2∪X , . . . ,Xr ∪X ,X).

Case 3.B. |X | ≤ bn/3c, i.e. every vertex v ∈ X has at least two neighbors outside X.
In this case we choose a set S ⊆ V \X of size bn/3c− |X |+ 1. If there is a vertex
of X ∪S having at most one neighbor in V \ (X ∪S), we are in Case 1 or in Case 2.
If every vertex of X ∪ S has at least two neighbors in V \ (X ∪ S), then we are in
Case 3.A. For each of these cases, there is a path decomposition P = (X1,X2, . . . ,Xr)
of width ≤ bn/3c+ 2 such that Xr = X ∪ S. By adding bag Xr+1 = X , we obtain a
path decomposition of width at most bn/3c+2. ut

Now we are ready to prove one of the main theorems of this section.

84 5 Treewidth

Theorem 5.12. For any ε > 0, there exists an integer nε such that for every graph
G = (V,E) with maximum degree at most three and with |V |> nε , pw(G)≤ (1/6+
ε)|V |.

Proof. For ε > 0, let G be a graph on n > nε · (8/ε) · ln(1/ε) · (1 + 1/ε2) vertices,
where nε is given in Theorem 5.10, such that G has maximum degree at most three.
By Theorem 5.10, there is a partition of V into parts V1, V2 of sizes bn/2c and dn/2e
such that there are at most (1

6 + ε

2)|V | edges with endpoints in V1 and V2. Let ∂ (V1)
(∂ (V2)) be the set of vertices in V1 (V2) having a neighbor in V2 (V1). Note that
|∂ (Vi)| ≤ (1/6+ ε

2)n, i = 1,2.
By Lemma 5.11, there is a path decomposition P1 = (A1,A2, . . . ,Ap) of G[V1] and

a path decomposition P3 = (C1,C2, . . . ,Cs) of G[V2] of width at most

max{(1/6+
ε

2
)n,bn/6c+1}+(2/3) log3 n+1≤ (1/6+ ε)n

such that Ap = ∂ (V1) and C1 = ∂ (V2).
It remains to show how the path decomposition P of G can be obtained from

path decompositions P1 and P3. To construct P we show that there is a path decom-
position P2 = (B1,B2, . . . ,Br) of G[∂ (V1)∪ ∂ (V2)] of width ≤ (1/6 + ε)n and with
B1 = ∂ (V1), Br = ∂ (V2). The union of P1,P2, and P3, i.e. (A1, . . . ,Ap = B1, . . . ,Br =
C1, . . . ,Cs) will be a path decomposition of G of width at most (1/6+ ε)n.

The path decomposition P2 = (B1,B2, . . . ,Br) is constructed as follows. We put
B1 = ∂ (V1). In a bag B j, where j ≥ 1 is odd, we choose a vertex v ∈ B j \ ∂ (V2).
We put B j+1 = B j ∪N(v)∩∂ (V2) and B j+2 = B j+1 \{v}. Since we always remove
a vertex of ∂ (V1) from B j (for odd j), we arrive finally at the situation when a bag
Br contains only vertices of ∂ (V2).

To conclude the proof, we argue that for any j ∈ {1,2, . . . ,k}, |B j| ≤ (1/6+ε)n+
1. Let Dm, m = 1,2,3, be the set of vertices in ∂ (V1) having exactly m neighbors in
∂ (V2). Thus

|B1|= |∂ (V1)|= |D1|+ |D2|+ |D3|
and

|D1|+2 · |D2|+3 · |D3| ≤ (1/6+ ε)n.

Therefore,
|B1| ≤ (1/6+ ε)n−|D2|−2 · |D3|.

For a set B j, j ∈ {1,2, . . . ,k}, let D′2 = B j ∩D2 and D′3 = B j ∩D3. Every time `
(`≤ 3) vertices are added to a bag, one vertex is removed from the next bag. Thus

|B j| ≤ |B1|+ |D2 \D′2|+2 · |D3 \D′3|+1
≤ (1/6+ ε)n− (|D2|− |D2 \D′2|)−2 · (|D3|− |D3 \D′3|)+1
≤ (1/6+ ε)n+1.

ut

5.2 Graphs of Maximum Degree 3 85

The proof of Theorem 5.10 is constructive and can be turned into a polynomial
time algorithm constructing for any large graph G of maximum degree at most three
a cut (V1,V2) of size at most (1/6+ ε)|V | and such that ||V1|− |V2|| ≤ 1. The proof
of Theorem 5.12 is also constructive and can be turned into a polynomial time al-
gorithm constructing a path decomposition of graphs G of maximum degree 3 of
width ≤ (1/6+ ε)|V |.

Theorem 5.12 can be used to obtain algorithms on graphs with maximum degree
3. For example, combining it with dynamic programming algorithms for graphs of
bounded pathwidth (see Lemma 5.4 and Exercise 5.7), we establish the following
corollary.

Corollary 5.13. For every ε > 0, on n-vertex graphs with maximum degree 3:

• MAXIMUM CUT, MINIMUM BISECTION and MAXIMUM INDEPENDENT SET
are solvable in time O∗(2(1/6+ε)n);

• MINIMUM DOMINATING SET is solvable in time O∗(3(1/6+ε)n).

It is possible to extend the upper bound on the pathwidth of large graphs of
maximum degree 3, given in Theorem 5.12, in the following way.

Theorem 5.14. For any ε > 0, there exists an integer nε such that for every graph
G with n > nε vertices,

pw(G)≤ 1
6

n3 +
1
3

n4 +
13
30

n5 +n≥6 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . ,5} and n≥6 is
the number of vertices of degree at least 6.

Theorem 5.14 can be proved by induction on the number of vertices of a given
degree. By making use of Theorem 5.14, it is possible to bound the pathwidth of a
graph in terms of m, the number of edges.

Lemma 5.15. For any ε > 0, there exists an integer nε such that for every graph G
with n > nε vertices and m edges,

pw(G)≤ 13m/75+ εn.

Proof. First, suppose that G does not have vertices of degree larger than 5. Then
every edge in G contributes at most

max
3≤d≤5

{
2βd

d

}

to the pathwidth of G, where β3 = 1/6,β4 = 1/3,β5 = 13/30 are the values from
Theorem 5.14. The maximum is obtained for d = 5 and it is 13/75. Thus, the result
follows for graphs of maximum degree at most 5.

86 5 Treewidth

Finally, if G has a vertex v of degree at least 6, then we use induction on the
number of vertices of degree at least 6. The base case has already been proved and
the inductive argument is as follows:

pw(G)≤ pw(G\ v)+1≤ 13(m−6)/75+1 < 13m/75.

ut

As a consequence of this bound, for graphs with at most 75n/13 edges, for var-
ious NP-hard problems, such as MAXIMUM CUT, the dynamic programming algo-
rithm for graphs of bounded pathwidth has running time O∗(cn) for some c < 2.

5.3 Counting Homomorphisms

In Chap. 4 we used graph homomorphisms to count isomorphic subgraphs. However
counting the homomorphisms from a graph F to a graph G is a difficult problem on
its own and thus this idea worked fine only for graphs F like cycles or cliques. In
this section we show how this idea can be pushed forward by counting the homo-
morphisms from a graph F of bounded treewidth to a graph G. As an example of
this approach, we show how to compute the bandwidth of a tree in time O∗(2n).

In Sect. 5.1 the notion of a nice path decomposition was defined. Such path de-
compositions were useful in performing dynamic programming. Now we need a
similar notion for treewidth.

A tree decomposition ({Xi : i ∈ I},T = (I,F)) of a graph G = (V,E) is rooted
if the tree is rooted. Since in a rooted tree all nodes can be ordered corresponding
to their distance from the root, we can also speak of children and parents of bags in
rooted tree decompositions.

A rooted tree decomposition ({Xi : i ∈ I},T = (I,F)) of G is nice if

• Every node i ∈ I of T has at most two children;
• If a node i has two children j and k, then Xi = X j = Xk (such a node is called a

join node);
• If a node i has one child j, then

– either Xi = X j∪{v}, for some v∈V (in this case i is called an introduce node);

– or Xi = X j \{v}, for some v ∈V (in this case i is called a forget node);

• Every leaf node of T contains exactly one vertex of G.

A nice tree decomposition of the graph from Fig. 5.1 is given in Fig. 5.3.
We refer to the book of Kloks [132] for the proof of the following Lemma.

Lemma 5.16. For any integer k ≥ 1, given a tree decomposition of a graph G of
width k it is possible to transform it in time O(n) into a nice tree decomposition of
G of width k and with at most 4n nodes.

5.3 Counting Homomorphisms 87

cf

cf cf

cfg

cfg cfg

cf

cdf

cd

d

de

e

cg

g

gh

ghi

hi

i

c

bc

b

ab

a

Fig. 5.3 Nice tree decomposition of the graph from Fig. 5.1

Now we are ready to show how homomorphisms from a graph of bounded
treewidth can be counted.

Lemma 5.17. Let F be a graph on nF vertices given together with its nice tree
decomposition of width t. Then the number of homomorphisms hom(F,G) from F
to an n-vertex graph G can be computed in time O(nF ·nt+1 ·min{t,n}) and space
O(nF ·nt+1).

Proof. Let ({Xi | i ∈ I},T = (I,F)) be a rooted tree decomposition of width t with
root node r of the graph F = (VF ,EF). For a node i ∈ I we define the set Vi as the
set of all vertices of VF that are contained in bag Xi or in some bag corresponding to
a node j which is below i in T . In other words,

Vi =
⋃

j

X j,

88 5 Treewidth

where j runs through all nodes of T such that i is on the path from r to j. We also
define Fi = F [Vi], the subgraph of F induced by Vi. For every node i and mapping
φ : Xi→VG, we show how to compute the value hom(Fi,G,φ), which is the number
of homomorphisms f from Fi to G such that for every vertex v ∈ Xi, f (v) = φ(v).
Since Fr = F , we have that

hom(F,G) = ∑
φ :Xr→VG

hom(Fr,G,φ).

We compute the values of hom(Fi,G,φ) by performing dynamic programming.
We start from leaves of T . Every leaf i of T consists of one vertex of F and in this
case for every mapping φ : Xi→VG we put hom(Fi,G,φ) = 1.

If i is an introduce node of T with a child j, then we compute hom(Fi,G,φ) as
follows. Let v = Xi \X j. Then the graph Fi is obtained from Fj by adding vertex v
and some edges with endpoints in v. Let Ni(v) = NFi(v) be the set of neighbors of v
in Fi. Then by the properties of tree decompositions (Exercise 5.2), we have that

Ni(v) = NFi(v)∩Xi,

i.e. all neighbors of v in Fi are in Xi. Because of this, every homomorphism φ : Fi→
G is also a homomorphism from Fj to G such that the neighbors of v in Fi are
mapped to neighbors of φ(v) in G. Therefore,

hom(Fi,G,φ) = ∑hom(Fj,G,ψ),

where the sum is taken over all mappings ψ : X j→V (G) such that ψ(Ni(v)) ⊆
NG(v). For every mapping ψ : X j→VG, there are at most min{|Xi|,n} mappings
φ : Xi→VG “extending” ψ , and thus the values hom(Fi,G,φ) for all mappings
φ : Xi→VG can be computed in time O(|Xi|n ·min{|Xi|,n}).

If i is a join node with children j and k, then by the properties of tree decomposi-
tion, there are no edges connecting vertices of Fj \Xi with vertices Fk \Xi. Then for
every mapping φ : Xi→VG, we have that

hom(Fi,G,φ) = hom(Fj,G,φ) ·hom(Fk,G,φ).

Thus for a join node the values of hom(Fi,G,φ) for all mappings φ are computable
in time O(|Xi|n).

If i is a forget node with a child j, then

hom(Fi,G,φ) = hom(Fj,G,φ).

The number of nodes in T is O(nF), and thus the number of operations required
to compute hom(F,G) is O(nF ·nt+1 ·min{t,n}). For every node we keep the num-
ber of homomorphisms corresponding to every mapping φ , and thus the space used
by the algorithm is O(nF ·nt+1). ut

Lemma 5.17 combined with Theorem 4.18 yields the following result.

5.3 Counting Homomorphisms 89

Theorem 5.18. Let F be a graph with nF vertices and G be a graph with n vertices
such that nF ≤ n, given together with a tree-decomposition of width t of F. Then
sub(F,G) can be computed in time

O(
nF

∑
i=0

(
n
i

)
·nF ·nt+1 · t)

and space O(nF ·nt+1).

Proof. Observe that aut(F) = inj(F,F). Hence, using Theorem 4.18 together with
Lemma 5.17 we can compute aut(F) in time O(2nF ·nF

t+2 · t) and space O(lognF ·
nF

t+1).
Now we use Theorem 4.18 and Lemma 5.17 to compute the value of inj(F,G) in

time

O(
nF

∑
i=0

(
n
i

)
·nF ·nt+1 · t)

and space O(lognF ·nt+1). We also know (Proposition 4.16), that

sub(F,G) =
inj(F,G)
aut(F)

which allows us to conclude the proof of the theorem. ut

Let us consider some examples showing how to use Theorem 5.18.

Bandwidth. In the BANDWIDTH MINIMIZATION problem we are given an undi-
rected graph G = (V,E) on n vertices. The task is to compute the bandwidth of the
graph G. This means we wish to compute a linear ordering of the vertices such that
the maximum stretch of any edge of G in the ordering is minimized.

The problem has its origin in computations with sparse matrices (this is also the
origin of the name of the problem). Given a sparse matrix, i.e. a matrix with many
zero entries, the task is to permute the rows and columns such that all non-zero
entries appear in a narrow band close to the main diagonal.

Using graphs this problem can be formally stated as follows. A layout of a graph
G = (V,E) on n vertices is a bijection f : V →{1, . . . ,n}. The bandwidth of G is

min{max{| f (u)− f (v)| : {u,v} ∈ E}},

where the minimum is taken over all layouts of f of G. The objective of the
BANDWIDTH MINIMIZATION problem is to find an optimal layout, i.e. layout
f : V →{1, . . . ,n} such that max{u,v}∈E | f (u)− f (v)| is minimized.

The BANDWIDTH MINIMIZATION problem can be seen as a SUBGRAPH ISO-
MORPHISM problem. Let Pn be a path on n vertices. The rth power Pr

n of Pn is the
graph obtained from Pn by adding edges between any pair of distinct vertices of the
Pn being in distance at most r in the graph Pn. For an example, see Fig. 5.4.

90 5 Treewidth

2 4

1 3 3 41 25 5

3 41 2 5

Fig. 5.4 A graph G, its layout of bandwidth 2, and an embedding of G into P2
5

Lemma 5.19. Let G be a graph on n vertices. Then G has a layout of bandwidth b
if and only if there is an injective homomorphism from G to Pb

n .

Proof. Let f be a function which gives a layout of bandwidth b for G = (V,E).
Notice that f can be also viewed as a mapping from G to Pn. Now, if {u,v} ∈ E,
then we add an edge { f (u), f (v)} to Pn. Let the resulting graph be P′n. Notice that
no edge has stretched to more than length b in G which in turn implies that G is a
subgraph of P′n ⊆ Pb

n . The other direction follows similarly. ut

Consequently the BANDWIDTH MINIMIZATION problem is a special case of the
SUBGRAPH ISOMORPHISM problem, and by Theorem 5.18, we have the following
corollary.

Corollary 5.20. Given a graph G on n vertices together with a tree decomposition
of width t, it is possible to compute the number of its minimum bandwidth layouts in
time 2n+t log2 nnO(1). In particular, if G is a tree then we can compute the number of
its minimum bandwidth layouts in time O(2n ·n3) and polynomial space.

Packing Problems. Let H be a class of graphs. In the PACKING problem we are
given an undirected graph G = (V,E). The task is to find the maximum number of
vertex-disjoint copies of graphs H ∈H in the graph G = (V,E). The packing number
of G with respect to the set H denoted by packH(G) is the maximum integer k for
which there is a partition V1,V2, . . . ,Vk of V such that every graph G[Vi] contains at
least one graph H ofH as a subgraph.

In the following corollary we give a result on cycle packing.

Theorem 5.21. Let G = (V,E) be a graph on n vertices andH be the class of graphs
consisting of cycles. Then packH(G) can be found in time 2n+O(

√
n) and polyno-

mial space.

5.4 Computing Treewidth 91

Proof. Given a graph class H and the input graph G, to solve packH(G), for ev-
ery ` ≤ n, we take all possible unordered partitions of `. By Theorem 4.21, the
number of such partitions is p(`) = 2O(

√
`). Furthermore as already mentioned in

Sect. 4.4, all these partitions can be listed in time 2O(
√

`). For each such partition
p = (n1,n2, . . . ,nk), we construct a graph Fp consisting of disjoint copies of cycles
on ni vertices, 1≤ i≤ k. Each of these graphs Fp is of treewidth at most 2, and now
the result follows from Theorem 5.18. ut

Finally, we would like to mention that this result can easily be generalized to the
case whereH is a class of graphs of bounded treewidth.

5.4 Computing Treewidth

In this section we describe an exact algorithm computing the treewidth of a graph.
The algorithm is strongly based on the theory of potential maximal cliques devel-
oped by Bouchitté and Todinca.

There are several equivalent definitions of treewidth, and for this algorithm we
use the definition of treewidth in terms of chordal graphs. A graph H is chordal
(or triangulated) if every cycle of length at least four has a chord, i.e. an edge
between two non-consecutive vertices of the cycle. A triangulation of a graph G =
(V,E) is a chordal graph H = (V,E ′) such that E ⊆ E ′. Triangulation H is a minimal
triangulation if for any set E ′′ with E ⊆ E ′′ ⊂ E ′, the graph F = (V,E ′′) is not
chordal. See Fig. 5.5 for an example of a minimal triangulation of a graph.

u c

e f

a b

d v u c

e f

a b

d v

Fig. 5.5 A Graph G and a minimal triangulation of G

Let ω(H) be the maximum clique-size of a graph H.

Theorem 5.22 (folklore). For any graph G, tw(G) ≤ k if and only if there is a tri-
angulation H of G such that ω(H)≤ k +1.

Minimal Separator. Let u and v be two non adjacent vertices of a graph G = (V,E).
A set of vertices S ⊆ V is a u,v-separator if u and v are in different connected
components of the graph G \ S. S is a minimal u,v-separator of G if no proper
subset of S is a u,v-separator. For example, in graph G in Fig. 5.5, the following sets

92 5 Treewidth

are minimal u,v-separators: {a,c,e}, {a,c, f}, {a,d,e}, {a,d, f}, {b,c,e}, {b,c, f},
{b,d,e}, {b,d, f}. We say that S is a minimal separator of G if there are two vertices
u and v such that S is a minimal u,v-separator. Notice that a minimal separator can
be a subset of another minimal separator separating a different pair of vertices. We
denote by ∆G the set of all minimal separators of G.
Potential Maximal Clique. A set of vertices Ω ⊆V of a graph G is called a potential
maximal clique if there is a minimal triangulation H of G such that Ω is a maximal
clique of H. For instance, the sets {a,c,e,b,d} and {u,a,c,e} of the graph G in
Fig. 5.5 are some of the potential maximal cliques of G. We denote by ΠG the set of
all potential maximal cliques of G.

The algorithm computing the treewidth of a graph follows from the following
two theorems.

The first theorem reduces the problem of computing the treewidth of a graph to
the problem of enumerating its potential maximal cliques and minimal separators.

Theorem 5.23. There is an algorithm that, given an n-vertex graph G together with
the list of its minimal separators ∆G and the list of its potential maximal cliques
ΠG, computes the treewidth of G in O∗(|ΠG|+ |∆G|) time. Moreover, the optimal
tree decomposition can be constructed within the same running time.

The second theorem is used to bound and enumerate the potential maximal
cliques and minimal separators.

Theorem 5.24. For any n-vertex graph G, |∆G|=O(1.6181n) and |ΠG|=O(1.7549n).
Moreover, it is possible to enumerate all minimal separators in timeO(1.6181n) and
all potential maximal cliques in time O(1.7549n).

Combining Theorems 5.23 and 5.24, we obtain the following corollary.

Corollary 5.25. The treewidth of an n-vertex graph is computable in timeO(1.7549n).

Proofs of Theorems 5.23 and 5.24 are based on deep and technical combina-
torial results. In the following two subsections we only sketch the proofs of these
theorems.

5.4.1 Computing the Treewidth Using Potential Maximal Cliques

In this subsection we prove Theorem 5.23. We assume that we are given a set of all
potential maximal cliques ΠG and minimal separators ∆G. The algorithm computing
the treewidth of G from ΠG and ∆G is based on the following relation of treewidth
and pursuit-evasion games played on a graph.

As we already have seen, there are several parameters equivalent to the treewidth
of a graph. There is one more parameter, this time defined in terms of a Cops and
Robber game. The game is played on a graph G = (V,E) by two players, the Cop-
player and the Robber-player, each having her pawns (cops or a robber, respec-
tively) on the vertices of G. Cops and the robber occupy vertices of the graphs. The

5.4 Computing Treewidth 93

goal of the Cop-player is to catch the robber. The robber is caught when a cop is
placed on the vertex currently occupied by the robber. The robber always knows
where cops are, and moves arbitrarily fast from vertex to vertex via edges of the
graph, but it cannot pass a vertex occupied by a cop without being caught. The cops
are moved from vertex to vertex, say, flying on helicopters.

More formally, let G = (V,E) be a graph, where k cops are trying to catch the
robber. Every step of the game is characterized by the position (C,R), where C,R⊆
V , |C| ≤ k, and R is one of the connected components of G \C. Vertex set C is the
set of vertices occupied by cops, and R tells where the robber is located— since it
can move arbitrarily fast, all that matters is the connected component containing it.

The game starts with the initial position (/0,V), there are no cops on the graph
and the robber can be anywhere. The game proceeds in steps. Suppose that at the ith
step, the position of the players is (C,R). Now the cops select a subset C′ such that
C′ ⊃C (some of the cops are placed on the graph) or C′ ⊂C (some of the cops are
removed from the graph). The robber’s actions are

• If C′ ⊂ C, i.e. this is a removal step, then the robber occupies the connected
component R′ of G\C′ such that R⊆ R′. The game proceeds to the (i+1)th step
with position (C′,R′);

• If C′ ⊃C, i.e. this is a placement step when some cops are placed on the graph,
then the robber selects a non-empty connected component R′ of G\C′ such that
R′ ⊆ R, and the game proceeds to the (i+1)th step with position (C′,R′). If there
is no such non-empty component, i.e. C′ ⊃ R, then the robber has no place to run
and the Cop-player wins.

We say that k cops have a winning strategy on G, if for any strategy of the Robber-
player, the Cop-player can win with k cops in a finite number of steps. For example,
on any tree, 2 cops have a winning strategy: One of the cops selects a vertex v of
tree T , and then the robber can only be in one of the connected components C of
T \{v}. Then the second cop steps on vertex the u ∈C adjacent to v, thus reducing
the space, i.e. available vertices, of the robber. Thus in at most n steps the cops can
catch the robber. This strategy can be easily generalised to show that on graphs of
treewidth k, k + 1 cops have a winning strategy. The non-trivial and deep result is
the converse statement, which is due to Seymour and Thomas [204].

Theorem 5.26. For every k ≥ 0, the following are equivalent

• k +1 cops have a winning strategy on G;
• The treewidth of G is at most k.

Moreover, Seymour and Thomas prove that if k cops can win, they can always
do it in a monotone way, which means that for each step from position (C,R) to
(C′,R′), R′ ⊂ R if this is a placement step, and R′ = R if this is a removal step. Thus
the cops can always win by making at most 2n−1 steps.

It is possible to prove that if k +1 cops have a winning strategy on G, then k +1
cops can win even when their moves are constrained by the following conditions:

94 5 Treewidth

after every placement step, the set of vertices C occupied by cops is one of the poten-
tial maximal cliques of G, and after a removal step, the set of vertices occupied by
cops is a minimal separator. Indeed, by Theorem 5.26, if k +1 cops have a winning
strategy, then the treewidth of G is at most k.

By Theorem 5.22, there is a minimal triangulation H of G such that the size of a
maximal clique of H is at most k +1. We leave it as an exercise to prove that k +1
cops on H can win in such a way that at every step the vertex set C occupied by the
cops is either a maximal clique or a minimal separator of H. (Hint: Make use of the
fact that every chordal graph has a tree decomposition such that every bag of the
decomposition is a maximal clique.) Such a strategy is very similar to the strategy
of 2 cops on a tree; instead of two adjacent vertices, which form a maximal clique
in a tree, cops now occupy a maximal clique and instead of one vertex they occupy
a minimal separator. Every maximal clique of H is a potential maximal clique of G
and every minimal separator of H is also a minimal separator of G. We leave the
proof of this fact as another exercise.

Now for every k≥ 1, we want to find out whether k cops have a winning strategy
on on a graph G = (V,E), which by Theorem 5.26, implies that the treewidth of G is
at most k−1. To solve the Cops and Robber problem, we use a standard technique
from games on graphs. The idea is to represent all configurations of the game and
their dependencies by a directed graph called the arena. The vertex set of the arena
is partitioned into two sets of nodes V1 and V2. It also also has a specified node v∈V1
corresponding to the initial position of the game and a node u ∈V2 corresponding to
the final positions. There are two players, Player 1 and Player 2, who alternatively
move a token along arcs of the arena. The game starts by placing the token on v,
and then the game alternates in rounds, starting with Player 1. At each round, if the
token is on a vertex from Vi, i = 1,2, then the ith player slides the token from its
current position along an arc to a new position. Player 1 wins if he manage to slide
the token to the final position node u. Otherwise, Player 2 wins.

We construct an auxiliary directed graph H, the arena, as follows. Let Π k
G and

∆ k
G be the sets of potential maximal cliques and, correspondingly, minimal separa-

tors of G of size at most k. The vertex set of arena H consists of all possible pairs
(C,R), where C is an element of Π k

G or ∆ k
G, and R is a connected component of

G \C. To distinguish the vertices of the arena and the original graph, we will refer
to the vertices of the arena as to nodes. The node set V1 of Player 1 is the set of all
nodes corresponding to minimal separators, and the node set V2 is the set of nodes
corresponding to potential maximal cliques.

Exercise 5.27. Prove that no potential maximal clique can be a minimal separator.

Thus every node of H represents a possible situation of the game when cops occupy
the set of vertices C, and the robber is in the component R. We also add a node v
corresponding to the initial position of the game (/0,V)—no cops are on the graph
and the robber can choose any vertex of the graph, and node u corresponds to the
winning position of the cops. Since the number of connected components for every
C ∈ Π k

G ∪∆ k
G is at most n− 1, we have that the number of nodes in the arena is at

most

5.4 Computing Treewidth 95

(n−1)|Π k
G|+(n−1)|∆ k

G|+2≤ n(|ΠG|+ |∆G|).
The arcs of H are of two types: remove-arcs and put-arcs corresponding to re-

moval and placement of the cops on the graph. Each remove-arc goes from node
(C1,R1) ∈V2 to node (C2,R2) ∈V1 if C1 ∈Π k

G, C2 ∈ ∆ k
G, C2 ⊂C1 and R1 = R2. This

arc corresponds to the step of the Cops and Robber game when position (C2,R2)
is obtained from (C1,R1) by removing some cops. Each put-arc goes from node
(C1,R1) ∈ V1 to node (C2,R2) ∈ V2 if C1 ∈ ∆ k

G, C2 ∈ Π k
G, C1 ⊂ C2, R2 ⊂ R1, and

C2 ⊆C1 ∪R1. This arc corresponds to the step of the game when position (C2,R2)
is obtained from (C1,R1) by placing cops on C2 and by the robber selecting one of
the components of G\C2. We also add put-arcs from the initial position v = (/0,V)
to all nodes of V2, which means that cops can start by occupying any potential max-
imal clique. For every node x = (C,R) of V1, where C ∈ ∆ k

G and such that there is a
potential maximal clique Ω ⊇C∪R of size at most k, we add a put-arc from x to u.
This means that if cops occupy the set C and the robber is in R, then in the next step
cops win the game by occupying the vertices of Ω .

For every node of the arena from V2 (corresponding to a potential maximal clique
and one of its components) there is at most one remove-arc going out of it, and
the total number of remove-arcs is at most (n− 1)|Π k

G|. The number of put-arcs
going from v is at most (n− 1)|Π k

G|. For every node x = (C,R) ∈ V1, the number
of put-arcs going from x is at most the number of pairs (C′,R′), where C′ ∈ Π k

G,
C ⊂ C′ ⊆ C∪R, and R′ ⊆ R. Therefore, the number of put-arcs is upper bounded
(up to multiplicative factor n) by the number of the so-called good triples, which are
the triples of the form (S,Ω ,R), where S ∈ ∆ k

G, Ω ∈Π k
G, R is a component of G\S,

and R ⊂ Ω ⊆ S∪R. By making use of some combinatorial properties of potential
maximal cliques, it is possible to show that the number of good triples is at most
n|ΠG|. (This part also requires a proof which is not given here.) Thus the number of
edges in the arena graph H is O(n2 · |ΠG|+ |∆G|).

By the construction of the arena, we have that Player 1 wins on this arena if and
only if k cops have a winning strategy. To find out whether Player 1 wins on arena
H, we employ the following simple procedure. We label the final node u of H and
proceed further as follows. A node x ∈V2 is labelled if every node y of V1 adjacent
to x by arc (x,y) is labelled. In terms of the game it means that to whatever node y
Player 2 chooses to shift the token from x, Player 1 is winning. A vertex of x ∈V1 is
labelled if there is vertex y ∈V2 such that (x,y) is arc of the arena. Finally, if as the
result of the labelling procedure the starting vertex v is labelled, then Player 1 has
a winning strategy. Otherwise, he cannot win. It is easy to implement this labelling
procedure in linear (in the size of H) time, which is O∗(|ΠG|+ |∆G|).

We have shown that in time O∗(|ΠG|+ |∆G|) it is possible to decide whether
Player 1 wins on arena H, and thus whether k cops can win on G. By constructing
an arena graph for all k ≤ n, we compute the minimum number of cops having a
winning strategy on G, and thus the treewidth of G, in time O∗(|ΠG|+ |∆G|).

It is also possible to compute the corresponding winning strategy of the Cops-
player and even the corresponding tree decomposition within the same running time.

96 5 Treewidth

5.4.2 Counting Minimal separators and Potential Maximal Cliques

We start the proof of Theorem 5.24 with the following combinatorial result con-
cerning the number of connected vertex subsets. Note that a vertex subset B⊆V is
connected if the induced subgraph G[B] is connected.

Lemma 5.28. Let G = (V,E) be a graph. For every v ∈V , and b, f ≥ 0, the number
of connected vertex subsets B⊆V such that

(i) v ∈ B,
(ii)|B|= b+1, and
(iii)|N(B)|= f

is at most
(b+ f

b

)
.

Proof. Let v be a vertex of a graph G = (V,E). For b + f = 0, the lemma trivially
holds. We proceed by induction assuming that for some k > 0 and every b and f
such that b+ f ≤ k−1, the lemma holds. For b and f such that b+ f = k, we define
B as the set of sets B satisfying (i),(ii),(iii). We claim that

|B| ≤
(

b+ f
b

)
.

Since the claim always holds for b = 0, let us assume that b > 0.
Let N(v) = {v1,v2, . . . ,vp}. For 1≤ i≤ p, we define Bi as the set of all connected

subsets B such that

• Vertices v,vi ∈ B,
• For every j < i, v j 6∈ B,
• |B|= b+1,
• |N(B)|= f .

Let us note, that every set B satisfying the conditions of the lemma is in some set Bi
for some i, and that for i 6= j, Bi∩B j = /0. Therefore,

|B|=
p

∑
i=1
|Bi|. (5.3)

For every i > f + 1, |Bi| = 0 (this is because for every B ∈ Bi, the set N(B)
contains vertices v1, . . . ,vi−1 and thus is of size at least f + 1.) Thus, (5.3) can be
rewritten as follows

|B|=
f +1

∑
i=1
|Bi|. (5.4)

Let Gi be the graph obtained from G by contracting edge {v,vi} (removing the
loop, reducing double edges to single edges, and calling the new vertex v) and re-
moving vertices v1, . . . ,vi−1. Then the cardinality of Bi is equal to the number of the
connected vertex subsets B of Gi such that

5.4 Computing Treewidth 97

• v ∈ B,
• |B|= b,
• |N(B)|= f − i+1.

By the induction assumption, this number is at most
(f +b−i

b−1

)
and (5.4) yields that

|B|=
f +1

∑
i=1
|Bi| ≤

f +1

∑
i=1

(
f +b− i

b−1

)
=
(

b+ f
b

)
.

ut

The inductive proof of the lemma can easily be turned into a recursive polynomial
space enumeration algorithm (we skip the proof here).

Lemma 5.29. All connected vertex sets of size b+1 with f neighbors in a graph G
can be enumerated in time O(n

(b+ f
b

)
) by making use of polynomial space.

The following lemma gives the bound on the number of minimal separators.

Lemma 5.30. Let ∆G be the set of all minimal separators in a graph G on n vertices.
Then |∆G|=O(1.6181n).

Proof. For 1≤ i≤ n, let f (i) be the number of all minimal separators in G of size i.
Then

|∆G|=
n

∑
1

f (i). (5.5)

Let S be a minimal separator of size bαnc, where 0 < α < 1. It is an easy exercise
to show that for every minimal u,v-separator S, two connected components u ∈Cu
and v ∈Cv of G[V \S] satisfy the property N(C1) = N(C2) = S. These components
are called full components associated to S. For every minimal separator there are at
least two (but there can be more than two) connected components associated to it.
Given a connected vertex set C, there is at most one minimal separator S such that C
is a full component associated to S; which requires that N(C) is a minimal separator.
Thus instead of counting minimal separators, we count full components.

Let C1 and C2 be two full components associated to S. Let us assume that |C1| ≤
|C2|. Then |C1| ≤ b(1−α)n/2c. Because C1 is a full component associated to S, we
have that N(C1) = S. Thus, f (bαnc) is at most the number of connected vertex sets
C of size at most b(1−α)n/2c with neighborhoods of size |N(C)|= bαnc. Hence,
to bound f (bαnc) we can use Lemma 5.28 for every vertex of G.

By Lemma 5.28, we have that for every vertex v, the number of full components
of size b + 1 = b(1−α)n/2c containing v and with neighborhoods of size bαnc is
at most (

b+ bαnc
b

)
≤
(b(1+α)n/2c

b

)
.

Therefore

98 5 Treewidth

f (bαnc)≤ n ·
b(1−α)n/2c

∑
i=1

(
i+ bαnc

i

)
< n ·

b(1−α)n/2c
∑
i=1

(b(1+α)n/2c
i

)
. (5.6)

For α ≤ 1/3, we have

b(1−α)n/2c
∑
i=1

(b(1+α)n/2c
i

)
< 2b(1+α)n/2c < 2b2n/3c < 1.59n,

and thus

bn/3c
∑
i=1

f (i) =O(1.59n). (5.7)

For α > 1/3, we use the fact (Lemma 3.24) that

b j/2c
∑
k=0

(
j− k

k

)
= F(j +1),

where

F(j +1) =
⌊

ϕ j+1
√

5
+

1
2

⌋

is the (j +1)th Fibonacci number and ϕ = (1+
√

5)/2 is the Golden Ratio. Then

b(1−α)n/2c
∑
i=1

(b(1+α)n/2c
i

)
≤
b(1−α)n/2c

∑
i=1

(
n− i

i

)

≤
bn/2c
∑
i=1

(
n− i

i

)
< ϕ

n+1 < n ·1.6181n.

Therefore,

n

∑
i=bn/3c

f (i) =O(1.6181n). (5.8)

Finally, the lemma follows from the formulas (5.5), (5.7) and (5.8). ut

Let us remark that by making use of Lemma 5.29, the proof of the previous lemma
can be turned into an algorithm enumerating all minimal separators within time
O(1.6181n). Another approach to enumerate all minimal separators is to use an
algorithm of Berry, Bordat, and Cogis [19] listing all minimal separators of an input
graph G in O(n3|∆G|) time, which by Lemma 5.30, is O(1.6181n).

While the enumeration of potential maximal cliques is again based on Lemma 5.28,
we need deeper insight in the combinatorial structure of potential maximal cliques.

We need the following combinatorial result of Fomin and Villanger [96].

5.4 Computing Treewidth 99

Lemma 5.31. For every potential maximal clique Ω of G = (V,E), there exists a
vertex set Z ⊆V and z ∈ Z such that

• |Z|−1≤ (2/3)(n−|Ω |),
• G[Z] is connected, and
• Ω = N(Z \{z}) or Ω = N(Z)∪{z}.

Now we are in a position to give a bound on the number of potential maximal
cliques in a graph.

Lemma 5.32. Let ΠG be the set of all potential maximal cliques in a graph G on n
vertices. Then |ΠG|=O(1.7549n).

Proof. By Lemma 5.31, the number of potential maximal cliques of size αn does
not exceed the number of connected subsets of size at most (1−α)(2n/3) times
some polynomial of n. Thus the number of potential maximal cliques is

O∗
(d(1−α)(2n/3)e

∑
i=1

(d(2+α)n/3e
i

))
. (5.9)

For α ≤ 2/5, the sum above is upper bounded by O∗(2 (2+α)n
3) and for α ≥ 2/5

by

O∗
((d(2+α)n/3e
d(1−α)(2n/3)e

))
.

By making use of Lemma 3.13, it is possible to show that in both cases the sum in
(5.9) is bounded by O∗(1.7549n). ut

Bouchitté and Todinca [34, 35] have shown that for a given vertex subset Ω , it
is possible to decide in polynomial time whether Ω is a potential maximal clique.
Thus by making use of Lemma 5.29, the proof of Lemma 5.32 combined with the
recognition algorithm of Bouchitté and Todinca can be turned into an algorithm
enumerating all potential maximal cliques in time O(1.7549n). These enumeration
algorithms, combined with the bounds from Lemmata 5.24 and 5.32 complete the
proof of Theorem 5.24

Notes

The treewidth of a graph is a fundamental graph parameter. It was introduced by
Halin in [109] and rediscovered by Robertson and Seymour [181, 182, 183] and,
independently, by Arnborg and Proskurowski [7]. Many hard optimization problems
on graphs are solvable in polynomial time when the treewidth of the input graph is
small [54, 53].

The result of Exercise 5.8 was rediscovered several times in terms of search num-
ber, vertex separations and pathwidth. See, e.g. the papers of Ellis, Sudborough, and

100 5 Treewidth

Turner [68], Petrov [174] and Parsons [170]. The proof of Theorem 5.10 is due to
Monien and Preis and can be found in [158]. Lower bounds on pathwidth of cubic
graphs can be obtained by making use of Algebraic Graph Theory. In particular,
Bezrukov, Elsässer, Monien, Preis, and Tillich [20] (by making use of the second
smallest eigenvalues of a Ramanujan graph’s Laplacian) showed that there are 3-
regular graphs with the bisection width at least 0.082n. (See [20] for more details.)
It can be shown that the result of Bezrukov et al. also yields the lower bound 0.082n
for pathwidth of graphs with maximum degree three. It is an interesting challenge
to reduce the gap between 0.082n and 0.167n.

The proof of Theorem 5.14 is given by Fomin, Gaspers, Saurabh and Stepanov
[80]. The proof of Lemma 5.17 is from Diaz, Serna and Thilikos [64]. Parts of the
results of Sect. 5.2 are taken from Kneis, Mölle, Richter, and Rossmanith [134]. The
proof of Lemma 5.16 can be found in the book of Kloks [132].

In the proof of Theorem 5.18, we mention that one can compute aut(F) in time
O(2nF · nF

t+2 · t) and space O(lognF · nF
t+1). While this is sufficient for our pur-

poses, let us remark that by the classical result of Babai, Kantor and Luks [9], one
can compute aut(F) for a graph F on nF vertices in time 2O(

√
nF lognF). In fact,

Babai et al. solve the harder problem of computing the automorphism group and its
generators for a given graph F .

The proof of Theorem 5.24 can be found in [90]. It is based on ideas from [34,
35] and uses dynamic programming over structures related to potential maximal
cliques called blocks. Lemma 5.28 and its usage to bound the number of minimal
separators and potential maximal cliques is taken from [95]. A slightly better bound
on the number of potential maximal cliques is obtained in [96]. Polynomial space
algorithms computing treewidth are given in [31, 95]. An algorithm enumerating
minimal separators can be found in [19]. The example in Fig. 5.5 can be generalized
to a graph on n vertices (vertices u and v connected by (n−2)/3 paths of length 4)
such that this graph contains 3

n−2
3 minimal u,v-separators. It is an open question,

whether the number of minimal separators in every n-vertex graph is O∗(3n/3).

Chapter 6
Measure & Conquer

Measure & Conquer is a powerful method used to analyse the running time of
branching algorithms. Typically it allows us to achieve running times for branch-
ing algorithms that seem hard or even impossible to establish by the simple analysis
of branching algorithms studied in Chap. 2. The main difference is that the mea-
sure for the size of an instance of a subproblem and thus also the measure for the
progress during the branching algorithm’s execution will be chosen with much more
freedom. Conceptually the approach is not very different from simple analysis. Nev-
ertheless the innocent looking change has important consequences. On the technical
side simple branching algorithms with few branching and reduction rules become
competitive while the analysis of the running time is typically quite complex and
computing power is needed to determine a clever choice of the measure. Often co-
efficients involved in the measure, typically called weights, need to be fixed so as to
minimize the established running time.

Most of the currently best known exact algorithms to solve particular NP-hard
problems, which are branching algorithms, have been obtained during the last
decade using Measure & Conquer or related methods.

The idea behind Measure & Conquer is to focus on the choice of the measure,
instead of creating algorithms with more and more branching and reduction rules.
Typically a measure should satisfy the following three conditions:

• The measure of an instance of a subproblem obtained by a reduction rule or a
branching rule is smaller than the measure of the instance of the original problem.

• The measure of each instance is nonnegative.
• The measure of the input is upper bounded by some function of “natural param-

eters” of the input.

The last property is needed to retranslate the asymptotic upper bound in terms of
the measure into an upper bound in terms of some natural parameters for the size of
the input (such as the number of vertices in a graph or the number of variables in
a formula). In this way one is able to derive from different (and often complicated)
measures, results that are easy to state and compare.

101

102 6 Measure & Conquer

The definitions and results of Section 2.1 will be used throughout this chapter.
Real numbers, for example as branching factors, will be represented by rational
numbers as described in Section 2.1. The measure of an instance may now be ra-
tional, and thus we have rational branching vectors and rational exponents. All this
can be treated similarly to Chap. 2, including the computation of branching factors.

6.1 Independent Set

This section provides an introduction to Measure & Conquer. Its goal is to play with
measures and to get acquainted with the typical reasonings. Obtaining competitive
or best known running times is not the goal. This will be considered in subsequent
sections.

Measure & Conquer might look a bit surprising and even counterintuitive at first
glance. Actually it is a natural question why a change of the measure should change
the established running time. Our goal is twofold. On one hand, we want to illustrate
the limits of simple measures, such as those presented in Chap. 2. On the other hand,
we want to show why and how more sophisticated measures may provide better
upper bounds for the running time of a branching algorithm. We also intend to give
some indication of which way to choose measures. Clever measures may exploit
particular properties of a branching algorithm that simple measures simply cannot
take into account.

To this end we present and study a simple branching algorithm for the MAXI-
MUM INDEPENDENT SET problem (MIS). The branching algorithm is called mis3
and it is described in Fig. 6.1.

Algorithm mis3(G).
Input: A graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if ∃v ∈V with d(v) = 0 then1
return 1+mis3(G\ v)

if ∃v ∈V with d(v) = 1 then2
return 1+mis3(G\N[v])

if ∆(G)≥ 3 then3
choose a vertex v of maximum degree in G
return max(1+mis3(G\N[v]),mis3(G\ v))

if ∆(G)≤ 2 then4
compute α(G) using a polynomial time algorithm
return α(G)

Fig. 6.1 Algorithm mis3 for MIS

Assume we want to analyze a branching algorithm with the goal to improve upon
a trivial enumeration algorithm of running time O∗(2n) and to establish a running

6.1 Independent Set 103

time O∗(cn) with c < 2. Clearly it is natural to use as exponent of the running time
the measure n of the input size. Therefore simple analysis has been considered as
the natural (and only) way to analyze branching algorithms, n being the number of
vertices of a graph, the number of variables of a Boolean formula, etc.

Let us be more specific and consider a simple analysis of the algorithm mis3 for
the problem MIS. This algorithm consists of three reduction rules. First observe that
rule (4) can be performed in polynomial time. Indeed, if every vertex in a graph is
of degree at most two, then the graph is the disjoint union of trees and cycles and its
treewidth is at most two. A maximum independent set in such graph can be easily
found in polynomial time by the results from Chap. 5. Of course, it is possible
to solve MIS in polynomial time on trees and cycles without using the treewidth
machinery as well.

Algorithm also has one branching rule with branching vector (1,d(v)+1). Since
the algorithm branches only on vertices of degree at least 3, the branching vector has
its smallest branching factor if d(v) = 3. Clearly for any node of the search tree the
running time of all reduction rules executed before the next branching is polynomial,
and this is independent of the measure for mis3. Applying reduction rule (1) or (2)
removes at least one vertex. Rule (4) will only be applied to an instance in a leaf of
the search tree. Hence the running time of mis3 is O∗(αn), where α is the unique
positive real root of x4− x3−1 = 0, and thus α < 1.3803. Hence O(1.3803n) is an
upper bound for the worst-case running time of algorithm mis3.

Is it the worst-case running time of mis3? Is it the best one can prove? It is neces-
sary to have a closer look at the analysis and to better understand the algorithm. First
let us emphasize that the simple analysis of mis3means that one assigns a weight of
1 to each vertex of the instance G′ which is an induced subgraph of the input graph
G. A closer look at the algorithm reveals that before applying the branching rule (3)
any instance of a subproblem has the following properties. Any vertex of degree 0
or 1 has been removed from the instance by a reduction rule, either (1) or (2). Hence
such vertices do not exist in an instance when branching occurs. However the above
simple analysis does not take this into account. Each such reduction decreases the
simple weight by 1 or 2 but it is attributed to the reduction, and thus not taken into
account for any branching. A vertex of degree 2 will not be removed immediately.
It either remains in the instance during the recursive execution until a leaf of the
search tree is reached and reduction rule (4) is applied, or it may be removed from
an instance by rule (1) or (2) after one of its neighbors has been removed. Finally a
vertex of degree at least 3 is one the algorithm might branch on.

Our intuition is the following. The running time of the algorithm is bounded by
a polynomial in n times the number of leaves in the search tree, and those leaves
essentially are generated by branching rules only. This means that applications of
reduction rules are “cheap” and only applications of branching rules are “costly”.
Hence vertices of degree greater than 3 are expensive while vertices of degree at
most 2 seem to be cheap. This suggests that we assign two different weights to
vertices, implying the following measure for any instance G′ generated by algorithm
mis3 when executed on the input graph G:

104 6 Measure & Conquer

k1(G′) = n≥3,

where n≥3 is the number of vertices of G′ of degree at least 3. This means that
vertices of degree at most 2 have weight 0 and vertices of degree at least 3 have
weight 1.

Now analyzing the branching rule will become more complicated; in fact more
complex measures may lead to an enormous increase in the number of branching
vectors and recurrences. The simple analysis of mis3 establishes one branching
vector (1,1 + d(v)) for all possible degrees d(v) ≥ 3. We need to establish the
branching vectors with respect to the measure k1. Say we branch on a vertex v of G′

of degree d ≥ 3. Due to the reduction rules (1) and (2), G′ has no vertices of degree
0 or 1. First consider discarding v: the weight of the instance decreases by at least 1,
since we remove v. If v has a neighbor w then the degree of w decreases from dG′(w)
to dG′−v(w) = dG′(w)− 1 and thus the weight of w changes only if dG′(w) = 3; it
decreases from 1 to 0. Hence when discarding v the weight of the instance decreases
by 1 + |{w : vw ∈ E,dG′(w) = 3}|, which is at least 1. Now consider selecting v:
the weight of the instance decreases by the weight of v and all its neighbors, fur-
thermore for every vertex w ∈ N2

G′(v), i.e. the vertices w at distance 2 from v in G′,
the degree may decrease and thus their weight may decrease from 1 to 0. This looks
for a second like at least the value d(v)+1 of the simple analysis. But no such luck.
What if v has neighbors of degree 2? Even worse, what if all neighbors of v have
degree 2? Then in the worst case when selecting v there is a decrease of 1 due to
the removal of v, and maybe no decrease at all by neighbors or vertices N2

G′(v). We
obtain the branching vector (1,1) and branching factor 2. No doubt our choice of
the measure k1 was not good.

Nevertheless there is an important insight. Vertices of degree 0 and 1 will be
removed immediately while vertices of degree 2 remain in the graph, and this is
a crucial difference. Thus their weights should be different, and hence we assign
weight 0 to vertices of degree at most 1, weight w2 ∈ [0,1] to vertices of degree 2,
and weight 1 to vertices of degree at least 3. The new measure for any instance G′

generated by algorithm mis3 is

k2(G′) = w2n2 +n≥3,

where n2 is the number of vertices of G′ of degree 2 and n≥3 is the number of
vertices of degree at least 3 in G′.

We do not know the best choice of w2; in general a careful analysis and comput-
ing power would be needed to determine the best value of w2 so as to minimize the
corresponding running time. Without such a computational effort we want to argue
here that using the new measure one obtains a better bound for the running time.
We do not change the algorithm, we simply change the measure, and we establish a
better running time. This is the fundamental idea of Measure & Conquer.

Lemma 6.1. Algorithm mis3 has running time O(1.3248n).

Proof. We analyze the running time of algorithm mis3 with respect to the measure
k2 and we fix w2 = 0.5; simply to see what we achieve by this choice. First we deter-

6.1 Independent Set 105

mine the branching vectors for branching rule (3). Suppose the algorithm branches
on a vertex v of degree d ≥ 3 in the graph G′. Then δ (G′) ≥ 2 and ∆(G′) = d.
Let u1,u2, . . .ud be the neighbors of v. We denote by OUT the decrease (or a lower
bound of the decrease) of the measure of the instance when branching to a subprob-
lem by discarding v. Similarly, we denote by IN the decrease (or a lower bound
on the decrease) of the measure of the instance when branching to a subproblem
by selecting v. The removal of v decreases the weight by 1 for both subproblems
“discard v” and “select v”. Furthermore for each vertex ui of degree 2, its weight
decreases by w2 = 0.5 when discarding v, and also when selecting v. Hence the
branching vector is (OUT, IN) with IN ≥ 1, OUT ≥ 1 and IN + OUT ≥ 2 + d(v).
Hence τ(OUT, IN)≤ τ(1,1+d(v)) by Lemmata 2.2 and 2.3. Consequently if mis3
branches on a vertex v of degree at least 4 then its branching vector (OUT, IN) has
a factor τ(OUT, IN)≤ τ(1,5) < 1.3248.

To prove the lemma it remains to reconsider branching on a vertex v with
dG′(v) = 3. Due to the maximum degree condition in the branching rule, the graph
G′ has vertices of degree 2 or 3 only. Let w be such a vertex. Discarding w de-
creases the weight of the instance by 0.5 or 1, and discarding a neighbor of w de-
creases the weight of w by 0.5. This implies immediately that OUT ≥ 1 + 3 · 0.5
and IN ≥ 1 + 3 · 0.5 and τ(OUT, IN) ≤ τ(2.5,2.5) < 1.3196. Hence all branching
factors of the algorithm are upper bounded by 1.3248, which completes the proof of
the lemma. ut

We have experienced a significant improvement on the established running time
by the choice of the measure. Not surprisingly this is not the best choice of the
measure. Let us call ni the number of vertices of degree i, i≥ 0, for the instance of
a graph problem. Then the following measure will often be a good choice to start
with.

k(G′) =
n

∑
i=0

wini,

where wi ∈ [0,1] for all i≥ 0.
When executing algorithm mis3 vertices of degree at most 1 do not exist in an

instance mis3 is branching on, and thus w0 = w1 = 0 is a good choice.
Suppose we consider now a modification of the above measure by setting w0 =

w1 = 0 0 ≤ w2 ≤ w3 ≤ 1 and wt = 1 for all t ≥ 4. Then with best choice of the
weights w2 = 0.596601, w3 = 0.928643 , we obtain a running time of O(1.2905n)
for algorithm mis3.

Lemma 6.2. Algorithm mis3 has running time O(1.2905n).

Exercise 6.3. Try to improve upon the upper bound of the running timeO(1.2905n)
of algorithm mis3 using Measure & Conquer and a more clever measure, for ex-
ample more different weights in the measure.

106 6 Measure & Conquer

6.2 Feedback Vertex Set

In this section we describe a branching algorithm solving the FEEDBACK VERTEX
SET problem in time O(1.899n). An interesting feature of this algorithm is that the
analysis of its running time crucially depends on the choice of the measure of the
instance of a subproblem. Remarkably simple analysis, i.e. measuring the progress
of the algorithm in terms of vertices of the graph, provides us with the running time
O∗(2n), which is the same as by the brute-force algorithm that tries all vertex subsets
and checks whether the subset induces a forest.

Feedback Vertex Set Problem. In the FEEDBACK VERTEX SET problem (FVS) we
are given an undirected graph G = (V,E). The task is to construct a feedback vertex
set W ⊆ V of minimum size. A set of vertices W of a graph G = (V,E) is called a
feedback vertex set if the graph G \W does not contain any cycle; in other words,
G \W is a forest. To solve FVS we solve the problem of finding a maximum size
subset F ⊆ V such that G[F] is a forest. This problem is called the MAXIMUM
INDUCED FOREST problem. Clearly W is a (minimum) feedback vertex set of G if
and only if V \W is a (maximum) induced forest of G.

Let us start with a small example, which explains the main intuition behind the
algorithm. Consider the following branching procedure recursively constructing in-
duced forests in a graph G. Suppose that at some step of the algorithm we have
constructed a forest F . Now we want to see how this forest can be extended to a
larger forest. We take a vertex v ∈ V \F adjacent to some vertex t of the forest F ,
and then perform branching in two subproblems: either v is in the new forest or not.
In the first case, every neighbor u of v outside F that also has a neighbor in the
connected component of F that contains t, cannot be in the forest—adding v and u
to F will create a cycle. Thus we can remove all neighbors of v that have neighbors
in the component of F that contains t, and add v to the forest. In the second case we
just remove v.

A reasonable measure for such a branching rule seems to be the number of ver-
tices not included in the forest. Then the algorithm grows the forest as follows. We
start growing the forest from a vertex, and at every step, we take a vertex adjacent to
the forest, and either include it in the forest, or remove it from the graph. Suppose
that we want to add a vertex v which is adjacent to at least three vertices outside the
forest. If one of these neighbors, say u, is also adjacent to some vertex in the same
connected component in the forest as v, then u and v cannot simultaneously be in a
solution. Thus when we add v to a forest, we must remove u. This case is good for
us. However, it can happen that vertex v has 3 neighbors which are not adjacent to
vertices from F . If in this case we branch on two subproblems, and thus either add
v to the forest , which reduces the number of vertices in the new problem by 1, or
remove v from the graph, which again reduces the number of vertices only by 1. The
worst-case running time T (n) of the algorithm, up to a polynomial factor, satisfies
the following recurrence

T (n)≤ T (n−1)+T (n−1).

6.2 Feedback Vertex Set 107

The branching vector is (1,1) and its branching factor τ(1,1) = 2, which implies a
running time of t(n) = O∗(2n). This is exactly what can be obtained by the brute-
force approach. At first glance, this branching algorithm does not give us any ad-
vantage.

To obtain a better choice of the measure, the trick is to put different weights on
different types of vertices. Let us do a simple thing—assign weight 0 to all vertices
that are in the forest, assign weight 1 to all vertices adjacent to vertices of the forest
but not in the forest, and weight 1.5 to all remaining vertices. Define the measure µG
of graph G as the sum of all its vertex weights. Then the measure of G denoted by
µG satisfies µG ≤ 1.5n. If we manage to prove that the running time of the algorithm
is O∗(cµG) for some constant c, then we can also upper bound the running time of
the algorithm by O∗(c1.5n).

Now in our example, assume for a moment that all three neighbors of v are not
adjacent to the vertices of the forest. Then when we add v to the forest, we reduce
the measure of the new graph by 1 because the weight of v changes from 1 to 0 and
by 3/2 because the weights of the three neighbors of v have been changed from 1.5
to 1. Thus in the subproblem where v is selected in the forest, the total measure of
the instance is decreased by 2.5. If we discard v and exclude it from the forest, we
simply remove v from the graph. Then the measure of the instance is decreased by
1.

The corresponding recurrence is

T (µG)≤ T (µG−2.5)+T (µG−1).

The branching vector of the recurrence is (2.5,1) and its branching factor is α <
1.5290. Thus the solution of the recurrence is

T (µG) =O(1.5290µG) =O(1.52901.5n) =O(1.8907n).

Of course, to estimate the running time of the algorithm we have to take care
of all different cases, like what happens if v has 2 neighbors outside the forest, or
if some neighbors of v also have neighbors in the forest. Why does playing with
a measure bring us to a better running time; what is the magic here? The answer
is that a better choice of measure can improve the recurrence corresponding to the
worst case (three neighbors of v do not have neighbors in the forest in our example).
Such improvement is not for free—the recurrences corresponding to better cases
can become worse, but often by somewhat balancing the recurrences we can gain
in general.

The moral of this example is that estimating the worst-case running time of a
branching algorithm can depend on the way we measure the size of the instances of
the problem.

In the remainder of this section we present in detail the algorithm for FVS and
its analysis. The main idea of the algorithm follows the example above but several
additional issues have to be taken care of.

108 6 Measure & Conquer

• The choice of weights {0,1,1.5} is quite arbitrarily. (The same running time
would be obtained when normalizing the weights, for example by dividing all
weights by 1.5.) Can we improve the analysis by choosing other weights? Indeed,
we can.

• The cases in which the vertex v has one or two neighbors outside of F need to
be handled separately. It turns out that it is possible to avoid branching in those
cases.

6.2.1 An Algorithm for Feedback Vertex Set

We call a subset F ⊆ V acyclic if G[F] is a forest. If F is acyclic then every con-
nected component of G[F] on at least two vertices is called non-trivial. If T is a
non-trivial connected component of G[F] then we denote by compress(T → t) the
compression of T into t which is the following operation

• We contract all edges of T into one vertex t and remove emerging loops. Note
that this operation may create multiedges in G.

• We remove all vertices that are adjacent to t by a multiedge.

For example, the graph G in Fig. 6.2 consists of a component T induced by the
vertices u,x,y,z and vertex a. After contracting the edges of T , one obtains the graph
with the two vertices t and a and an edge of multiplicity two. Thus the result of
compress(T → t) on G is the singleton graph consisting of vertex t.

y

x

u

z

a t a t

Fig. 6.2 Example of operation compress(T → t)

For an acyclic subset F ⊆ V , denote byMG(F) the set of all maximum acyclic
supersets of F in G (we omit the subscript G when it is clear from the context which
graph is meant). LetM :=M(/0). Then the problem of finding a maximum induced
forest can be stated as finding an element ofM. We solve a more general problem,
namely finding an element ofM(F) for an arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an
independent set. The next lemma justifies this assumption.

6.2 Feedback Vertex Set 109

Lemma 6.4. Let G = (V,E) be a graph, F ⊆V be an acyclic subset of vertices and
T be a non-trivial connected component of G[F]. Denote by G′ the graph obtained
from G by compress(T → t). Then

• X ∈MG(F) if and only if X \T ∪{t} ∈MG′(F \T ∪{t}).

Proof. Let X ∈MG(F). If after contracting all edges of T to t, a vertex v is adjacent
to t by a multiedge, then the set T ∪{v} is not acyclic in G. Hence, no element of
MG(F) contains v. In other words, no vertex of X \T is removed by the compression
compress(T → t). Thus X ′ = X \T ∪{t} is a set of vertices of G′.

We claim that X ′ is an acyclic subset of G′. For a contradiction, let us assume
that X ′ induces a cycle C′ in G′. Then X ′ contains t because otherwise cycle C′ is
also a subgraph of G[X], the subgraph of G induced by the acyclic set X , which is
a contradiction. Let x1 and x2 be the two neighbors of t in C′. There is a path in
G from x1 to x2 in G such that all inner vertices of this path are in T . Replace t in
C′ by such a path. As a result we obtain a cycle C induced by X in G, which is a
contradiction to the acyclicity of X . Similar arguments show that if X ′ is an acyclic
subset in G′ then X = X ′∪T \{t} is acyclic in G.

Finally we claim that X ′ is a maximum acyclic subset of G′. We have that |X ′|=
|X |− |T |+1. If there is an acyclic subset Y ′ of G′, such that |Y ′|> |X ′|, then the set
Y = Y ′ ∪T \ {t} is an acyclic subset of G and |Y | > |X |. However this contradicts
the choice of X . ut

By Lemma 6.4, we can compress every non-trivial component of F . In this way
we obtain an equivalent instance where the new vertex set to be extended into a
maximum induced forest is an independent set.

The following lemma is used to justify the main branching rule of the algorithm.

Lemma 6.5. Let G = (V,E) be a graph, F ⊆ V an independent set of G and v 6∈ F
a vertex adjacent to exactly one vertex t ∈ F. Then there exists X ∈M(F) such that
either v or at least two vertices of N(v)\{t} are in X.

Proof. If for some X ∈ M(F), v 6∈ X , and no vertex of N(v) \ {t} is in X , then
X ∪{v} is also an induced forest of G of size larger than |X |. Thus if v 6∈ X , then
at least one vertex z ∈ N(v) \ {t} is in X . If z is not the only such vertex, then the
lemma follows.

Let us assume that z is the only vertex in N(v)\{t} from X . Since X is maximal,
we have that X ∪{v} is not acyclic. Because v is of degree at most 2 in G[X ∪{v}],
we conclude that all cycles in G[X ∪{v}] must contain z. Then the set X ∪{v}\{z}
is acyclic, of maximum size and satisfies the condition of the lemma. ut

6.2.2 Computing a Minimum Feedback Vertex Set

Now everything is ready to give the description of the algorithm. Instead of comput-
ing a minimum feedback vertex set directly, the algorithm finds the maximum size

110 6 Measure & Conquer

of an induced forest in a graph. In fact, it solves a more general problem: for any
acyclic set F it finds the maximum size of an induced forest containing F . Let us
remark, that the algorithm can easily be turned into an algorithm computing such a
set (instead of its cardinality only).

During an execution of the algorithm one vertex t ∈ F is called the active vertex.
The algorithm branches on a chosen neighbor of the active vertex t. Let v ∈ N(t).
Denote by K the set of all vertices of F other than t that are adjacent to v. Let G′

be the graph obtained after the compression compress(K ∪{v} → u). We say that
a vertex w ∈V \{t} is a generalized neighbor of v in G if w is a neighbor of u in G′.
Denote by gd(v) the generalized degree of v which is the number of its generalized
neighbors.

For example, in Fig. 6.3, say we have K = {t ′}. After the compression compress(K∪
{v}→ u) in the new graph the neighbors of u (except t) are y,z, and w. Thus the gen-
eralized degree of v is 3.

vx

t z w

y

t′
vx

t z w

y

Fig. 6.3 Example of compression and generalised degree

The description of the algorithm consists of a sequence of cases and subcases. To
avoid a confusing nesting of if-then-else statements let us use the following conven-
tion: the first case which applies is used in the algorithm. Thus, inside a given case,
the hypotheses of all previous cases are assumed to be false.

Algorithm mif(G,F) computes for a given graph G = (V,E) and an acyclic set
F ⊆ V the maximum size of an induced forest containing F . It is described by the
following preprocessing and main procedures. Let us note that mif(G, /0) computes
the maximum size of an induced forest in G.

Preprocessing

1. If G consists of k ≥ 2 connected components G1,G2, . . . ,Gk, then the algorithm
is called on each of the components and

mif(G,F) =
k

∑
i=1

mif(Gi,Fi),

where Fi := V (Gi)∩F for all i ∈ {1,2, . . . ,k}.
2. If F is not independent, then apply operation compress(T → vT) on an arbitrary

non-trivial component T of F . If T contains the active vertex then vT becomes
active. Let G′ be the resulting graph and let F ′ be the set of vertices of G′ obtained
from F . Then

6.2 Feedback Vertex Set 111

mif(G,F) = mif(G′,F ′)+ |T |−1.

Main procedures

1. If F = V , thenMG(F) = {V}. Thus,

mif(G,F) = |V |.

2. If F = /0 and ∆(G)≤ 1, thenMG(F) = {V} and

mif(G,F) = |V |.

3. If F = /0 and ∆(G) ≥ 2, then the algorithm chooses a vertex t in G of degree at
least 2. The algorithm branches on two subproblems—either t is contained in a
maximum induced forest, or not—and returns the maximum:

mif(G,F) = max{mif(G,F ∪{t}),
mif(G\{t},F)}.

4. If F contains no active vertex, then choose an arbitrary vertex t ∈ F as an active
vertex. Denote the active vertex by t from now on.

5. If there is a vertex v ∈ N(t) with gd(v)≤ 1, then add v to F :

mif(G,F) = mif(G,F ∪{v}).

6. If there is a vertex v ∈ N(t) with gd(v)≥ 3, then branch into two subproblems by
either selecting v in F or discarding v from F and removing v from G:

mif(G,F) = max{mif(G,F ∪{v}),
mif(G\{v},F)}.

7. If there is a vertex v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors
by w1 and w2. Branch by either selecting v in F , or by discarding v from F and
removing it from G and also select w1 and w2 in F . If selecting w1 and w2 to F
creates a cycle, just ignore the second subproblem.

mif(G,F) = max{mif(G,F ∪{v}),
mif(G\{v},F ∪{w1,w2})}.

Thus the algorithm has three branching rules (cases Main 3, 6 and 7). The cor-
rectness and the running time of the algorithm are analyzed in the following.

Theorem 6.6. The problem FEEDBACK VERTEX SET is solvable in timeO(1.8899n).

Proof. Let G be a graph on n vertices. We consider the algorithm mif(G,F) de-
scribed above. In what follows, we prove that a maximum induced forest of G can
be computed in time O(1.8899n) by algorithm mif(G, /0). The correctness of Pre-
processing 1 and Main 1,2,3,4,6 is clear. The correctness of Preprocessing 2 follows

112 6 Measure & Conquer

from Lemma 6.4. The correctness of cases Main 5,7 follows from Lemma 6.5 (in-
deed, applying Lemma 6.5 to the vertex u of the graph G′ shows that for some
X ∈MG(F) either v, or at least two of its generalized neighbors are in X).

In order to evaluate the time complexity of the algorithm we use the following
measure of an instance (G,F) of a subproblem:

µ(G,F) = |V \F |+ c|V \ (F ∪N(t))|

where the value of the constant c is to be determined later. In other words, each
vertex in F has weight 0, each vertex in N(t) has weight 1, each other vertex has
weight 1 + c, and the size of the instance is equal to the sum of the vertex weights.
Let us note that

µ(G,F)≤ (1+ c)n.

Thus if we prove that the running time of the algorithm isO∗(β µ) for some constant
β , then we can estimate the running time by O∗(β (1+c)n).

Each of the following (non-branching) reduction steps reduces the size of the
problem in polynomial time, and has no influence on the base of the running time
of the algorithm: Preprocessing 1,2 and Main 1,2,4,5 as discussed in Chap. 1.

In all the remaining cases the algorithm branches into smaller subproblems. We
consider these cases separately.

In the case Main 3 every vertex has weight 1 + c. Therefore, removing v leads
to a problem of size µ − 1− c. Otherwise, v becomes active after the next Main 4
step. Then all its neighbors become of weight 1, and we obtain a problem of size at
most µ − 1− 3c because v has degree at least 2. This corresponds to the following
recurrence

T (µ)≤ T (µ−1− c)+T (µ−1−3c).

In the case Main 6 removing the vertex v decreases the size of the problem by 1. If
v is added to F then we obtain a non-trivial component in F , which is contracted
into a new active vertex t ′ at the next Preprocessing 2 step. Those of the generalized
neighbors of v that are of weight 1 will be connected to t ′ by multiedges and thus
removed during the next Preprocessing 2 step. If a generalized neighbor of v is of
weight 1+c, then it will become a neighbor of t ′, i.e. of weight 1. Thus, in any case
the size of the problem is decreased by at least 1+3c. So, we have that in this case

T (µ)≤ T (µ−1)+T (µ−1−3c).

In the case Main 7 we distinguish three subcases depending on the weights of
the generalized neighbors of v. Let i be the number of generalized neighbors of v
of weight 1 + c. Adding v to F reduces the weight of a generalized neighbor either
from 1 to 0 or from 1 + c to 1. Removing v from the graph reduces the weight of
both generalized neighbors of v to 0 (since we add them to F). According to this,
we obtain three recurrences, for each i ∈ {0,1,2},

T (µ)≤ T (µ− (3− i)− ic)+T (µ−3− ic).

6.3 Dominating Set 113

In total we have established five recurrences. For each fixed value of c we com-
pute the largest branching factor βc among all of the five branching factors. Then for
a fixed value of c, the running time of the algorithm can be bounded byO(β µ

c µO(1)).
Thus everything boils down to searching for all 0≤ c≤ 1 for the maximum branch-
ing factor βc among all five recurrences, and then finding the value of c to minimize
βc. By the use of a computer program one can find this optimal value of c. By putting
c = 0.565, we find βc < 1.51089. Thus the running time of our algorithm is

T (n) =O(1.51089(1+c)n) =O(1.8899n).

ut

6.3 Dominating Set

In this section we show how to use a “Measure & Conquer” based algorithm to
compute a minimum dominating set of a graph. An important idea is to reduce the
original MINIMUM DOMINATING SET problem (MDS) to an equivalent MINIMUM
SET COVER problem (MSC), and to use a simple branching algorithm to solve the
MSC problem. To establish the running time of this algorithm an involved Measure
& Conquer analysis is used. Remarkably, Measure & Conquer improves the running
time established for the algorithm from O(1.9052n) to O(1.5259n).

Let us recall the following definitions.

Minimum Dominating Set Problem. In the MINIMUM DOMINATING SET problem
(MDS) we are given an undirected graph G = (V,E). The task is to compute the
minimum cardinality of a dominating set D of G, i.e. D is a vertex subset such that
every vertex of G is either in D, or adjacent to some vertex in D.

Minimum Set Cover Problem. In the MINIMUM SET COVER problem (MSC) we are
given a universe U of elements and a collection S of (non-empty) subsets of U . The
task is to compute the minimum cardinality of a set cover of (U ,S). A set cover
of (U ,S) is a subset S ′ ⊆ S which covers U , i.e.

⋃
S∈S ′ S = U . Sometimes we also

speak of a set cover of S, instead of a set cover of (U ,S).
The minimum dominating set algorithm is based on a natural reduction of the

MINIMUM DOMINATING SET problem to an equivalent MINIMUM SET COVER
problem, which has already been used in Sect. 3.2: An input G = (V,E) of MDS is
assigned to an input (U ,S) of MSC by imposing U =V and S = {N[v]| v∈V}. Note
that N[v] is the set of vertices dominated by v, thus D is a dominating set of G if and
only if {N[v]| v ∈D} is a set cover of {N[v]| v ∈V}. Thus every minimum set cover
of {N[v]| v ∈V} corresponds to a minimum dominating set of G. It is crucial that in
any input (U ,S) of MSC corresponding to an input G = (V,E) of MDS, it holds that
|U|= |S|= |V |= n.

114 6 Measure & Conquer

6.3.1 The Algorithm msc

We consider a simple branching algorithm msc for solving the MSC problem, de-
scribed in Fig. 6.4. Its output msc(S) is the minimum cardinality of a set cover of
the input S.

A central notion is the frequency of an element u ∈ U defined to be the number
of subsets S ∈ S containing u. For the sake of simplicity, we assume that S covers
U : U = U(S) , ∪S∈SS. With this assumption, an instance of msc is univocally
specified by S.

The following lemma justifies some of the reduction rules of algorithm msc.

Lemma 6.7. For a given MSC instance S:

1. If there are two distinct sets S and R in S, S ⊆ R, then there is a minimum set
cover which does not contain S.

2. If there is an element u of U which belongs to a unique S ∈ S, then S belongs to
every set cover.

Exercise 6.8. We leave the proof of Lemma 6.7 as an exercise to the reader.

Each set S ∈ S of cardinality one satisfies exactly one of the properties in
Lemma 6.7, and thus it can be removed by a reduction rule.

The next lemma justifies the final reduction rule of algorithm msc. We need the
following definitions. A set A⊆ E of edges of a graph G = (V,E) is an edge cover,
if every vertex of G is endpoint of an edge of A; the edge set A is a matching if no
vertex of G is an endpoint of two edges of A.

Lemma 6.9. For a given MSC instance S such that all the subsets S of S are of
cardinality two, MSC can be solved in polynomial time.

Proof. If all the subsets of S are of cardinality two then MSC can be solved in
polynomial time via the following standard reduction to the MAXIMUM MATCHING
problem. Consider the graph G̃ which has a vertex u for each u ∈ U , and an edge
{u,v} for each subset S = {u,v} in S. Thus we have to compute a minimum edge
cover of G̃. To compute a minimum edge cover of G̃, first we compute a maximum
matching M on G̃ in polynomial time. Then, for each unmatched vertex u, we add to
M an arbitrary edge which has u as an endpoint (if no such edge exists, there is no
set cover at all). Finally the subsets corresponding to M form a minimum set cover
of S. ut

The algorithm msc is given in Fig. 6.4.
indexalgorithm!msc
If |S| = 0 (line 1), msc(S) = 0. Otherwise (line 2 and line 3) the algorithm

tries to reduce the size of the problem without branching, by applying one of the
Properties 1 and 2 of Lemma 6.7. Specifically, if there are two sets S and R, S ⊆ R,
we have

6.3 Dominating Set 115

Algorithm msc(S).
Input: A collection S of subsets of a universe U .
Output: The minimum cardinality of a set cover of S.

if |S|= 0 then1
return 0

if ∃S,R ∈ S with S⊆ R then2
return msc(S\{S})

if ∃u ∈ U(S) such that there is a unique S ∈ S with u ∈ S then3
return 1+msc(del(S,S))

choose a set S ∈ S of maximum cardinality4
if |S|= 2 then5

return poly-msc(S)
if |S| ≥ 3 then6

return min(msc(S\{S}),1+msc(del(S,S)))

Fig. 6.4 Algorithm msc for MSC

msc(S) = msc(S\S).

If there is an element u which is contained in a unique set S, we have

msc(S) = 1+msc(del(S,S)),

where
del(S,S) = {Z | Z = R\S 6= /0,R ∈ S}

is the instance of msc which is obtained from S by removing the elements of S from
the subsets in S, and finally removing the empty sets obtained.

If neither of the two properties above applies, the algorithm takes (line 4) a set
S ∈ S of maximum cardinality. If |S| = 2 (line 5), the algorithm directly solves the
problem with the polynomial time algorithm poly-msc based on the reduction to
maximum matching given in Lemma 6.9. Otherwise (line 6), it branches on the two
subproblems SIN = del(S,S) (the case where S belongs to the minimum set cover)
and SOUT = S\S (the case where S is not in the minimum set cover). Thus

msc(S) = min{msc(S\{S}),1+msc(del(S,S))}.

In many branching algorithms any instance of a subproblem either contains a
corresponding partial solution explicitly or such a partial solution can easily be at-
tached to the instance. In algorithm msc it is easy to attach the collection of all
selected sets of S to a subproblem. Thus the given algorithm msc computing the
minimum cardinality of a set cover can easily be modified so that it also provides a
minimum set cover.

To illustrate the power of the Measure & Conquer analysis let us first consider
the following analysis based on a simple measure k(S ′) of the size of an instance S ′
of MSC,

116 6 Measure & Conquer

k(S ′) = |S ′|+ |U(S ′)|.
Let `(k) be the number of leaves in the search tree generated by the algorithm to
solve a problem of size k = k(S). If one of the conditions of lines 2 and 3 is satisfied,
`(k) ≤ `(k− 1). Let S be the set selected in line 4. If |S| = 2, then the algorithm
directly solves the problem in polynomial time (`(k) = 1). Otherwise (|S| ≥ 3), the
algorithm branches into the two subproblems SOUT = S\{S} and SIN = del(S,S).
The size of SOUT is k−1 (one set removed from S). The size of SIN is at most k−4
(one set removed from S and at least three elements removed from U). This brings
us to `(k)≤ `(k−1)+`(k−4). We conclude that `(k)≤αk, where α < 1.3803 is the
(unique) positive root of the polynomial x4−x3−1. It turns out that the total number
of subproblems solved is within a polynomial factor of `(k). Moreover, solving each
subproblem takes polynomial time. Thus the time complexity of algorithm msc is
O∗(`(k)) =O∗(αk) =O(1.3803|S|+|U |). Thus the corresponding algorithm solving
MDS has running time O∗((α2)n) =O(1.9052n).

Using Measure & Conquer we will show that the running time of the very same
MDS branching algorithm is indeed O(1.5259n). This illustrates the power of Mea-
sure & Conquer and it also shows that it is worth the effort to study and apply this
method.

6.3.2 A Measure & Conquer Analysis

In this section we show how to apply Measure & Conquer to refine the running time
analysis and to establish a running time of O(1.2353|S|+|U |). This includes a more
careful set up of the measure of an instance S of MSC (including various weights
to be fixed later), the analysis of the reduction and branching rules of the algorithm
with respect to this measure, and the computation to optimize the weights and the
measure.

The type of measure we are going to describe is often useful when analysing
branching algorithms to solve NP-hard problems exactly. The original motivation
for this choice of the measure is the following. Removing a large set has a different
impact on the “progress” of the algorithm msc than removing a small one. In fact,
when we remove a large set, we decrease the frequency of many elements. Decreas-
ing elements’ frequencies pays of in the long term, since the elements of frequency
one can be filtered out (without branching). A dual argument holds for the elements.
Removing an element of high frequency is somehow preferable to removing an el-
ement of small frequency. In fact, when we remove an element occurring in many
sets, we decrease the cardinality of all such sets by one. This is good in the long
term, since sets of cardinality one can be filtered out. Both phenomena are not taken
into account by the simple measure discussed in the previous subsection.

This suggests the idea to give a different “weight” to sets of different cardinality
and to elements of different frequency. In particular, let ni denote the number of
subsets S ∈ S of cardinality i. Moreover let m j denote the number of elements u∈ U

6.3 Dominating Set 117

of frequency j. The following is the measure k = k(S) of the size of an instance S
of MSC:

k(S) = ∑
i≥1

wi ni + ∑
j≥1

v j m j,

where the weights wi,v j ∈ [0,1] will be fixed later. Note that k(S)≤ |S|+ |U|. This
guarantees that a running time bound with respect to the measure k(S) directly
translates into one with respect to |S|+ |U| and to 2n, since for all α ≥ 1, αk(S) ≤
α |S|+|U | ≤ α2n.

Theorem 6.10. Algorithm msc solves the MINIMUM SET COVER problem in time
O(1.2353|U |+|S|).

Proof. As usual in branching algorithms the correctness of the algorithm follows
from the correctness of all reduction and branching rules and is easy to obtain. The
following assumptions simplify the running time analysis and they are an important
part of the definition of the measure.

(a)wi ≤ wi+1 and vi ≤ vi+1 for i≥ 1;
(b)w1 = v1 = 0;
(c)wi = vi = 1 for i≥ 6.

The first assumption says that the weights are non-decreasing with the cardinality
(frequency). Intuitively, this makes sense: the smaller the cardinality (frequency)
the closer is the subset (element) to the state when it will be filtered out (without
branching). The second assumption is due to the fact that sets of cardinality one and
elements of frequency one can be removed without branching. The last assumption
is simply due to the fact that in this analysis weights are chosen to be of value at most
1. It also avoids dealing with an unbounded number of weights in the computations
to be described later.

The following quantities turn out to be useful in the analysis:

∆ wi = wi−wi−1, i≥ 2 and ∆ vi = vi− vi−1, i≥ 2,

Intuitively, ∆ wi (∆ vi) is the reduction of the size of the problem corresponding to
the reduction of the cardinality of a set (of the frequency of an element) from i to
i−1. We make one last assumption

(d)∆wi ≥ ∆wi+1, for i≥ 2,

that is the wi’s are increasing at decreasing speed. On the one hand, experiments
have shown that this is a reasonable choice, on the other hand the assumption sim-
plifies the subsequent analysis significantly.

Having chosen the measure with 8 weights still to be fixed, we now analyse all
reduction and branching rules of the algorithm msc with respect to this measure,
similar to the analysis of branching algorithms in Chap. 2.

Let `(k) be the number of leaves in the search tree generated by the algorithm
to solve a problem of measure k. Clearly, `(0) = 1. Consider the case k > 0 (which

118 6 Measure & Conquer

implies S 6= /0). If one of the conditions of lines 3 and 4 holds, one set S is removed
from S . Thus we get `(k)≤ `(k−w|S|), where w|S| ≥ 0 by assumptions (a) and (c).

Otherwise, let S be the subset selected in line 5. If |S| = 2, no subproblem is
generated (`(k) = 1). Otherwise (|S| ≥ 3), msc generates two subproblems SIN =
del(S,S) and SOUT = S\S.

Consider the subproblem SOUT . The size of SOUT decreases by w|S| because of
the removal of S. Let ri be the number of elements of S of frequency i. Note that
there cannot be elements of frequency 1. Hence

∑
i≥1

ri = ∑
i≥2

ri = |S|.

Consider an element u ∈ S of frequency i≥ 2. When we remove S, the frequency of
u decreases by one. As a consequence, the size of the subproblem decreases by ∆ vi.
Thus the overall reduction of the size of SOUT due to the reduction of the frequencies
is at least

∑
i≥2

ri ∆ vi =
6

∑
i=2

ri ∆ vi,

where we used the fact that ∆ vi = 0 for i≥ 7 (assumption (c)).
Suppose that r2 > 0, and let R1,R2, . . . ,Rh, 1 ≤ h ≤ r2, be the sets distinct from

S which share at least one element of frequency 2 with S. When we discard S, we
must later select all the sets Ri. Suppose Ri shares r2,i such elements with S. Then
|Ri| ≥ r2,i + 1, since otherwise we would have R ⊆ S, which is excluded by line 3.
Note that r2,i < |S|, since S is of maximum cardinality by algorithm msc. Thus, by
assumption (a), the reduction of the size of the problem due to the removal of Ri is
w|Ri| ≥ wr2,i+1. We also observe that, by selecting the Ri’s, we remove at least one
element f /∈ S, thus gaining an extra v| f | ≥ v2 (here we use assumption (a) again).
By a simple case analysis, which we present here in a slightly weakened form, the
total reduction of the size of the problem due to the removal of the Ri’s is at least

∆ k′ =





0 if r2 = 0;
v2 +w2 if r2 = 1;
v2 +min{2w2,w3}= w3 if r2 = 2;
v2 +min{3w2,w2 +w3}= w2 +w3 if r2 = 3, |S|= 3;
v2 +min{3w2,w2 +w3,w4}= w4 if r2 ≥ 3, |S| ≥ 4.

where we used the fact that min{2w2,w3} = w3 and min{w2 + w3,w4} = w4 by
assumptions (b) and (d).

Consider now the subproblem SIN . The size of SIN decreases by w|S| because of
the removal of S. Let r≥i = ∑ j≥i r j be the number of elements of S of frequency at
least i. Consider an element u ∈ S of frequency i (i ≥ 2). The size of SIN further
decreases by vi because of the removal of u. Thus the overall reduction due to the
removal of the elements u of S is

6.3 Dominating Set 119

∑
i≥2

ri vi =
6

∑
i=2

ri vi + r≥7,

where we used the fact that vi = 1 for i≥ 7 (assumption (c)). Let R be a set sharing an
element u with S. Note that |R| ≤ |S|. By removing u, the cardinality of R is reduced
by one. This implies a reduction of the size of SIN by ∆ w|R| ≥ ∆ w|S| (assumption
(d)). Thus the overall reduction of SIN due to the reduction of the cardinalities of
the sets R is at least:

∆ w|S|∑
i≥2

(i−1)ri ≥ ∆ w|S|

(
6

∑
i=2

(i−1)ri +6 · r≥7

)
.

Note that this quantity is 0 for |S| ≥ 7. Putting it all together, for all the possible
values of |S| ≥ 3 and of the ri’s such that

6

∑
i=2

ri + r≥7 = |S|,

we have the following set of recurrences

`(k)≤ `(k−∆ kOUT)+ `(k−∆ kIN),

where

• ∆ kOUT , w|S|+∑
6
i=2 ri ∆ vi +∆ k′,

• ∆ kIN , w|S|+∑
6
i=2 ri vi + r≥7 +∆ w|S|

(
∑

6
i=2(i−1)ri +6 · r≥7

)
.

All that remains is to determine the best choice of the 8-tuple

(w2,w3,w4,w5,v2,v3,v4,v5)

such that all simplifying assumptions are satisfied and the corresponding running
time is as small as possible. Since ∆ w|S| = 0 for |S| ≥ 7, we have that each re-
currence with |S| ≥ 8 is dominated by some recurrence with |S| = 7, i.e. for each
recurrence with |S| ≥ 8 (whatever the choice of the weights) there is a recurrence
with |S|= 7 having larger or equal branching factor. Hence it is sufficient to restrict
ourselves to the recurrences for the cases 3≤ |S| ≤ 7. Thus we consider a large but
finite number of recurrences. For every fixed 8-tuple (w2,w3,w4,w5,v2,v3,v4,v5)
the quantity `(k) is upper bounded by αk, where α is the largest number from the
set of real roots of the set of equations

α
k = α

k−∆ kOUT +α
k−∆ kIN

corresponding to all different combinations of the values of |S| and r2, . . . ,r|S|. Thus
the estimation of `(k) boils down to choosing the weights to minimize α . This opti-
mization problem is interesting in its own right and we refer to Eppstein’s work [72]
on quasi-convex programming for a general treatment of such problems.

120 6 Measure & Conquer

To find the (nearly) optimal weights the authors used a computer program, based
on randomized local search, which turns out to be very fast and sufficiently accurate
in practice even for a large number of weights and recurrences. The outcome of the
program was:

wi =





0.377443 if i = 2,

0.754886 if i = 3,

0.909444 if i = 4,

0.976388 if i = 5,

and vi =





0.399418 if i = 2,

0.767579 if i = 3,

0.929850 if i = 4,

0.985614 if i = 5,

which yields α < 1.2353, and thus `(k) =O(αk(S)). This completes the choice of
the measure.

Finally we observe that the time spent on a node of the search tree (without
recursive calls) is bounded by a polynomial poly(n) of n, since the time spent on any
reduction rule is bounded by a polynomial, and since each reduction rule removes a
subset of S or stops the calculation. Hence the overall running time of the algorithm
is O(n`(k) poly(n)) =O∗(`(k)) =O(1.2353|U |+|S|). ut
As already mentioned, MDS can be reduced to MSC by imposing U = V and S =
{N[v]| v ∈ V}. The size of the MSC instance with respect to the measure k(S) is at
most 2n. By simply combining this reduction with algorithm msc one obtains:

Corollary 6.11. The problem MINIMUM DOMINATING SET is solvable in time
O(1.23532n) =O(1.5259n).

Two remarks concerning the computations needed to determine the best choice
of all weights should be made. First, given the measure and all weights it is compu-
tationally easy to determine the branching factors of all recurrences and verifiy that
they are all bounded by a claimed solution α .

Second, there are various ways to compute the best choice of the weights. From
a mathematical point of view it is sufficient to mention the weights as a certificate
for the claimed value of α . There is no need to explain how those weights have been
established.

How to apply a technique called memorization, which produces algorithms using
exponential space, and improve upon the running time of a branching algorithm
achieved by Measure & Conquer analysis is discussed in Chap. 10.

6.4 Lower Bounds

Branching algorithms are one of the major tools for the design and analysis of exact
exponential time algorithms. Their running time analysis has been improved signif-
icantly during the last decade. All known methods to analyze the running time of
branching algorithms are based on (linear) recurrences. Despite all efforts, estab-
lishing the worst-case running time of a branching algorithm seems very difficult;

6.4 Lower Bounds 121

only for a few branching algorithms is their worst-case running time known. Nowa-
days all we can establish are upper bounds of the worst-case running time; usually
called the running time of the algorithm.

The stated running time of a branching algorithm might (significantly) overesti-
mate its (unknown) worst-case running time. Comparing two algorithms via upper
bounds of their worst-case running time is not satisfactory but it is common practice
for branching algorithms. The only way out is better methods to analyze branching
algorithms.

Lower bounds for the worst-case running time of branching algorithms cannot
change this unsatisfactory state. However a lower bound on the worst-case running
time of a particular branching algorithm can give an idea how far the current anal-
ysis of this algorithm is from being tight. There are in fact important branching
algorithms having a large gap between the best known lower and upper bound. Fur-
thermore the study of lower bounds has an interesting side effect; it leads to new
insights on particular branching algorithms. The reason is that running time analy-
sis of branching algorithms essentially transforms the algorithm in a collection of
recurrences and then solves it; while to achieve lower bounds one needs to study
and understand the algorithm and its executions.

We start with yet another simple branching algorithm solving the MIS problem,
described in Fig. 6.5.

Algorithm mis4(G).
Input: A graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if ∆(G)≥ 3 then
choose a vertex v of degree d(v)≥ 3 in G
return max(1+mis4(G\N[v]),mis4(G\ v))

if ∆(G)≤ 2 then
compute α(G) using a polynomial time algorithm
return α(G)

Fig. 6.5 Algorithm mis4 for MIS

It is not hard to show by simple analysis that the running time of algorithm mis4
isO(1.3803n). The question is whether this upper bound is tight or can be decreased,
e.g. by using Measure & Conquer similar to algorithm mis3 in Sect. 6.1.

To establish a lower bound for the algorithm mis4 let us consider the sequence of
graphs Gn = ({1,2, . . . ,n},En), n≥ 1, where two vertices i and j of Gn are adjacent
iff |i− j| ≤ 3, see Fig. 6.6.

Let us consider an execution of mis4 on a graph Gn for sufficiently large n (say
n ≥ 10). The algorithm may choose any vertex of Gn having degree at least 3. To
break the tie we may choose any suitable vertex. Hence we use the following tie
break rule: “Branch on the smallest vertex of the instance”. Inductively, we prove

122 6 Measure & Conquer

3 41 2 5 6 7

Fig. 6.6 Graph G7

that every instance generated by mis4 when executed on Gn with the above rule is
of the form Gn[{i, i+1, . . . ,n}]. Hence the smallest vertex is of degree 3 (unless the
maximum degree is at most 2). Branching on vertex i of instance Gn[{i, i+1, . . . ,n}]
calls the instances Gn[{i + 1, i + 2, . . . ,n}], when discarding i, and Gn[{i + 4, i +
5, . . . ,n}], when selecting i.

Let T (n) be the number of leaves in the search tree when running mis4 on
Gn with our tie break rule. The above obervations imply the recurrence T (n) =
T (n− 1)+ T (n− 4). Let α be the branching factor of the branching vector (1,4).
Then Ω(αn) is a lower bound for the worst-case running time of mis4, and this
implies

Theorem 6.12. The worst-case running time of algorithm mis4 is Θ ∗(αn), where
α = 1.3802... < 1.3803 is the unique positive real root of x4− x3−1 = 0.

Exercise 6.13. Determine a lower bound for the worst-case running time of algo-
rithm mis3 of Sect. 6.1.

The second example is a Ω(1.2599n) lower bound on the worst-case running time
of algorithm mds of Sect. 6.3. Recall that this algorithm is based on the polynomial-
space algorithm msc of Sect. 6.3 and the reduction from MDS to MSC.

Theorem 6.14. The worst case running time of algorithm mds solving the MINI-
MUM DOMINATING SET problem is Ω(2n/3) = Ω(1.2599n).

Proof. Consider the following input graph Gn (n ≥ 1): the vertex set of Gn is
{ai,bi,ci : 1 ≤ i ≤ n}. The edge set of Gn consists of two types of edges: for
each i = 1,2 . . . ,n, the vertices ai, bi and ci induce a triangle Ti; and for each
i = 1,2, ...,n−1: {ai,ai+1}, {bi,bi+1} and {ci,ci+1} are edges, see Fig. 6.7.

Each node of the search tree corresponds to a subproblem of the MSC problem
with input (U ,S = {Sv : v ∈ V}) where Sv ⊆ N[v]. On the right in Fig. 6.7, we
picture the top part of a feasible search tree: there is a node in the tree for each
subproblem; subproblems are labelled with the node associated with the branching
set; left and right children correspond to selection and discarding of the branching
set, respectively.

We give a selection rule for the choice of the vertices v (respectively sets Sv) to
be chosen for the branching. Clearly the goal is to choose them such that the number

6.4 Lower Bounds 123

b1

c1

a1

b2

c2

a2

b3

c3

a3

a2

b4

c4

b2

a4 a3

c4 b3

Fig. 6.7 Graph Gn and the feasible search tree

of nodes in the search tree obtained by the execution of algorithm msc on graph Gn
is as large as possible.

In each round i, i ∈ {2,3, . . . ,n−1}, we start with a pair P = {xi,yi} of vertices
(belonging to triangle Ti), where {xi,yi} ⊂ {ai,bi,ci}. Initially P = {a2,b2}. Our
choice makes sure that for each branching vertex x the cardinality of its set Sx is five
in the current subproblem S, and that no other rules of the algorithm will apply to a
branching vertex than those of line 6 of algorithm msc. Consequently, either the set
Sv is taken into the set cover (S := del(S,Sv)), or Sv is removed (S := S \Sv).

For each pair P = {xi,yi} of vertices we branch in the following 3 ways:
1) take Sxi

2) remove Sxi , and then take Syi

3) remove Sxi , and then remove Syi

The following new pairs of vertices correspond to each of the three branches:
1) P1 = {ai+2,bi+2,ci+2}\ xi+2
2) P2 = {ai+2,bi+2,ci+2}\ yi+2
3) P3 = {xi+1,yi+1}

On each pair Pj we recursively repeat the process. Thus of the three branches of
Ti two proceed on Ti+2 and one proceeds on Ti+1.

Let T (k) be the number of leaves in the search tree when all triangles up to
Tk have been used for branching. Thus T (k) = 2 ·T (k− 2)+ T (k− 1), and hence
T (k) ≥ 2k−2. Consequently the worst case number of leaves in the search tree of
msc for a graph on n vertices is at least 2n/3−2. ut

Exercise 6.15. The algorithm of Tarjan and Trojanowski for MIS has been pub-
lished in 1977 [213] and its (provable) running time is O∗(2n/3). What is the best
upper bound of the running time that can be achieved from the linear recurrences
provided in [213]? Construct a lower bound for the worst-case running time of this
algorithm which should be close to its upper bound.

124 6 Measure & Conquer

Exercise 6.16. Provide a lower bound for the worst-case running time of algorithm
mis2 from Chap. 2.

Notes

The presentation of the Measure & Conquer approach is based on the following
works of Fomin, Grandoni and Kratsch [83, 85, 87]. This approach was strongly
influenced by Eppstein’s ideas in quasiconvex analysis [71, 72]. Approaches related
to the design and analysis of branching algorithms by Measure & Conquer have
been developped by Eppstein (see e.g. [73]), Byskov and Eppstein [43], Scott and
Sorkin [203], Gaspers and Sorkin [103] and Dahllöf, Jonsson and Wahlström [58].
Computational issues related to Measure & Conquer are discussed by Williams in
[218].

The first algorithm breaking the trivial O∗(2n) bound for FEEDBACK VERTEX
SET is due to Razgon [177]. Our presentation of the algorithm follows [79] which
by a more careful analysis establishes running time O(1.7548n). In the same paper
it was shown that the number of minimal feedback vertex sets in an n-vertex graph
is O(1.8638n) and that there are graphs with 1.5926n different minimal feedback
vertex sets. FEEDBACK VERTEX SET is a special case of a more general problem—
find a maximum induced subgraph satisfying some property P. Fomin and Villanger
[96] used completely different technique based on minimal triangulations of graphs
to show that a maximum induced subgraph of treewidth at most t can be found in
time O(|ΠG|nO(t)), where |ΠG|=O∗(1.7348n) is the number of potential maximal
cliques in G. For t ≤ 1, this is gives the fastest so far algorithm for FVS.

Exact algorithms for the NP-complete MINIMUM DOMINATING SET problem
can be found in [91, 106, 176, 197]. The algorithm for MINIMUM SET COVER
follows [83, 87]. Using the memorization technique (see Chap. 10) the running
time of the algorithm solving MINIMUM DOMINATING SET can be improved to
O(1.5137n), however exponential space is needed. This running time has been im-
proved to O(1.5063n) by van Rooij and Bodlaender [187] using Measure & Con-
quer.

Many branching algorithms solving NP-hard problems exactly have been estab-
lished in the last five years and a large part of them uses a Measure & Conquer anal-
ysis. To mention just a few of them [77, 86, 89, 80, 133, 141, 142, 143, 175, 188].
The PhD theses of Gaspers [101], Stepanov [209] and Liedloff [151] contain more
applications of Measure & Conquer.

Chapter 7
Subset Convolution

Subset convolution is a powerful tool for designing exponential time algorithms.
The fast subset convolution algorithm computes the convolution of two given func-
tions in time O∗(2n), while a direct calculation of such a convolution needs time
Ω(3n).

In the first two sections we explain the fundamentals of subset convolution and
the fast algorithm to compute it. To obtain a fast subset convolution algorithm one
relies on repeated use of dynamic programming, and in particular on the so-called
fast zeta transform. In the latter sections we present various algorithmic applications
of fast subset convolution. In this chapter the algorithms (may) operate with large
numbers and thus we use the log-cost RAM model to analyze their running times.

Let us start by providing some fundamental notions for this approach. Let U be a
set of n elements, n≥ 1, and let us assume that U = {1,2, . . . ,n}. We denote by 2U

the set of all subsets of U . Consider two functions f ,g : 2U → Z.

Definition 7.1. The subset convolution, or for short the convolution of f and g, de-
noted by f ∗g, is a function assigning to any S⊆ U an integer.

(f ∗g)(S) = ∑
T⊆S

f (T) ·g(S\T) (7.1)

The following reformulation of the definition of (f ∗g)(S) for all S⊆U will also be
useful.

(f ∗g)(S) = ∑
X ,Y⊆S
X∪Y=S
X∩Y= /0

f (X) ·g(Y) (7.2)

The goal of the next two sections is to present a fast exponential time algorithm
to compute the subset convolution of two functions f ,g : 2U → Z.

125

126 7 Subset Convolution

7.1 Fast zeta Transform

To establish a fast exponential time algorithm for subset convolution we rely on fast
zeta transform and its inverse as well as ranked zeta transform and its inverse.

For a universe U , we consider functions from 2U (the family of all subsets of
U) to Z. For such a function f : 2U → Z, the zeta transform ζ of f is a function
f ζ : 2U → Z defined by

f ζ (S) = ∑
X⊆S

f (X).

One of the interesting features of the zeta transform of f is that, given f ζ , the
function f can be recovered by a formula called Möbius inversion.

Lemma 7.2.

f (S) = ∑
X⊆S

(−1)|S\X | · f ζ (X) (7.3)

Proof.

∑
X⊆S

(−1)|S\X | · f ζ (X) = ∑
X⊆S

(−1)|S\X | · ∑
Y⊆X

f (Y)

= ∑
Y⊆S

(
∑

Y⊆X⊆S
(−1)|S\X |

)
· f (Y)

Every nonempty set has equal number of even and odd-sized subsets. It means that
if |S\Y |= k > 0, then the inner summand is equal to

k

∑
i=0

(−1)i
(

k
i

)
= 0.

Thus

∑
Y⊆S

(
∑

Y⊆X⊆S
(−1)|S\X |

)
· f (Y) = f (S).

ut
We define the Möbius transform µ of a function f : 2U → Z as the function

f µ : 2U → Z satisfying

f µ(S) = ∑
X⊆S

(−1)|S\X | f (X).

Exercise 7.3. By Lemma 7.2, we have that f ζ µ = f . We leave the proof that f µζ =
f as an exercise for the reader.

Summarizing, we have established the principle of Möbius inversion: the set 2U

(and more generally, any finite partially ordered set) has a pair of mutually inverse

7.1 Fast zeta Transform 127

linear transformations, the zeta transform and the Möbius transform. We formalize
it in the following lemma.

Lemma 7.4. Zeta and Möbius transform are mutually inverse functions.

For our algorithms we need to rank the functions discussed. The ranked zeta
transform f ζ of a function f : 2U → Z is defined for all S ⊆ U and all k ∈
{0,1, . . . ,n} as follows

f ζ (k,S) = ∑
X⊆S,|X |=k

f (X).

Let us remark that the zeta transform can be obtained in terms of the ranked zeta
transform by taking the sum over k, i.e.

f ζ (S) =
|S|
∑
k=0

f ζ (k,S).

Given the ranked zeta transform f ζ , as in Lemma 7.2, one can show that the func-
tion f can be established by the following formula for inverting the ranked zeta
transform.

f (S) = f ζ (|S|,S) = ∑
X⊆S

(−1)|S\X | · f ζ (|S|,X) (7.4)

Now let us turn to algorithmic issues and study fast algorithms to compute ranked
zeta and Möbius transforms. A cornerstone of fast subset convolution is the follow-
ing lemma.

Lemma 7.5. Let M > 0 be an integer, U be a set of size n and f : 2U → Z be a
function such that for every S ⊆ U , | f (S)| ≤M. We also assume that all the values
f (S) for all the 2n sets S ⊆ U can be computed in time 2n · logM · nO(1). Then the
zeta and Möbius transforms can be computed in time 2n · logM ·nO(1).

Proof. For a function f : 2U → Z, we start by computing all values f (S) for all
S⊆ U , and keeping all these values in a table. By the assumption of the lemma, this
takes time 2n · logM · nO(1), and we use space 2n · logM · nO(1) to keep this table.
Once the table is computed, for every S ⊆ U we can look up the value of f (S) in
polynomial time.

The algorithm builds a table of entries f ζi(S) for all S⊆U and all i∈ {0,1, . . . ,n}
such that

f ζi(S) = ∑
S\{1,2,...,i}⊆X⊆S

f (X).

This implies that f ζn(S) = f ζ (S) for all S⊆U , and thus we seek the entries f ζn(S).
The dynamic programming algorithm works as follows. Initially, for all S⊆ U

f ζ0(S) = f (S).

128 7 Subset Convolution

Then iteratively for i≥ 1 the algorithm computes f ζi(S) for all S ⊆ U based on the
following recurrence

f ζi(S) =

{
f ζi−1(S), if i /∈ S,

f ζi−1(S\{i})+ f ζi−1(S), if i ∈ S.

Each entry of the table requires at most logM bits. Thus the fast zeta transform f ζ

of a given function f can be computed in such a way that all 2n values of f ζ (X) are
established in time 2n · logM ·nO(1).

The fast Möbius transform f µ of a function f : 2U → Z can be done by a similar
dynamic programming algorithm. The algorithm builds a table of entries f µi(S) for
all S⊆ U and all i ∈ {0,1,2, . . . ,n} such that

f µi(S) = ∑
S\{1,2,...,i}⊆X⊆S

(−1)|S\X | f (X).

This implies that f µn(S) = f µ(S) for all S ⊆ U . The dynamic programming
algorithm works as follows. Initially, for all S⊆ U

f µ0(S) = f (S).

For i≥ 1 the algorithm computes f µi(S) for all S⊆U based on the following recur-
rence

f µi(S) =

{
f µi−1(S), if i /∈ S
− f µi−1(S\{i})+ f µi−1(S), if i ∈ S.

Thus the Möbius transform f µ can be computed in such a way that all the 2n values
f µ(S) are established within time 2n · logM ·nO(1). ut

Corollary 7.6. If M = 2nO(1)
then the zeta and Möbius transforms can be computed

in time O∗(2n).

7.2 Fast Subset Convolution

Now we present an algorithm for fast subset convolution which in principle is ob-
tained by combining some dynamic programming algorithms. The fundamental idea
is to use ranked zeta transforms and to define a convolution of ranked zeta trans-
forms. Let f ζ and gζ be two ranked zeta transforms. The ranked convolution of f ζ

and gζ , denoted by f ζ ~gζ , is defined for k ∈ {0,1,2, . . .n} and all S⊆ U by

(f ζ ~gζ)(k,S) =
k

∑
j=0

f ζ (j,S) ·gζ (k− j,S). (7.5)

7.2 Fast Subset Convolution 129

We emphasize that the ranked convolution is over the rank parameter k, while the
standard convolution is over the subset parameter T . This definition of the ranked
convolution and the definition of the ranked zeta transform (7.4) bring us to the
following theorem.

Theorem 7.7. Let f ,g : 2U → Z and let f ζ and gζ be their ranked zeta transforms.
Then f ∗g is equal to the ranked Möbius transform of f ζ ~gζ , i.e. for all S⊆ U:

(f ∗g)(S) = ∑
X⊆S

(−1)|S\X |(f ζ ~gζ)(|S|,X) (7.6)

Proof. To transform the right side of (7.6)

∑
X⊆S

(−1)|S\X |(f ζ ~gζ)(|S|,X),

we first substitute the definition of the ranked convolution to obtain

∑
X⊆S

(−1)|S\X |
|S|
∑
i=0

f ζ (i,X)gζ (|S|− i,X).

The definition of the ranked zeta transform for f ζ (k,X) and gζ (|S|− i,X) yields

∑
X⊆S

(−1)|S\X |
|S|
∑
i=0

(
∑

Y⊆X
|Y |=i

f (Y)
)(

∑
Z⊆X
|Z|=|S|−i

g(Z)
)

= ∑
X⊆S

(−1)|S\X |
|S|
∑
i=0

∑
Y,Z⊆X
|Y |=i
|Z|=|S|−i

f (Y)g(Z) (7.7)

Now let us simplify (7.7) by determining the coefficient of f (Y)g(Z) for all pairs
(Y,Z). Clearly f (Y)g(Z) occurs in the expression only if |Y |+ |Z| = |S|. Further-
more, f (Y)g(Z) occurs once for every X satisfying Y ∪Z ⊆ X ⊆ S and its sign is
then (−1)|S\X |. Hence in (7.7), the overall coefficient of f (Y)g(Z), for any single
(Y,Z) satisfying |Y |+ |Z|= |S|, is equal to

∑
Y∪Z⊆X⊆S

(−1)|S\X | =
|S\(Y∪Z)|

∑
i=0

(−1)i
(|S\ (Y ∪Z)|

i

)

=

{
1, if |S\ (Y ∪Z)|= 0i.e. if (Y,Z) is a partition of S,

0, otherwise.
(7.8)

Combining (7.7) and (7.8), we obtain that for every S⊆ U

∑
X⊆S

(−1)|S\X |(f ζ ~gζ)(|S|,X) = ∑
Y,Z⊆S
Y∪Z=S
Y∩Z= /0

f (Y)g(Z)

130 7 Subset Convolution

By (7.2), we have that for all S⊆ U ,

∑
X⊆S

(−1)|S\X |(f ζ ~gζ)(|S|,X) = (f ∗g)(S),

and this completes the proof. ut

Given functions f ,g : 2U → Z, based on Theorem 7.7 we can now evaluate f ∗g
as follows: First compute the fast ranked zeta transforms of f and g, then compute
the ranked convolution of the zeta transforms f ζ and gζ , and finally invert the
obtained result by using the fast ranked Möbius transform. Thus we arrive at the
following theorem.

Theorem 7.8. Let U be a set of size n and f ,g : 2U → Z be functions with range
in {−M,−M + 1, . . . ,M− 1,M}, and such that all the values f (X) and g(X), for
all X ⊆ U , can together be computed in time 2n · logM · nO(1). Then the subset
convolution f ∗g can be computed in time 2n · logM ·nO(1).

Let us remark that in the proof of Theorem 7.8 and Lemma 7.5, we multiply
O(n logM)-bit numbers. Thus to make our running time estimates more realistic, we
may assume a model of computation, in which multiplication of two b-bit integers
can be done in timeO(b logb log logb). This will lead to a running time of 2n · logM ·
(n · logM)O(1).

Many NP-hard combinatorial optimization problems do not deal with the integer
sum-product ring to which Theorem 7.7 directly applies. However, this theorem can
be adapted, for example, to compute for all S⊆ U the following functions:

max
X⊆S

f (X)+g(S\X),

and
min
X⊆S

f (X)+g(S\X).

For example, to compute the above mentioned maximum, we can scale functions
f (X) and g(X) and apply Theorem 7.8 to compute the subset convolution of func-
tions f1(X) = β f (X) and g1(X) = β g(X), where β = 2n + 1. Then the time required
to compute f1 ∗ g1 is 2n ·M · nO(1) Then to compute maxX⊆S f (X) + g(S \X) the
algorithm has to find a value p such that the result of the convolution is between
β p−1 and β p. All these computations can be done in time 2n ·M ·nO(1).

Another remark is that all our proofs can be carried out on a much more general
model. Instead of taking multiplication over integers, it is possible to prove similar
results for functions with values in rings. Then instead of summation and multipli-
cation over integers one can use multiplication and addition over a ring.

Let us mention that Theorem 7.8 can be proved by using the Fast Fourier Trans-
form, for short FFT. Given two polynomials F(x) and G(x) of degree n, the naive

7.2 Fast Subset Convolution 131

way of computing the product F(x) ·G(x) takes O(n2) operations. By making use
of FFT this can be speed up to O(n logn). We refer to the corresponding chapter in
Cormen et al. [52] for an introduction and further discussions of FFT. To compute
the subset convolution (f ∗g)(S) for all S⊆ U , we do the following.

Let us choose an (arbitrary) ordering (u1,u2, . . . ,un) of the elements of U . For a
subset S⊆ U , we define

bin(S) =
n−1

∑
i=0

fS(ui+1)2i,

where fS is the characteristic function

fS(ui) =

{
1, if ui ∈ S,

0, otherwise.

In other words, bin(S) is the number obtained by transforming the characteristic
vector of S from the binary to decimal numeral system.

For every j, 0≤ j ≤ n, we define ranked polynomials

F j(x) = ∑
S⊆U
|S|= j

f (S)xbin(S)

and
G j(x) = ∑

S⊆U
|S|= j

g(S)xbin(S).

For all values of j, the computation of F j(x) and G j(x) can be done in timeO∗(2n).
The crucial observation is that for sets A,B such that |A|+ |B|= k, bin(A)+bin(B)
has exactly k 1s in its binary representation if and only if A∩B = /0. For k ≥ 1, we
define (F ~G)k(x) as the polynomial obtained from the polynomial

k

∑
j=0

F j(x) ·Gk− j(x)

by keeping only the summands of degree `, where ` has exactly k 1s in its binary
representation. Again, for each k, such computation can be done by making use of
FFT in time O∗(2n). Finally, we compute

H(x) =
n

∑
j=0

(F ~G) j(x).

For every S⊆ U , the value of (f ∗g)(S) is the coefficient of xbin(S) in H(x).

132 7 Subset Convolution

7.3 Applications and Variants

Fast subset convolution is a powerful tool for the design of fast exponential time
algorithms. Nevertheless it is important to mention that algorithmic applications
often require extensions or modifications of the standard approach presented here.
This may require the use of auxiliary functions which facilitate convolution, and it
may also require changes in the dynamic programming algorithms for the standard
fast subset convolution. In the following sections we present examples illustrating
the use of fast subset convolution.

In Chap. 4, inclusion-exclusion algorithms for generic covering and partition
problems counting the number of k-coverings and k-partitions have been presented.
This allowed the design and analysis of an O∗(2n) time algorithm to compute the
chromatic number of a graph.

All these results can also be achieved by an application of fast subset convolution.
Let U be a set of n elements and let S be a family of subsets of U . Recall that
pairwise disjoint sets S1,S2, . . . ,Sk form a k-partition of U into S if Si ∈ S , 1≤ i≤ k
and S1 ∪ S2 ∪ ·· · ∪ Sk = U . We always assume here that for every S ⊆ U , there is a
polynomial time algorithm checking whether S ∈ S .

In Sect. 3.4 a simple dynamic programming algorithm counting the numbers of
k-partitions in time O∗(3n) is presented. Let us show how to use subset convolution
to speed up this algorithm.

Theorem 7.9. Let U be a set of n elements and let S be a family of subsets of U . For
any k ≥ 1, the number of k-partitions of U into S is computable in time O∗(2n).

Proof. Let f : 2U → {0,1} be an indicator function, i.e. for any S ⊆ U , f (S) = 1 if
and only if S ∈ S. Then the number of k-partitions is

∑
Y1 ,Y2 ,...,Yk⊆U
∪k

i=1Yi=U
Yi∩Yj= /0 if i 6= j

k

∏
i=1

f (Yi).

Let f ∗k : 2U → Z be a function defined as follows

f ∗k = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
k times

.

By (7.2), for all S⊆ U

f ∗k(S) = ∑
Y1 ,Y2 ,...,Yk⊆S

∪k
i=1Yi=S

Yi∩Yj= /0 if i6= j

k

∏
i=1

f (Yi).

In particular, the number of k-partitions of U is equal to f ∗k(U). To compute f ∗k(U),
for every S⊆U we compute f ∗2(S), f ∗3(S), . . . , f ∗k(S) in k−1 subset convolutions.

7.3 Applications and Variants 133

Each of the steps uses fast subset convolution and is performed in timeO∗(2n). The
number of steps can be reduced toO(logk) by using the doubling trick—computing
convolutions of f ∗2

i
(S). ut

Theorem 7.9 is very general and many problems are special cases of it.
Of course, Theorem 7.9 yields a O∗(2n) algorithm counting proper colorings of

an n-vertex graph G, and even more generally, computing its chromatic polynomial.
(We put f (S) = 1 if and only if S is an independent set.) We can also use it for
natural extensions of the partitioning problem. For example, to count maximal k-
colorable induced subgraphs of a graph G with vertex set V . Indeed, for S⊆V , G[S]
is k-colorable if and only if f ∗k(S) > 0.

Domatic Number. A graph G has k-domatic partition X1,X2, . . . ,Xk if every Xi is
a dominating set of G. Theorem 7.9 can be used to count the number of k-domatic
partitions in time O∗(2n) by putting f (S) = 1 if and only if S is a dominating set.

Interesting applications of subset convolution can be achieved by replacing the
indicator function in the proof of Theorem 7.9 by some other functions.

Counting Spanning Forests. A spanning forest of a graph G is an acyclic graph F
spanning all vertices of G. In particular, if F is connected, then it is a spanning
tree. The number of spanning trees in a graph is computable in polynomial time as
the determinant of a maximal principal submatrix of the Laplacian of G, a classical
result known as Kirchhoff’s Matrix Tree Theorem. However, counting spanning
forests is a #P-complete problem. For a set S⊆V , let τ(S) be the number of trees in
the subgraph of G induced by S. Thus for every S, τ(S) is computable in polynomial
time. The crucial observation here is that the number of spanning forests in G is
equal to

∑
Y1 ,Y2 ,...,Yk⊆V

∪k
i=1Yi=V

Yi∩Yj= /0 if i 6= j

k

∏
i=1

τ(Yi).

Therefore, to find the number of forests in G with exactly k connected components,
one has to compute τ∗k and this can be done in O∗(2n).

Even more generally, in time O∗(2n) one can compute the number of spanning
subgraphs of G with k components and ` edges. For graph G = (V,E), let sk,`(G)
be the number of spanning subgraphs of G with k components and ` edges. To
evaluate sk,`(G[X]) for every X ⊆ V , one can use a two-part recurrence one rank
i ∈ {0,1, . . . ,n} for |X |= i at a time. Omitting the base cases, for k ≥ 2 we have

sk,`(G[X]) =
1
k ∑

j
∑

/0(Y(X
s1, j(G[Y])sk−1,`− j(G[X \Y])

and for k = 1

s1,`(G[X]) =
(

mX

`

)
−∑

k≥2
sk,`(G[X]),

where mX is the number of edges in G[X].

134 7 Subset Convolution

Tutte Polynomial. The computation of the Tutte polynomial can be seen as a gener-
alization of graph coloring and counting spanning forests. The Tutte polynomial of
a graph G = (V,E) is the bivariate polynomial

T (G;x,y) = ∑
A⊆E

(x−1)r(E)−r(A)(y−1)|A|−r(A),

where r(A) = |V | − k(A) and k(A) is the number of connected components of the
graph induced in G by the edges of A.

Many graph parameters are points or regions of the so-called Tutte plane. For
example,

• T (G,2,1) is the number of spanning forests in G;
• T (G,1,1) is the number of spanning trees in G;
• T (G,1,2) is the number of connected subgraphs in G;
• T (G,2,0) is the number of acyclic orientations of G;
• The chromatic polynomial P(G,λ) of G is expressible as

P(G,λ) = (−1)r(E)
λ

k(E)T (G;1−λ ,0).

The computations of numbers sk,`(G), the number of spanning subgraphs with k
components and ` edges, is important to compute the Tutte polynomial. The crucial
fact (which we do not prove here) is that the Tutte polynomial can be expressed in
the following form

TG(x,y) = ∑
k,`

sk,`(G)(x−1)k−c(y−1)`+k−n,

where G has c components and n vertices. The following theorem is due to Björklund,
Husfeldt, Kaski, and Koivisto [27].

Theorem 7.10. The Tutte polynomial of an n-vertex graph G can be computed in
time O∗(2n).

In the remaining part of this section we present some variants that are relaxations
of the subset convolution of form (7.2).

Let us recall that U = {1,2, . . . ,n} is a set and f ,g : 2U → Z are two functions.

Definition 7.11. The covering product of f and g, denoted by f ∗c g is defined for
all S⊆ U as

(f ∗c g)(S) = ∑
X ,Y⊆S
X∪Y=S

f (X) ·g(Y). (7.9)

Definition 7.12. The packing product of f and g is defined for all S⊆ U as

(f ∗p g)(S) = ∑
X ,Y⊆S
X∩Y= /0

f (X) ·g(Y). (7.10)

7.3 Applications and Variants 135

Definition 7.13. The intersecting covering product of f and g, denoted by f ∗ic g, is
defined for all S⊆ U as

(f ∗ic g)(S) = ∑
Y,Z⊆S
Y∪Z=S
Y∩Z 6= /0

f (Y) ·g(Z). (7.11)

Now let us consider algorithms to compute these products.

Theorem 7.14. Given functions f ,g : 2U → Z, there is an algorithm to compute the
covering product (f ∗c g)(S) for all S⊆ U in time O(n2n).

Proof. Given f and g, the algorithm first computes the zeta transforms f ζ and gζ in
timeO∗(2n). Then taking the elementwise product of the transforms (f ζ ·gζ)(X) =
f ζ (X) · gζ (X), the Möbius transform is applied to the result. Using fast zeta and
Möbius transforms, as presented in Sect. 7.1, the algorithm needs time O∗(2n).

To see that the algorithm indeed outputs (f ∗c g)(S), note that the result of the
described Möbius transform is

(f ζ ·gζ)µ(S) = ∑
X⊆S

(−1)|S\X |(f ζ ·gζ)(X) = ∑
X⊆S

(−1)|S\X | ∑
Y,Z⊆X

f (Y)g(Z).

Now each ordered pair (Y,Z) of subsets of S, contributes (−1)|S\X | to the sum in
(7.3) for all X with Y,Z ⊆ X . Therefore the overall coefficient of f (Y)g(Z) is 1 if
Y ∪Z = S, otherwise the coefficient is 0. Consequently

∑
X⊆S

(−1)|S\X |(f ζ ·gζ)(X) = ∑
Y,Z⊆S
Y∪Z=S

f (Y) ·g(Z) = (f ∗c g)(S).

ut

Given the algorithms for fast subset convolution and fast covering product, it is
not hard to establish fast algorithms to compute the packing product and the inter-
secting covering product.

Theorem 7.15. Given functions f ,g : 2U → Z, there are algorithms to compute the
packing product (f ∗p g)(S) and the intersecting covering product for all S ⊆ U in
time O∗(2n).

Proof. Let f1 be the function assigning to each subset of U the integer 1. Hence by
(7.2), for all h : 2U → Z and all S⊆ U

(h∗ f1)(S) = ∑
Y⊆S

h(Y).

Consequently, given functions f and g the algorithm computes

((f ∗g)∗ f1)(S) = ∑
Y,Z⊆S
Y∩Z= /0

f (Y)g(Z) = (f ∗p g)(S).

136 7 Subset Convolution

Thus the packing product f ∗p g can be evaluated by first computing the subset
convolution f ∗ g and by then computing the subset convolution of (f ∗ g) and f1.
Using fast subset convolution the algorithm needs time O∗(2n).

An algorithm to compute the intersecting covering product in time O∗(2n) fol-
lows immediately from the observation

f ∗ic g = f ∗c g− f ∗g.

ut

7.4 f -width and Rank-width

Width parameters of graphs, which are often defined by graph decompositions, are
of great importance in graph theory as well as in the design and analysis of graph
algorithms. One of the best known width parameters of graphs is the treewidth to
which Chap. 5 is devoted. Other well-known width parameters of graphs are clique-
width and rank-width. In this section we consider a generalization of rank-width.

The f -width of a finite set U is a general framework for width parameters. Note
that the f -width can be seen as the width parameter of a graph G = (V,E). Though in
general f -width is independent of the edge set E, various interesting width parame-
ters for graphs can be obtained as the f -width of the vertex set V via the choice of f .
If f is a cut-rank function then the f -width of V is the well-known graph parameter
rank-width. Other width parameters of graphs that can be obtained as the f -width
of V are the carving-width and the branching-width of a connectivity function f .
In this section we present a fast subset convolution based O∗(2n) time algorithm to
compute the f -width of a graph, assuming that f is given by an oracle and that the
integer values of f are small.

f -width of Sets. Let U be a set of n elements and let f : 2U → Z be a function
assigning to each subset of U an integer. A rooted binary tree T is a directed tree
with a specified vertex r called the root such that the root r has two incoming edges
and no outgoing edges and every vertex other than the root has exactly one outgoing
edge and either two or zero incoming edges. A leaf of a rooted binary tree is a vertex
with no incoming edges. A descendent of an edge e of a rooted binary tree T is the
set of vertices from which there exists a directed path to e.

A decomposition of a set U is a pair (T,µ) of a rooted binary tree T and a bijec-
tion µ from U to the set of all leaves of T . For a decomposition (T,µ) of U and an
edge e of the binary rooted tree T , let Xe ⊆ U be the set of all elements of U being
assigned to a leaf of T which is also a descendent of e. Now we define the f -width
of a decomposition (T,µ) of U as the minimum of f (µ−1(Xe)) over all edges e of
T . Finally, the f -width of a finite set U , denoted by w f (U), is the minimum f -width
over all possible decompositions of U . If |U| ≤ 1 then U has no decomposition but
we let w f (U) = f (U).

7.4 f -width and Rank-width 137

Let G = (V,E) be a graph. There are three important width parameters of G that
can be defined via f -width.

Branch-width. For branch-width, we put U = E, the edge set of G. For every X ⊆ E
its border δ (X) is the set of vertices from V such that every v ∈ δ (X) is adjacent to
an edge from X and to an edge from E \X . The branch-width of G is the f -width
of U = E with f (X) = |δ (X)|. This definition can be extended to hypergraphs and
matroids.

Carving-width. The carving-width of a graph G = (V,E) is the f -width of U = V ,
with f (X) = CUT (X ,V \X), the number of edges between X and V \X .

Rank-width. The rank-width of a graph G = (V,E) is the f -width of U = V , where
f = ρG, the cut-rank function of G. Here the cut-rank function is defined as follows.
For a vertex subset X ⊆V , let

BG(X) = (bi, j)i∈X , j∈V\X ,

be the |X |× |V \X | matrix over the binary field GF(2) such that bi, j = 1 if and only
if {i, j} ∈ E. In other words, BG(X) is the adjacency matrix of the bipartite graph
formed from G by removing all edges but the edges between X and V \X . Finally,
ρG(X) is the rank of BG(X).

The following recursive definition of w f will be used to compute the f -width
w f (U).

Lemma 7.16. Let U be a finite set and let f : 2U → Z be a function. Then for all
nonempty subsets X ⊆ U ,

w f (X) =

{
min

/0⊆Y⊆X
max

(
f (Y), f (X \Y),w f (Y),w f (X \Y)

)
if |X | ≥ 2

f (X) if |X |= 1
(7.12)

Lemma 7.16 allows a simple dynamic programming exponential time algorithm
to compute the f -width of a finite set U based on the recurrence (7.12).

Let us assume that n = |U| and M = maxX⊆U | f (X)|. Furthermore we assume
that an oracle computes the integer value of any f (X) in time nO(1). Under these
assumptions the simple dynamic programming algorithm to compute w f (X) for all
X ⊆ U needs time O∗(2n) to compute f (X) for all X ⊆ U using the oracle and
then time ∑

n
k=2
(n

k

)
2k logMnO(1) to compute w f (X) for all X ⊆ U . Hence the overall

running time is 3n logMnO(1).

Is it possible to compute w f (X) for all X ⊆ U faster, say in time proportional to
2n? Or at least, can w f (U) be computed faster, which is the value of interest in case
of rank-width of graphs, carving-width of graphs, etc.

Here we can observe some typical indications that fast subset convolution should
be considered. There is a 3n factor in the running time of the algorithm when im-
plementing it directly. One may hope to replace it by 2n via fast subset convolution.
The algorithm deals with subsets of sets and it computes w f (X) for all subsets of U .

138 7 Subset Convolution

Unfortunately when inspecting (7.12), we observe that the crucial part of the
computation, the one that should be done by fast subset convolution, is

min
/0⊆Y⊆X

max(f (Y), f (X \Y),w f (Y),w f (X \Y)).

The following theorem shows how to avoid this obstacle.

Theorem 7.17. There is an 2nlog2 MnO(1) algorithm to compute the f -width of a
finite set U .

Proof. We construct auxiliary functions in order to apply the fast subset convolu-
tion. We start by computing and keeping in a table all values f (X), X ⊆ U . This
takes time 2n logMnO(1).

We first design an algorithm that decides for any fixed value k whether w f (X)≤ k
for all X ⊆U , assuming that f (X) for all X ⊆U is given in a table. First we transform
this into a binary table where the entry for X is 1 if and only if f (X)≤ k. We define
functions gi for all i ∈ {1,2, . . . ,n} and for all X ⊆ U as follows:

gi(X) =





1, if 1≤ |X | ≤ i, f (X)≤ k,w f (X)≤ k,X 6= U ,

1, i = n,X = U ,w f (X)≤ k,
0, otherwise.

(7.13)

Hence by Lemma 7.16,

w f (X)≤ k if and only if

{
(g|X |−1 ∗g|X |−1)(X) 6= 0, if |X | ≥ 2,

f (X)≤ k, if |X |= 1.
(7.14)

By (7.14), the algorithm recursively computes gi+1 from gi for i ∈ {1,2, . . . ,n} as
follows. Constructing g1 is easy. By Theorem 7.8, gi ∗ gi can be computed by fast
subset convolution in time O∗(2n logM).

Finally, to compute w f (X) for all X ⊆ U we need to run the above algorithm for
all possible values of k, i.e. M times. Should we only need to compute w f (U) then
binary search will do and thus we have to run the above algorithm logM times. ut

This has the following consequences.

Corollary 7.18. Let G be a graph with n vertices and m edges. The rank-width and
the carving-width of G can be computed in timeO∗(2n). The branch-width of G can
be computed in time O∗(2m).

Notes

The history of fast transforms can be traced back to the work of Yates [222]. We refer
to Sect. 4.6 of Knuths’s book [135] for more information on Yates’s algorithm and

7.4 f -width and Rank-width 139

fast Fourier transform. The influential paper of Rota advanced the general theory of
Möbius inversions on posets [192].

The algorithm for fast subset convolution is due to Björklund, Husfeldt, Kaski,
and Koivisto [26]. The proofs in [26] are given in a more general setting for rings
and semirings. FFT is discussed in many textbooks on algorithms, see, e.g. [52].
The proof of Theorem 7.8 by making use of FFT was brought to our attention by
K. Venkata and Saket Saurabh. Exact algorithms for the DOMATIC NUMBER prob-
lem were given by several authors [89, 180]. The O∗(2n) algorithm for DOMATIC
NUMBER is due to Björklund, Husfeldt, and Koivisto [30]. The algorithm evaluating
the Tutte polynomial is due to Björklund, Husfeldt, Kaski, and Koivisto [27].

The results of Sect. 7.4 are based on the work of Oum [167]. Branch-width was
defined by Robertson and Seymour in their fundamental work on Graph Minors
[184]. The rank-width was defined by Oum and Seymour in [168]. Surveys [94,
113] provide more information on these parameters. The existence of an O∗(2n)
algorithm computing the branch-width of an n-vertex graph is an open problem. The
best known vertex-exponential algorithm for this problem runs in timeO∗((2

√
3)n)

[93].
Lokshtanov and Nederlof develop a general framework of transforming dynamic

programming algorithms to algorithms using only polynomial space [154]. In par-
ticular, their approach provides polynomial space and pseudo-polynomial time al-
gorithms for SUBSET SUM and KNAPSACK.

Subset convolution can also be used in dynamic programming algorithms for
graphs of bounded treewidth. For example, van Rooij, Bodlaender, and Rossmanith
[189] used subset convolution to show that the number of perfect matchings can be
counted in time O(2tn) for graphs of treewidth at most t.

Chapter 8
Local Search and SAT

In Chap. 2, we discuss a branching algorithm for the k-SATISFIABILITY problem.
In this chapter we consider more techniques for solving k-SAT. Both techniques
are based on performing local search in balls in the Hamming space around some
assignments. The first algorithm randomly chooses an assignment and performs a
random walk of short length (in Hamming distance) to search for the solution. The
second algorithm is deterministic and uses a similar idea; but instead of using a
random walk, it finds a covering of the Hamming space by balls of specified radius
and performs a search inside these balls.

The algorithms in this chapter are heavily based on the notions of Hamming
space and Hamming distance.

Hamming space (of dimension n) is the set of all 2n binary strings of length
n. The Hamming distance between two binary strings is the number of positions
in which the corresponding symbols of the strings are different. For example, the
distance between the strings (0,1,1,1,0) and (1,1,1,0,0) is 2. Clearly the distance
between two strings of length n is always at most n.

It is convenient to view satisfying assignments of CNF formulae as elements of
the Hamming space. For a given CNF formula with n variables, we fix (arbitrarily)
an ordering of the variables. Then every satisfying assignment corresponds to a
binary string of length n. The value of the ith variable in the satisfying assignment is
true if and only if the element in the ith position of the string is 1. Furthermore, we
also will view the set of all truth assignments as the Hamming space Hn = {0,1}n.
The Hamming distance between two truth assignments a and b is the number of bits
on which the two assignments differ. In other words, this is the number of bits one
has to flip to obtain b from a. For a truth assignment a and an integer d, we denote
byH(a,d) the ball of radius d centered in a, which is the set of all truth assignments
at Hamming distance at most d from assignment a. The number of assignments at
distance exactly i from assignment a is

(n
i

)
and the volume of the ball, which is the

cardinality ofH(a,d), is

|H(a,d)|=
d

∑
i=0

(
n
i

)
.

141

142 8 Local Search and SAT

8.1 Random Walks to Satisfying Assignments

In this section we present a randomized algorithm solving the k-SAT problem. Its
analysis is based on the following lemma.

Lemma 8.1. Let F be a satisfiable formula with n variables. Assume that algorithm
k-sat3 described in Fig. 8.1 runs on F until it finds a satisfying assignment. Then
the expected number of steps of the algorithm is O(n3/2

(
2(k−1)

k

)n
).

Proof. Let a∗ be a satisfying assignment of F . For j ∈ {0, . . . ,n}, let q j be the
probability that the procedure random-walk described in Fig. 8.2 finds a∗ when
starting from an assignment which is at distance j from a∗. Clearly, q0 = 1. When
we choose an unsatisfied clause and flip the value of one of its variables, we obtain a
new assignment a′. The Hamming distance from a∗ to the new assignment decreases
by one with probability at least 1/k and increases by one with probability at most
(k−1)/k.

Algorithm k-sat3(F).
Input: A k-CNF formula F with n variables and m clauses.
Output: A satisfying assignment of F .

repeat
choose an assignment a of F uniformly at random
random-walk(a)

until a is satisfying
return a

Fig. 8.1 Algorithm k-sat3 for k-SATISFIABILITY

Procedure random-walk.
Input: A truth assignment a of a k-CNF formula F with n variables.
Output: An assignment of F .

count := 0
b := a
while b is not a satisfying assignment and count < 3n do

choose an arbitrary clause which is not satisfied by b
choose one variable of this clause uniformly at random and flip its value in the
assignment b
count := count +1

return assignment b

Fig. 8.2 Procedure random-walk

To find a lower bound on q j, we model the process as a random walk of a particle
on a path with vertices labelled by integers 0,1, . . . ,n. We assume that a particle

8.1 Random Walks to Satisfying Assignments 143

moves from left to right (from vertex j−1 to j) with probability (k−1)/k and from
right to left (from j to j−1) with probability 1/k. Then q j is at least the probability
of the event that a particle reaches 0 in at most 3n moves starting from j. (This
bound is a pessimistic view of the process because for some cases the probability of
decreasing the distance to a∗ can be larger than 1/k.)

To give a lower bound on q j, we estimate the probability of reaching 0 in j+2`≤
3n steps if j + ` steps are the moves from right to left and ` steps are from left to
right. The probability of this event is

(
j +2`

`

)(
k−1

k

)`(1
k

) j+`

.

Thus

q j ≥ max
0≤`≤(3n− j)/2

(
j +2`

`

)(
k−1

k

)`

·
(

1
k

) j+`

.

Using the binary entropy function and Lemma 3.13, we have that

(
(1+2α) j

α j

)
≥ 1√

8 jα(1−α)
·
[(

1+2α

α

)α (1+2α

1+α

)1+α
] j

.

By putting α = 1
k−2 , we arrive at

q j ≥
1√
8 j
·
[(

1+2α

α

)α

·
(

1+2α

1+α

)1+α

·
(

k−1
k

)α

·
(

1
k

)1+α
] j

≥ 1√
8 j

(
1

k−1

) j

.

Let p j, 0 ≤ j ≤ n, be the probability of choosing at random an assignment at
distance j from a∗. Then p0 = 1

2n , and for j ≥ 1,

p j =
(

n
j

)(
1
2

)n

.

Let q be the probability that the procedure random-walk finds a∗ (or some other
satisfying assignment). We have that

144 8 Local Search and SAT

q ≥
n

∑
j=0

p jq j ≥
(

1
2

)n

+
n

∑
j=1

p jq j

≥
(

1
2

)n

+
n

∑
j=1

(
n
j

)(
1
2

)n 1√
8 j

(
1

k−1

) j

≥ 1√
8n

(
1
2

)n n

∑
j=1

(
n
j

)(
1

k−1

) j

=
1√
8n

(
1
2

)n(
1+

1
k−1

)n

=
1√
8n

(
k

2(k−1)

)n

.

Now we use the following well-known result.

Lemma 8.2. When we repeatedly perform independent trials of an experiment, each
of which succeeds with probability p, then the expected number of steps we need to
perform until the first success is 1/p.

Proof. Let X be the random variable equal to the number of trials performed until
the first success occurs. Then the probability that X = i is equal to p(1− p)i−1, and
we have that

E[X] =
∞

∑
i=0

i ·Pr[X = i] =
∞

∑
i=0

ip(1− p)i−1 =−p
d

d p

∞

∑
i=0

(1− p)i

= −p
d

d p
1
p

=−p
−1
p2 =

1
p
.

ut
Thus the expected number of random assignments for which algorithm k-sat3

calls procedure random-walk is at most 1/q. The running time of Random-walk

is O(n), and thus the expected running time of k-sat3 is O(n3/2
(

2(k−1)
k

)n
). ut

Lemma 8.1 implies the following Monte Carlo algorithm for k-SAT.

Theorem 8.3. Let F be a k-CNF formula with n variables. Then there is an al-
gorithm for k-SAT with the following properties. If F is not satisfiable, then the
algorithm returns the correct answer that F is unsatisfiable. If F is satisfiable, then
for every integer b > 0, with probability at least 1− 2−b the algorithm returns a
satisfying assignment afterO(b ·n3/2 ·

(
2− 2

k

)n) steps. Otherwise, the algorithm in-
correctly reports that F is unsatisfiable.

Proof. Let us consider the algorithm k-sat4 in Fig. 8.3. If F does not have a
satisfying assignment, then the algorithm does not find a satisfying assignment and
correctly concludes that the formula is unsatisfiable.

Let us assume that F is satisfiable and let b > 0 be an integer. We run the algo-
rithm by selecting

2b ·
⌈√

8n
(

2(k−1)
k

)n⌉

8.1 Random Walks to Satisfying Assignments 145

Algorithm k-sat4(F).
Input: A k-CNF formula F with n variables and m clauses.
Output: Either a satisfying assignment of F or a report that F is unsatisfiable.

count := 0
repeat

choose an assignment a of F uniformly at random
random-walk(a)
count := count +1

until a is a satisfying assignment or count ≥ 2b ·
⌈√

8n
(

2(k−1)
k

)n⌉

if a satisfies F then
return a

else
return F is unsatisfiable

Fig. 8.3 Algorithm k-sat4 for k-SATISFIABILITY

times a random truth assignment a and running for each such assignment the pro-
cedure random-walk. Thus the total running time of the algorithm is O(b ·n3/2 ·(

2(k−1)
k

)n
). To analyse the algorithm, we partition its execution into b segments;

each of the segments consists of

2 ·
⌈√

8n
(

2(k−1)
k

)n⌉

calls of random-walk.
Let Xi be a random variable equal to the number of times procedure random-walk

is called from the start of the ith segment until we find a satisfying assignment. In
Lemma 8.1, the estimation of the probability of reaching a satisfying assignment q
does not depend on the starting position. Thus, we have that

E(Xi)≤
√

8n
(

2(k−1)
k

)n

.

By Markov’s inequality, for any c > 0,

Pr[Xi > c]≤ E(Xi)
c

.

Thus

Pr[Xi > 2
⌈√

8n
(

2(k−1)
k

)n⌉
]≤

√
8n
(

2(k−1)
k

)n

2
⌈√

8n
(

2(k−1)
k

)n⌉ ≤
1
2
.

In other words, the probability that the algorithm does not find a satisfying assign-
ment during the execution of the ith segment is at most 1/2. Thus the probability
that the algorithm fails in all b segments is at most 2−b.

ut

146 8 Local Search and SAT

8.2 Searching Balls and Cover Codes

In this section we describe a deterministic algorithm solving k-SAT which has run-
ning time O∗(

(2k
k+1

)n
). In previous section, we chose balls at random and then

searched balls for a satisfying assignment. In this section the strategy is to (de-
terministically) cover the Hamming space of all assignments by a sufficiently small
amount of balls of small radius.

The following lemma gives a deterministic algorithm searching a ball of radius
r.

Lemma 8.4. Given a k-CNF formula F and a truth assignment a of F, it can be
decided in time krnO(1) whether there is a satisfying assignment of F which is at
Hamming distance at most r from the assignment a.

Proof. If a is not a satisfying assignment, the algorithm chooses an arbitrary unsat-
isfied clause C of F . Then it generates at most k new assignments by flipping the
value of each variable in C. Each of the new assignments is at Hamming distance
one from a. Moreover, if there is a satisfying assignment a∗, then the distance from
at least one new assignment to a∗ is smaller than the distance from a to a∗. The
algorithm proceeds recursively. At every step of the recursion it creates at most k
new assignments and the depth of the recursion is at most r. Thus in the search tree
corresponding to an execution of the branching algorithm all interior nodes have at
most k children and its height is at most r. Consequently the search tree has at most
kr leaves and thus the running time is O∗(kr). Consequently the algorithm finds in
time O∗(kr) either a satisfying assignment, or it correctly concludes that there is no
satisfying assignment within Hamming distance at most r from a. ut

Let 0n be the truth assignment with all variables set to 0 (false) and 1n that with all
variables set to 1 (true). Then every assignment, including a satisfying assignment,
belongs to one of the ballsH(0n,n/2) andH(1n,n/2). Then by Lemma 8.4, we can
(deterministically) solve k-SAT in time (

√
k)n ·nO(1). While for k = 3 this is better

than the brute force search, for k ≥ 4 the result is not so exciting. What happens if
we try to use balls of smaller sizes?

Let us study the following randomized algorithm. Choose uniformly at random
a truth assignment a and search for a satisfying assignment at distance at most αn
from a. The probability that a satisfying assignment is inH(a,αn) is at least

∑
αn
i=1
(n

i

)

2n

(the ratio of |H(a,αn)| and the total number of assignments). The expected number
of steps the algorithm runs until it finds a satisfying assignment, assuming there is
one, is

O∗
(

2n

∑
αn
i=1
(n

i

) · kαn

)
=O∗(2(1−h(α))n · kαn),

8.2 Searching Balls and Cover Codes 147

where h(·) is the binary entropy function. Straightforward differentiation shows that
we can minimize the exponential part of the product by choosing α = 1

k+1 . Thus the
expected number steps of the algorithm is

O∗
((

2k
k +1

)n)
.

Now, as in the proof of Theorem 8.3, it is easy to obtain a Monte Carlo algorithm
solving k-SAT which has running time O∗

((2k
k+1

)n
)

.
In what follows, we show how to make this algorithm deterministic without

changing its exponential running time.

A code of length n is a subset of Hn. A covering code C of radius d is a code
such that every truth assignment is within distance at most d from some assignment
in C. We start with the bounds on the size of a covering code.

What is the size of a covering code of radius αn? The following lemma answers
this question.

Lemma 8.5. Let C be a covering code of radius αn, 0 < α ≤ 1/2. Then

|C| ≥ 2n

|H(0n,αn)| ≥ 2(1−h(α))n.

Proof. Every ball of radius αn covers at most |H(0n,αn)| truth assignments. Thus
to cover 2n assignments, one needs at least

2n

|H(0n,αn)|

balls. ut

The bound of Lemma 8.5 is tight up to polynomial factor.

Lemma 8.6. For every 0 < α ≤ 1/2 there exists a covering code C of radius αn
such that

|C| ≤
⌈

n
2n

|H(0n,αn)|

⌉
≤ n
√

nα(1−α) ·2(1−h(α))n.

Proof. Let us choose uniformly at random
⌈

n 2n

|H(0n,αn)|

⌉
assignments (with possible

repetitions). We want to show that with a positive probability this is a covering code.
Let a be an assignment. The probability that the first chosen element is at distance

more than αn from a, or is not inH(a,αn) is

1− H(a,αn)
2n = 1− H(0n,αn)

2n .

Thus the probability that a is not covered by
⌈

n 2n

|H(0n,αn)|

⌉
assignments is

148 8 Local Search and SAT

(
1− H(0n,αn)

2n

)⌈n 2n
|H(0n ,αn)|

⌉

≤ e−n,

where e = limn→+∞(1+ 1
n)n ∼ 2.718282.

Therefore, the probability that there is a non-covered assignment is at most
2ne−n, and we conclude that the probability that the chosen assignment is a cov-
ering code is at least

1− 2
e

> 0.

We have shown that a randomly chosen assignment set of size
⌈

n 2n

|H(0n,αn)|

⌉
with

positive probability covers all assignments, which yields that a covering code of
such cardinality exists. ut

Lemma 8.6 does not provide an algorithm to compute a covering code of given
radius. This can be done by treating the problem as a set cover problem and running
a greedy algorithm to find a set cover.

Lemma 8.7. For every 0 < α ≤ 1/2 a covering code C of radius αn of size at most

n2
√

nα(1−α) ·2(1−h(α))n

can be computed in time O∗(8n).

Proof. It is well known that a greedy algorithm for the MINIMUM SET COVER
problem (the algorithm which always selects a set which covers the maximum num-
ber of yet uncovered elements) is a logM-approximation algorithm, where M is the
number of sets. In our case, we can view the covering code as an instance of the
MINIMUM SET COVER problem with 2n sets, each consisting of a ball of radius αn
centered in some truth assignment. Thus the greedy approach provides a solution
within a factor n of the optimal one. By Lemma 8.6, the size of the solution found
is at most

n2
√

nα(1−α) ·2(1−h(α))n.

To implement the greedy approach, we keep for every ball the set of assignments
already covered by the selected balls. Every time we select a new ball, we recompute
these sets. The number of such selections is at most 2n and for every selection a re-
computation of covered assignments takes timeO∗(4n). Thus the total running time
is O∗(8n). ut

The following lemma trades off the size of the covering code and the time re-
quired for its computation.

Lemma 8.8. Let ` ≥ 2 be a divisor of n. For every 0 < α ≤ 1/2 a covering code C
of radius αn of size at most

(
n2
√

nα(1−α)
)`
·2(1−h(α))n

8.2 Searching Balls and Cover Codes 149

can be computed in time (23n/` +2(1−h(α))n) ·nO(1).

Proof. We partition the set of n variables into ` groups of size n/`. All possible
truth assignments for each of these groups form a Hamming space Hn/`. Every
truth assignment inHn is a concatenation of ` assignments inHn/`. Moreover, every
covering code in Hn with radius αn is a concatenation of covering codes in Hn/`

with radius αn/`.
By Lemma 8.7, a covering code of radius αn/` inHn/` of size at most

n2
√

nα(1−α) ·2
(1−h(α))n

`

can be computed in time 23n/` ·nO(1).
By trying all possible concatenations of codes obtained for Hn/`, we obtain the

code forHn and the size of this code is at most

(
n2
√

nα(1−α)
)`
·2(1−h(α))n.

ut
We are ready to prove the main result of this section.

Theorem 8.9. The deterministic algorithm k-sat5 solves the k-SAT problem with
n variables in time

O∗(
(

2− 2
k +1

)n

).

Algorithm k-sat5(F).
Input: A k-CNF formula F with n variables and m clauses.
Output: Either a satisfying assignment of F or a report that F is unsatisfiable.

α = 1/(k +1)
use Lemma 8.8 with ` = 6 to construct a covering code C of length n and radius αn
forall assignments a ∈ C do

use Lemma 8.4 to search for a satisfying assignment in the ballH(a,αn)

if satisfying assignment a is found then
return a

else
return F is unsatisfiable

Fig. 8.4 Algorithm k-sat5 for k-SATISFIABILITY

Proof. Algorithm k-sat5 given in Fig. 8.4 is based on local search. It first con-
structs a covering code C and then it searches all balls around the assignments of
the code for a satisfying assignment. Without loss of generality we assume here that
n is divisible by 6, otherwise we can add at most 5 fake variables, increasing the
complexity by a polynomial factor. Because C is a covering code, clearly, the algo-
rithm either finds a satisfying assignment or correctly reports that the formula is not
satisfiable.

150 8 Local Search and SAT

The running time of the algorithm is the sum of the following running times:
the time T1(n,αn, `) needed to construct C of radius αn plus |C| ·T2(n,αn), where
T2(n,αn) is the time required to search a ball of radius αn.

For α = 1/(k +1) and ` = 6, by Lemma 8.8,

T1(n,n/(k +1),6) =O∗(
(

23n/6 +2(1−h(1
(k+1)))n

)
)

and
|C|=O∗(2(1−h(1

(k+1)))n).

By Lemma 8.4,
T2(n,n/(k +1)) = k

n
k+1 ·nO(1).

We choose ` = 6 to make T1(n,αn, `) smaller than |C| ·T2. We select α = 1
k+1 be-

cause this choice minimizes |C| ·T2(n,αn).
Thus the total running time of the algorithm is

T1(n,
n

k +1
,6) + |C| ·T2(n,

n
k +1

)

= O∗(
(

23n/6 +2(1−h(1
(k+1)))n +2(1−h(1

(k+1)))n · k n
k+1

)
)

= O∗(
(

2(1+ 1
k+1 log2

1
k+1 + k

k+1 log2
k

k+1 + 1
k+1 log2 k)n

)
)

= O∗(
(

2(1− 1
k+1 log2 (k+1)+ k

k+1 log2 k− k
k+1 log2 (k+1)+ 1

k+1 log2 k)n
)
)

= O∗(
(

2(1+log2
k

k+1)n
)
)

= O∗(
(

2− 2
k +1

)n

).

ut

Notes

Theorem 8.3 is due to Schöning [199, 200]. This approach is based on a randomized
polynomial time algorithm for 2-SAT of Papadimitriou [169]. Our exposition of the
algorithm follows the book of Mitzenmacher and Upfal [157]. For an introductory
book on Probability Theory, we refer to the book of Feller [76].

A different randomized approach to solving k-SAT is given by Paturi, Pudlák,
Saks and Zane [172]. They obtain an algorithm solving k-SATwith error probability
o(1) in time

O∗(2n(1− µk
k−1 +o(1))),

8.2 Searching Balls and Cover Codes 151

where µk is an increasing sequence with µ3 ≈ 1.227 and limk→∞ µk = π2/6. See
also [173].

For k = 3, the randomized Schöning’s algorithm runs in time O∗(1.334n). It
is possible to improve this bound by combining the algorithms of Schöning and
Paturi, Pudlák, Saks and Zane [124], see also [116]. Rolf reduced the running time
toO∗(1.323n) [186]. The surveys of Schöning [201] and Iwama [122] contain more
information on probabilistic algorithms for SAT.

Theorem 8.9 is due to Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadim-
itriou, Raghavan and Schöning [59]. Since the algorithm of Lemma 8.8 requires
exponential space, the algorithm of Theorem 8.9 also needs exponential space. This
can be fixed (at the price of more running time) if in the proof of Lemma 8.8 we
choose ` of size εn, for some ε > 0. Then for every δ > 0 the algorithm from The-
orem 8.9 can be modified to run in polynomial space and time

O∗
((

2− 2
k +1

+δ

)n)
.

The proof that an approximation for MINIMUM SET COVER can be obtained by a
greedy algorithm can be found in [114].

For 3-SAT the deterministic algorithm with running time O∗(1.5n) was sped
up to O∗(1.473n) [41] and to O∗(1.465n) [196] by improving the running time of
Lemma 8.4. Dantsin and Hirsch provide a nice overview of known techniques in
[60]. Feder and Motwani obtained randomized algorithms for Constraint Satisfac-
tion Problem (CSP) [74].

Chapter 9
Split and List

In this chapter we discuss several algorithms based on the following approach. There
is a number of efficient algorithms for many problems in P. To apply these algo-
rithms on hard problems, we (exponentially) enlarge the size of a hard problem and
apply fast polynomial time algorithm on an input of exponential size. The com-
mon way to enlarge the problem is to split the input into parts, and for each part to
enumerate (or list) all possible solutions to subproblems corresponding to the part.
Then we combine solutions of subproblems to solutions of the input of the original
problem by making use of a fast polynomial time algorithm.

9.1 Sort and Search

First let us recall that on a vector space Qm over the rational numbers Q one can
define a lexicographical order denoted by ≺. For vectors x = (x1,x2, . . . ,xm), y =
(y1,y2, . . . ,ym) ∈ Qm, we define that x ≺ y if and only if there is a t ∈ {1,2, . . . ,m}
such that xi = yi for all i < t and xt < yt . For example, (2,4,8,3) ≺ (2,7,2,4). We
also write x� y if x≺ y or x = y.

Before proceeding with the Split & List technique, let us play a bit with the
following “toy” problem. In the 2-TABLE problem, we are given 2 tables T1 and T2
each being an array of size m× k, and a vector s ∈ Qm. Each table consists of k
vectors of Qm in such a way that each vector is a column of the array. The question
is, if the table contains an entry from the first column and an entry from the second
column such that the sum of these two vectors is s?

0 1 4 3 0 1 3 0
1 3 4 3 2 1 6 0
1 5 4 3 3 1 3 0

Fig. 9.1 An instance of the 2-TABLE problem with entries from Q3

153

154 9 Split and List

An example of an instance of a 2-TABLE problem is given in Fig. 9.1. For vector

s =




4
4
4


, there are two solutions (




3
3
3


 ,




1
1
1


) and (




4
4
4


 ,




0
0
0


).

A trivial solution to the 2-TABLE problem would be to try all possible pairs of
vectors. Each comparison takes O(m), and the number of pairs of vectors is O(k2),
which would result in running time O(mk2). There is a smarter way to solve this
problem.

Lemma 9.1. The 2-TABLE problem for tables T1 and T2 of size m× k with entries
from Qm can be solved in time O(mk logk).

Proof. The vectors of the first table are sorted increasingly in lexicographic order
and the vectors of the second table are sorted decreasingly in lexicographic order.
Two vectors can be compared in time O(m). Consequently the sorting can be done
in time O(mk logk).

Now given sorted vector sequences a1 � a2 � ·· · � ak and bk � bk−1 � ·· · � b1,
the algorithm finds out whether there are vectors ai and b j such that ai + b j = s.
More precisely algorithm 2-table, described in Fig. 9.2, outputs all such pairs and
its correctness is based on the following observation. If ai + b j ≺ c, then for every
l ≥ i, ai +bl ≺ c, and thus all vectors bl , l ≥ i, can be eliminated from consideration.
Similarly, if c≺ ai +b j, then all vectors al , l ≥ i, are eliminated from consideration.
The algorithm takes O(k) steps and the total running time, including sorting, is
O(mk logk). ut

Algorithm 2-table.
Input: Tables T1 and T2 of size m× k with columns/vectors ai in T1 and b j in T2, and vector c.
Output: All pairs (ai,b j) such that ai +b j = c and ai ∈ T1, b j ∈ T2.

i := 1; j := 1
while i≤ k and j ≤ k do

if ai +b j = c then
return (ai,b j)

if ai +b j ≺ c then
i := i+1

if c≺ ai +b j then
j := j +1

Fig. 9.2 Algorithm 2-table

Let us remark that with a simple modification that outputs all pairs ai + b j = c
and increments counters i and j, the algorithm can enumerate all solutions (ai,bj)
within the same running time.

The solution of surprisingly many hard problems can be reduced to the solution
of the 2-TABLE problem. The main idea of the approach is to partition an input of

9.1 Sort and Search 155

a problem into two subproblems, solve them separately and find the solution to the
original problem by combining the solutions to the subproblems. We consider three
NP-hard problems.

Subset Sum. In the SUBSET SUM problem, we are given positive integers a1,a2, . . . ,an,
and S. The task is to find a subset I ⊆ {1,2, . . .n} such that

∑
i∈I

ai = S,

or to report that no such subset exists. For example, for a1 = 5, a2 = 5, a3 = 10,
a4 = 60, a5 = 61, and S = 70, the solution is I = {1,2,4}.

Theorem 9.2. The SUBSET SUM problem can be solved in time O(n2n/2).

Proof. We partition {a1,a2, . . . ,an} into two sets X = {a1,a2, . . . ,abn/2c} and Y =
{abn/2c+1, . . . ,an}. For each of these two sets, we compute the set of all possible
subset sums. The total number of computed sums is at most 2n/2+1. Let IX and IY be
the sets of computed sums for X and Y respectively (let us remark that 0 belongs to
both IX and IY). Then there is a solution to the SUBSET SUM problem if and only if
there is an sX ∈ IX and an sY ∈ IY such that sX + sY = S. To find such sX and sY , we
reduce the problem to an instance of the 2-TABLE problem. We build an instance of
the 2-TABLE. Table T1 is formed by the elements of IX and table T2 is formed by the
elements of IY . Both are arrays of size m× k, where m = 1 and k ≤ 2n/2. Then by
Lemma 9.1, we can find two elements, one from each table, whose sum is S (if they
exist) in time O(2n/2 log2n/2) =O(n2n/2). ut

Exact Satisfiability. In the EXACT SATISFIABILITY problem (XSAT), we are given
a CNF-formula F with n variables and m clauses. The task is to find a satisfying
assignment of F such that each clause contains exactly one true literal. For example,
the CNF formula

(x1∨ x2∨ x3)∧ (x1∨ x2)∧ (x1∨ x3)

is satisfied by the truth assignment x1 = true, x2 = false, and x3 = true, moreover,
for this assignment, each clause is satisfied by exactly one literal.

While there are faster branching algorithms for XSAT, we find this example in-
teresting because its comparison with SAT helps us to better understand which kind
of properties are necessary to reduce a problem to the 2-TABLE problem.

Theorem 9.3. The problem XSAT is solvable in time O∗(2n/2).

Proof. Let F be an input of XSAT. Let its set of clauses be {c1,c2, . . . ,cm} and
let its set of variables be {x1,x2, . . . ,xn}. We split the variables into two sets X =
{x1,x2, . . . ,xbn/2c} and Y = {xbn/2c+1, . . . ,xn}. For every possible truth assignment
f of the variables of X which assigns to each variable either the value true or false,
we form its characteristic vector χ(f ,X) ∈ Qm. The ith coordinate of χ(f ,X) is
equal to the number of literals which evaluate to true in the clause ci. Similarly, for

156 9 Split and List

every possible truth assignment g of the variables of Y we form its characteristic
vector χ(g,Y) ∈Qm. The jth coordinate of χ(g,Y) is equal to the number of literals
which evaluate to true in the clause c j.

Let us note that the input formula F is exactly satisfied if and only if there is an as-
signment f of X and an assignment g of Y such that χ(f ,X)+χ(g,Y) = (1,1, . . . ,1).
We form two tables: table T1 contains characteristic vectors of X and table T2 con-
tains characteristic vectors of Y . Each table has at most 2dn/2e columns. Thus we can
again apply Lemma 9.1, and solve XSAT in time O∗(2n/2). ut

Why can this approach not be used to solve SAT in time O∗(2n/2)? This is
because by constructing an instance of the 2-TABLE for an instance of SAT the
same way as we did for XSAT, we have to find characteristic vectors such that
(1,1, . . . ,1) � χ(f ,X) + χ(g,Y). This is a real obstacle, because we cannot use
Lemma 9.1 anymore: the argument “if ai + b j ≺ (1,1, . . . ,1), then for every l ≥ i,
ai +bl ≺ (1,1, . . . ,1)” does not hold anymore. In the worst case (without having any
ingenious idea) we have to try all possible pairs of vectors.

Knapsack. In the BINARY KNAPSACK problem, we are given a positive integer
W and n items s1,s2, . . . ,sn, each item has its value ai and its weight wi, which are
positive integers. The task is to find a subset of items of maximum total value subject
to the constraint that the total weight of these items is at most W .

To solve the BINARY KNAPSACK problem in time O∗(2n/2), we reduce its so-
lution to the solution of the following MODIFIED 2-TABLE problem. We are given
two tables T1 and T2 each one an array of size 1× k whose entries are positive inte-
gers, and an integer W . The task is to find one number from the first and one from
the second table whose sum is at most W . An example is given in Fig. 9.3.

10 2 4 12 15 6 11 14

Fig. 9.3 In this example, for W = 14, the solution is the pair of integers (2,11).

The problem MODIFIED 2-TABLE can be solved in timeO(k logk) with an algo-
rithm similar to the one for 2-table.

In the first step, the algorithms sorts the entries of T1 in increasing order and
the ones of T2 in decreasing order. Let x be an entry in T1 and y an entry in T2.
We observe the following. If x + y ≤W , then for all z appearing after y in T2, we
have z < y, and, consequently, x + z ≤ x + y. Therefore, all such pairs (x,z) can be
eliminated from consideration, as they cannot provide a better answer than (x,y).
Similarly, if x+ y > W then for all z appearing after x in T1, z+ y > W , and thus all
pairs (z,y), z ≥ x, can be eliminated from consideration. Thus after sorting, which
requires O(k logk) time, one can find the required pair of numbers in O(k) steps.
This observation is used to prove the following theorem.

Theorem 9.4. The BINARY KNAPSACK problem is solvable in time O∗(2n/2).

9.1 Sort and Search 157

Proof. To solve the BINARY KNAPSACK problem, we split the set of items into two
subsets s1,s2, . . . ,sbn/2c and sbn/2c+1, . . . ,sn, and for each subset I⊆{1,2, . . . ,bn/2c},
we construct a couple xI = (AI ,WI), where

AI = ∑
i∈I

ai, and WI = ∑
i∈I

wi.

Thus we obtain a set X of couples and the cardinality of X is at most 2n/2. Sim-
ilarly we construct the set Y which consists of all couples yJ = (AJ ,WJ), where
J ⊆ {bn/2c+1,bn/2c+1+1, . . . ,n}. Then the problem boils down to finding cou-
ples xI ∈ X and yJ ∈ Y such that AI + AJ is maximum subject to the constraint
WI +WJ ≤W .

To reduce the problem to an instance of the MODIFIED 2-TABLE problem dis-
cussed above, we perform the following preprocessing: a couple (AI ,WI) is removed
from X (or Y) if there is a couple (AI′ ,WI′), I 6= I′, from the same set such that
AI′ ≥ AI and WI′ ≤ WI . The argument here is that the set of items with couple
(AI′ ,WI′) has higher value and smaller weight, so we prefer (AI′ ,WI′) and can safely
remove (AI ,WI) from X . In the case of (AI ,WI) = (AI′ ,WI′), we break ties arbitrarily.
In other words, we remove couples dominated by some other couple.

This preprocessing is done in time O∗(n2n/2) in the following way for X and
similarly for Y . First the items of the set X (or Y) are sorted in increasing order
according to their weights. At the second step of the preprocessing we are given a
list of couples sorted by increasing weights

(A1,W1),(A2,W2), · · · ,(Ak,Wk),

where k≤ 2n/2 and for every 1≤ i < j≤ k, Wi≤Wj. We put A := A1 and move in the
list from 1 to k performing the following operations: if Ai > A, we put A := Ai. Oth-
erwise (Ai ≤ A), we remove (Ai,Wi) from the list. This procedure takes O(k) steps
and as the result of it we have produced a set of couples with no couple dominated
by any other one.

Thus after preprocessing done for X and for Y , we have that (AI ,WI) ∈ X and
(AJ ,WJ) ∈ Y have maximum sum AI +AJ subject to WI +WJ ≤W if and only if the
sum WI +WJ is maximum subject to WI +WJ ≤W . What remains is to construct the
table of size 2× 2n/2 and use the algorithm for the MODIFIED 2-TABLE problem.
This step requires time O∗(2n/2). This concludes the proof. ut

A natural idea to improve the running time of all algorithms based on reductions
to the k-TABLE problem, is to partition the original set into k≥ 3 subsets and reduce
to the k-TABLE problem. However, it is not clear how to use this approach to obtain
better overall running times. Consider the following k-TABLE problem: given k ta-
bles T1,T2, . . .Tk such that each table is an array of size m× k with entries from Rm,
the task is for a given vector c, to find a set of vectors (c1,c2, . . . ,ck), ci ∈ Ti, such
that

c1 + c2 + · · ·+ ck = c.

158 9 Split and List

We can solve the k-TABLE problem in time O(nk−1 + kn logn) by recursively ap-
plying the algorithm for the 2-TABLE problem. Unfortunately we do not know any
faster algorithm for this problem.

Thus if we split an instance of a hard problem, like XSAT, into k subsets, con-
struct 2n/k sets of vectors for each table, and use an algorithm for solving the k-
TABLE problem, we obtain an algorithm of running time O∗(2(k−1)n/k).

However, the idea of reducing to a k-TABLE problem can be useful to reduce
the space required by such algorithms. All algorithms discussed in this section keep
tables of sizes m× 2n/2 and thus the space needed is 2n/2. Schroeppel and Shamir
[202] used the k-TABLE problem to reduce the space requirement of such algorithms
to 2n/4.

9.2 Maximum Cut

In this section we describe an algorithm due to Williams solving the MAXIMUM
CUT problem. The algorithm is based on a fast way of finding triangles in a graph.
This approach is based on fast square matrix multiplication. Let us recall, that the
product of two n×n matrices can be computed in O(nω) time, where ω < 2.376 is
the so-called square matrix multiplication exponent.

Maximum Cut. In the MAXIMUM CUT problem (Max-Cut), we are given an undi-
rected graph G = (V,E). The task is to find a set X ⊆ V maximizing the value of
CUT(X ,V \X), i.e. the number of edges with one endpoint in X and one endpoint
in V \X .

While a naive way of finding a triangle in a graph would be to try all possible
triples of vertices, there is a faster algorithm for doing this job.

Theorem 9.5. A triangle in a graph on n vertices can be found in time O(nω) and
in O(n2) space.

Proof. Let A(G) be the adjacency matrix of G. It is easy to prove that in the kth
power (A(G))k of A(G) the entry (A(G))k[i, i] on the main diagonal of (A(G))k is
equal to the number of walks of length k which start and end in vertex i. Every
walk of length 3 which starts and ends at i must pass through 3 vertices, and thus
is a triangle. We conclude that G contains a triangle if and only if (A(G))3 has a
non-zero entry on its main diagonal. The space required to compute the product of
matrices is proportional to the size of A(G), which is n2. ut

Theorem 9.6. The MAXIMUM CUT problem on n-vertex graphs is solvable in time
O∗(2ωn/3) =O(1.7315n), where ω < 2.376 is the square matrix multiplication ex-
ponent.

Proof. Let us assume that G = (V,E) is a graph on n vertices and that n is divisible
by 3. (If not we can add one or two isolated vertices which do not change the value of

9.2 Maximum Cut 159

the maximum cut and add a polynomial factor to the running time of the algorithm.)
Let V0,V1,V2 be an arbitrary partition of V into sets of sizes n/3.

We construct an auxiliary weighted directed graph A(G) as follows. For every
subset X ⊆ Vi, 0 ≤ i ≤ 2, the graph A(G) has a vertex X . Thus A(G) has 3 · 2n/3

vertices. The arcs of A(G) are all possible pairs of the form (X ,Y), where X ⊆ Vi,
Y ⊆ Vj, and j = i + 1 (mod3). Thus A(G) has 3 · 22n/3 arcs. For every arc (X ,Y)
with X ⊆Vi and Y ⊆Vj, i 6= j, we define its weight

w(X ,Y) = CUT (X ,Vi \X)+CUT(X ,Vj \Y)+ CUT (Y,Vi \X).

Claim. The following properties are equivalent

(i) There is X ⊆V such that CUT(X ,V \X) = t.
(ii) The auxiliary graph A(G) contains a directed triangle X0,X1,X2, Xi ⊆Vi, 0≤

i≤ 2, such that
t = w(X0,X1)+w(X1,X2)+w(X2,X0).

Proof (Proof of Claim). To prove (i)⇒ (ii), we put Xi = X ∩Vi, 0 ≤ i ≤ 2. Then
every edge e of G contributes 1 to the sum w(X0,X1) + w(X1,X2) + w(X2,X0) if
e is an edge between X and V \X , and 0 otherwise. To prove (ii)⇒ (i), we put
X = X0 ∪X1 ∪X2. Then again, every edge is counted in CUT(X ,V \X) as many
times as it is counted in w(X0,X1)+w(X1,X2)+w(X2,X0). ut

To find out whether the condition (ii) of the claim holds, we do the following.
We try all possible values of w(Xi,X j), j = i+1 (mod3). Thus for every triple W =
(w01,w12,w20) such that w = w01 + w12 + w20, we consider the subgraph A(G,W)
of A(G) which contains only the arcs of weight wi j from Xi ⊆ Vi to X j ⊆ Vj. For
every value of t, the number of such triples is at most t3. The subgraph A(G,W) can
be constructed in time O∗(22n/3) by going through all arcs of A(G). But then there
exists a triple W satisfying (ii) if and only if the underlying undirected graph of
A(G,W) contains a triangle of weight W . By Theorem 9.5, verifying whether such
a triangle exists can be done in timeO∗(2ωn/3). Thus for every value of t, we try all
possible partitions of t, and for each such partition we construct the graph A(G,W)
and check whether it contains a triangle of weight t. The total running time is

O∗(t · t3(2ωn/3 +22n/3)) =O∗(2ωn/3).

Notes

The name Split and List for the technique is due to Ryan Williams, who used it in his
PhD thesis [217]. The algorithms for SUBSET SUM and BINARY KNAPSACK are
due to Horowitz and Sahni [117] and Schroeppel and Shamir [202]. Note that this is
an early paper of Adi Shamir, one of the three inventors of the RSA public-key cryp-
tosystem. The space requirements in these algorithms can be improved to O∗(2n/4)
while keeping the same running time of O∗(2n/2) [202]. Howgrave-Graham and

160 9 Split and List

Joux improve the algorithm of Schroeppel and Shamir for SUBSET SUM on random
inputs i [118].

Fomin, Golovach, Kratochvil, Kratsch and Liedloff used the Split and List ap-
proach to list different types of (σ ,ρ) dominating sets in graphs [82]. Klinz and
Woeginger used this approach for computing power indices in voting games [131].

Williams [216] provides a variant of Theorem 9.6 for solving a more general
counting version of WEIGHTED 2-CSP (a variant of constraint satisfaction with
constraints of size at most 2). Williams’ PhD thesis [217] contains further general-
izations of this approach.

Theorem 9.5 is due to Itai and Rodeh [121]. A natural question concerning the
proof of Theorem 9.6 is, whether partitioning into more than three parts would be
useful. The real obstacle is the time spent to find a clique of size k in a graph. Despite
many attempts, the following result of Nešetřil & Poljak was not improved for more
than 25 years: The number of cliques of size 3k in an n-vertex graph can be found
in time O(nωk) and space O(n2k) [163]. Eisenbrand and Grandoni [67] succeeded
in improving the result of Nešetřil and Poljak for a (3k + 1)-clique and a (3k + 2)-
clique for small values of k. In particular, they show how to find a cliques of size
4,5, and 7 in time O(n3.334) O(n4.220), and O(n5.714), respectively.

The first algorithm that performs a matrix multiplication faster than the standard
Gaussian elimination procedure implying ω ≤ log2 7 < 2.81 is due to Strassen [210].
The proof that ω < 2.376 is due to Coppersmith and Winograd [51].

Chapter 10
Time Versus Space

We have already met different types of exponential algorithms. Some of them use
only polynomial space, among them in particular the branching algorithms. On the
other hand, there are exponential time algorithms needing exponential space, among
them in particular the dynamic programming algorithms. In real life applications
polynomial space is definitely preferable to exponential space. However, often a
“moderate” usage of exponential space can be tolerated if it can be used to speed
up the running time. Is it possible by sacrificing a bit of running time to gain in
space? In the first section of this chapter we discuss such an interpolation between
the two extremes of space complexity for dynamic programming algorithms. In the
second section we discuss an opposite technique to gain time by using more space,
in particular for branching algorithms.

10.1 Space for Time: Divide & Conquer

We present a technique to transform an exponential space algorithm into a poly-
nomial space algorithm. It is a Divide & Conquer approach that leads to recursive
algorithms. Typically the technique is applied to dynamic programming algorithms
needing exponential space. It can be seen as based on the central idea of Savitch’s
proof that non-deterministic polynomial space is equal to deterministic polynomial
space.

We demonstrate this approach for the TRAVELLING SALESMAN problem (TSP).
In Chap. 1, we gave a dynamic programming algorithm solving TSP on n cities
in time and space O∗(2n). It is possible to solve TSP by applying ideas based
on inclusion-exclusion, in almost the same way as we did for counting Hamilto-
nian paths in Chap. 4. However, this approach yields an algorithm that runs in time
O∗(W2n) and uses space O∗(W), where W is the maximum distance between two
cities. Since W can be exponential in n, this does not give a polynomial space algo-
rithm.

161

162 10 Time Versus Space

Theorem 10.1. The TRAVELLING SALESMAN problem on n cities is solvable in
time O∗(4nnlogn) using only polynomial space.

Proof. Let us consider an instance of TSP with a set of distinct cities

C = {c1,c2, . . . ,cn}.

Let d(ci,c j) be the distance between cities ci and c j. The algorithm is based on
the following simple idea. We try to guess the first half of the cities visited by the
salesman. The number of all such guesses is at most 2n and for each of the guesses
we solve two problems of size n/2 recursively.

For a nonempty subset S of C and cities ci,c j ∈ S, we define OPT [S,ci,c j] to be
the minimum length of a tour which starts in ci, visits all cities of S and ends in
c j. When |S| = 1, we put (slightly abusing notations) OPT [S,ci,c j] = 0. For S =
{ci,c j}, i 6= j, we put

OPT [S,ci,c j] = d(ci,c j).

For a subset S ⊆ C, of size at least 3, ci,c j ∈ S, let P be a tour of length
OPT [S,ci,c j] which starts in ci, visits all cities in S and ends in c j. Let S1 be the
first half of the cities visited by P, x be the last city in S1 visited by P and y be
the first city not in S1 visited by P. Then the length of the part of P from ci to x is
OPT [S1,ci,x], the length of the part from y to c j is OPT [S \ S1,y,c j], and the total
length of P is

OPT [S1,ci,x]+OPT [S\S1,y,c j]+d(x,y).

Therefore, for every subset S ⊆C of size at least 3 and every pair ci,c j ∈ S, i 6= j,
we can compute the value of OPT [S,ci,c j] by making use of the following formula.

OPT [S,ci,c j] = min
S′⊂S\{c j}

ci∈S′
|S′ |=d|S|/2e
x∈S′,y∈S\S′

OPT [S′,ci,x] + OPT [S\S′,y,c j]

+ d(x,y). (10.1)

Then the length of an optimal tour is equal to

min
ci,c j∈C,i6= j

OPT [C,ci,c j]+d(ci,c j). (10.2)

Now to compute the optimal tour, we try all possible pairs of cities and use (10.1)
recursively to compute the values in (10.2).

Let T (n) be the maximum number of calls in the recursive algorithm based on
(10.1). For a set S of size k and fixed cites ci, c j, we try all possible subsets S′ of S of
size dk/2e containing ci and not containing c j. The number of such sets is at most
2k. For every such subset S′ there are at most dk/2e values of OPT (S′,ci,x) and at
most bk/2c values of OPT (S\S′,y,c j). Thus we can estimate T (n) by the following
recursive formula

10.1 Space for Time: Divide & Conquer 163

T (n) ≤ 2n (dn/2e ·T (dn/2e)+ bn/2c ·T (bn/2c))
= O(2n(1+1/2+1/4+1/8+···)nlognT (1))
= O(4nnlogn).

The recursion requires a polynomial number of steps for every recursive call and
thus the total running time of the algorithm is O∗(4nnlogn).

The space required on each recursion level to enumerate all sets S′ is polynomial.
Since the recursion depth isO(logn), the polynomial space bound is easily met. ut

Let us remark that using a log-cost RAM model for the analysis in the proof of
Theorem10.1 leads to a running time of O(4nnlogn logW) and space (n logW)O(1).

The two examples of algorithms for solving the TRAVELLING SALESMAN prob-
lem either by Dynamic Programming or by Divide & Conquer are two extremes of
time-space exchange. The dynamic programming algorithm needs O∗(2n) time and
space, and for this algorithm the product of space and time is

SPACE×T IME =O∗(4n).

The Divide & Conquer algorithm has almost the same product of space and time,
namely 4n+o(n).

By combining these two approaches it is possible to balance the exchange of time
and space.

Theorem 10.2. For every i ∈ {0,1,2, . . . ,dlog2 ne}, the problem TSP on n cities is
solvable in time O∗(2n(2−1/2i)ni) and space O∗(2n/2i

).

Proof. The proof of the theorem is almost the same as the proof of Theorem 10.1.
It is also based on (10.1) and the only difference is that we stop recursion when the
size of the problem is dn/2ie. For sets S of size dn/2ie the dynamic programming
algorithm computes OPT [S,ci,x] in time and spaceO∗(2|S|) =O∗(2n/2i

). There are
i levels of recursion and the number of recursive calls is

T (n) ≤ O(2n(1+1/2+1/4+1/8+···+1/2i−1)ni)

= O(22n(1−1/2i)ni).

For each recursive call we use time and spaceO∗(2n/2i
), and the running time of the

algorithm is
O∗(2n/2i ·22n(1−1/2i)ni) =O∗(2n(2−1/2i)ni).

ut
Let us remark that the case i = 0 corresponds to the running time and space require-
ments of the dynamic programming algorithm of Chap. 1 and the case i = dlog2 ne
corresponds to Theorem 10.1.

The product of space and time required by algorithms in Theorem 10.2 is 4n+o(n).
The following result of Koivisto and Parviainen gives an algorithm for TSP, such
that the product of space and time required is O∗(3.9271n).

164 10 Time Versus Space

Theorem 10.3. TSP on n cities is solvable in timeO∗(2.7039n) and spaceO∗(1.4525n).

Proof. Let us assume for simplicity that n is divisible by 26. We divide n cities into
n/26 sets S1,S2, . . . ,Sn/26 of equal size. For each set Si we consider all possible
partitions (Ai,Bi) into sets of equal size, i.e. of size 13. Thus for each set we have(26

13

)
partitions and in total we consider

(26
13

)n/26
partitions. For each such partition,

we consider orderings of the cities in which for every i ∈ {1,2, . . . ,n/26}, all cities
from Ai are before any city from Bi. Since we try all possible partitions, we are
quarantined that at least for one of the partitions at least one ordering with Ai being
before Bi is also an ordering corresponding to the optimum tour of the salesman.

For each of the partitions, we perform dynamic programming almost identically
to the algorithm of Chap. 1. For a fixed set of partitions

(A1,B1), . . . ,(An/26,Bn/26),

we first compute all values OPT [S,ci], where i ≤ n/2 and S∪{ci} is a subset of
cities from A1∪A2∪·· ·∪An/26. This computation requires time and spaceO∗(2n/2).
We proceed with dynamic programming over all subsets S such that for every i ∈
{1,2, . . . ,n/26}, a subset of Bi can be a part of S only if all vertices of Ai are in S.
Thus S can contain

• either one of the 213−1 proper subsets of Ai (but not Ai) and none of the vertices
from Bi,

• all vertices of Ai and one of the 213 subsets of Bi.

The running time and space required to compute an optimal solution for each fixed
set of partitions is up to a polynomial factor proportional to the amount of such
subsets S, which is

O∗((213−1+213)n/26) =O∗(1.4525n).

Thus by trying all possible partitions and running the dynamic programming algo-
rithm on each try, we obtain solve TSP in time

O∗(
(

26
13

)n/26

· (213−1+213)n/26) =O∗(2.7039n).

and space O∗(1.4525n). ut

Dynamic programming algorithms of running time O∗(2n) for various problems
have been mentioned in Chap. 3, among them SCHEDULING, CUTWIDTH, OPTI-
MAL LINEAR ARRANGEMENT, and TREEWIDTH. For all of these, O∗(4nnlogn)
time polynomial space algorithms can be established by Divide & Conquer. Of
course, the result of Theorem 10.3 also holds for a large variety of permutation
problems.

10.1 Space for Time: Divide & Conquer 165

Our second example is the COLORING problem. Before showing how to apply
the Divide & Conquer technique to a dynamic programming algorithm, we present
a helpful combinatorial lemma.

Lemma 10.4. Let N = {n1, . . . ,nk} be any non-empty multiset of positive integers,
let n = ∑

k
j=1 n j be the sum of the elements in N, and let m be a largest element of N.

Then N \{m} can be partitioned into multisets C1, C2 such that for i = 1,2:

∑
n j∈Ci

n j ≤ n/2.

Proof. Take any order of the elements in the multiset N \ {m} and renumber the
elements n1,n2, . . . ,nk−1. Then find the unique index r such that n1 + · · ·+ nr−1 ≤
n/2 and n1 + · · ·+ nr > n/2, and thus nr+1 + · · ·nk−1 + m ≤ n/2. Combined with
nr ≤m this implies nr +nr+1 + · · ·nk−1 ≤ n/2. Consequently, C1 = {n1, . . . ,nr} and
C2 = {nr+1, . . . ,nk−1} is the desired partition. ut

A dynamic programming algorithm to compute the chromatic number of a graph
and also a minimum coloring has been presented in Chap. 3. This algorithm has run-
ning time O∗((1 + 3

√
3)n) =O(2.4423n) and needs exponential space. The O∗(2n)

algorithm from Chap. 4 is based on inclusion-exclusion and also requires exponen-
tial space. By Corollary 4.14, there is also a polynomial space algorithm computing
the chromatic number of a graph which runs in time O∗(2.2461n). The polynomial
space algorithm based on Divide & Conquer for graph coloring does not provide
such a good running time and is included here only as an example demonstrating
the technique.

To apply Divide & Conquer to the dynamic programming coloring algorithm,
we observe that any coloring, and in particular a minimum coloring, is a partition
of the graph into independent sets, where one independent set might be assumed
to be a maximal one. Hence to compute the chromatic number and a minimum
coloring we guess the “middle” independent set I that we may assume to be a largest
independent set of the coloring and also a maximal independent set of G, and C1 as
the union of the “left” independent sets in the minimum coloring and C2 as the
union of the “right” independent sets. Then the algorithm recursively computes a
minimum coloring of G[C1] and also one of G[C2]. Finally minimum colorings of
G[C1] and G[C2] combined with I will provide a minimum coloring of G with respect
to the partition (C1, I,C2).

There is another important feature we have to take care of. The best running time
of Divide & Conquer is obtained when we recurse on balanced subproblems. For this
we want to work only with partitions (C1, I,C2) satisfying |C1| ≤ n/2 and |C2| ≤ n/2.
To guarantee this, Lemma 10.4 is used. Let us assume that the minimum coloring
of G is I1, I2, . . . , Ik. W.l.o.g. the largest independent set is a maximal one, say I =
Ik. Now we use Lemma 10.4 with the multiset N = {|I1|, |I2|, . . . , |Ik|} and m =
|Ik|. Then there is an index r such that C1 = {|I1|, . . . , |Ir−1|}, C2 = {|Ir|, . . . , |Ik−1|},
|C1| ≤ n/2 and |C2| ≤ n/2.

Hence the following algorithm correctly computes a minimum coloring of G:
Recursively compute a minimum coloring for G[C1] and G[C2] for all partitions

166 10 Time Versus Space

(C1, I,C2) where I is a maximal independent set of G, |C1| ≤ n/2 and |C2| ≤ n/2. For
each partition (C1, I,C2), combining a minimum coloring of G[C1] and G[C2] with
the maximal independent set I gives a coloring of G. Minimizing over all partitions
provides a minimum coloring of G as shown above.

It remains to analyze the running time and the space needed by the algorithm.
To analyze the running time let T (n) be the number of recursive calls the algorithm
makes on an n-vertex graph. The algorithm has to enumerate all maximal indepen-
dent sets of G. By a well-known result of Moon and Moser [161] (Theorem 1.1),
a graph on n vertices has at most 3n/3 maximal independent sets and they can be
enumerated in time 3n/3nO(1) and polynomial space, as mentioned in Chap. 1. The
number of sets Ci is at most 2n. Taking into account the polynomial overhead for
computing all partitions (C1, I,C2), we establish the recurrence

T (n)≤ 3n/32n(T (n/2)+T (n/2)).

Note that this recurrence is similar to the one in the algorithm for TSP. It can be
solved in the same way and one obtains

T (n) =O∗((31/3 ·2)2n) =O∗(8.3204n).

Every procedure called recursively can be performed in polynomial time when
recursive calls are not considered. Thus the running time of the algorithm is the
number of recursive calls times a polynomial factor, and thus O∗(8.3204n).

The number of recurrence levels is O(logn), and at each step of the recursion
we use a polynomial space algorithm to enumerate all maximal independent sets
and the subsets C1 and C2. Thus the space used by the algorithm is polynomial. We
conclude with the following theorem.

Theorem 10.5. There is a polynomial space algorithm computing a minimum col-
oring of the input n-vertex graph in time O(8.3204n).

It is possible to establish a result for the COLORING problem similar to Theo-
rem 10.2. For example, one can stop the recursion after reaching problems with in-
stances on n/2i vertices and apply to such graphs the 2n/2i

algorithm from Chap. 4.
By exactly the same arguments as for the TSP problem, we obtain the following
theorem.

Theorem 10.6. For every i ∈ {0,1,2, . . . ,dlog2 ne}, a minimum coloring of an n-

vertex graph can be computed in timeO∗(3 2n(1−1/2i)
3 2n(2−1/2i)ni) and spaceO∗(2n/2i

).

10.2 Time for Space: Memorization

The time complexity of many exponential time branching algorithms, that origi-
nally need only polynomial space, can be reduced at the cost of exponential space

10.2 Time for Space: Memorization 167

complexity via the memorization technique. The method was first applied to an
exact algorithm for the MAXIMUM INDEPENDENT SET problem by Robson[185].
Memorization allows us to establish the best exponential time algorithm for various
well-studied NP-hard problems e.g. MAXIMUM INDEPENDENT SET.

The basic idea of memorization is the following: In branching algorithms, es-
pecially on the lower levels of branching, isomorphic instances of the problem can
occur exponentially many times in different branches. To avoid recomputation on
the same instance, the solutions of all the subproblems are stored in an (exponential
size) database. If the same subproblem turns up more than once, then the algorithm
does not solve it for a second time, but looks up the already computed result. The
database is implemented in such a way that the query time is logarithmic in the
number of solutions stored and thus polynomial in the size of the problem: this way
the cost of each look-up is polynomial. The techniques described in this subsection
can easily be adapted to many other branching algorithms.

To illustrate how to apply memorization to a branching algorithm we consider
a specific NP-hard problem and a specific algorithm to solve it. Morevover, in our
first example we analyze it with a simple measure.

Let us first recall the definition of the problem. In the MAXIMUM INDEPEN-
DENT SET problem (MIS) we are given an undirected and simple graph G = (V,E).
The task is to construct an independent set of maximum cardinality. Recall that an
independent set of G is a vertex set S such that no two vertices of S are adjacent.

We describe how to apply memorization to a branching algorithm using the al-
gorithm of Fig. 10.1.

Algorithm mis5(G).
Input: A graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if ∆(G)≥ 3 then
choose a vertex v of maximum degree in G
return max(1+mis5(G\N[v]),mis5(G\ v))

if ∆(G)≤ 2 then
compute α(G) using a polynomial time algorithm
return α(G)

Fig. 10.1 Algorithm mis5 for MAXIMUM INDEPENDENT SET

To analyze the running time of the above branching algorithm, let P(n) be the
maximum number of leaves in the search tree recursively generated by the algo-
rithm to solve the problem on a graph with n vertices. The worst case recurrence is
obtained by the branching on a vertex of degree 3:

P(n)≤ P(n−1)+P(n−4).

168 10 Time Versus Space

The unique positive real root of the corresponding polynomial x4− x3− 1 = 0 is
1.3802.... Since each recursive call takes polynomial time, and the total number
of subproblems solved is within a polynomial factor of P(n), the running time of
the algorithm (according to simple analysis) is O(1.3803n). Furthermore, let Ph(n),
h≤ n, be the number of subproblems being graphs with h vertices solved when the
algorithm solves MIS on a graph with n vertices. By basically the same analysis,
one obtains Ph(n) =O(1.3803n−h) for any fixed h.

Now the running time of algorithm mis5 can be reduced by modifying the algo-
rithm with the memorization technique, at the cost of exponential space complexity,
in the following way. Whenever we solve a subproblem G′, which is an induced sub-
graph of G, we store the pair (G′,mis(G′)) in a database, where mis(G′) is a maxi-
mum independent set of G′. Before solving any subproblem, we check whether its
solution is already available in the database. Observe that, since G has 2n induced
subgraphs, the database can easily be implemented so that each query takes time
polynomial in n.

Let us analyze the running time of the algorithm obtained by memorization. Due
to memorization, no subproblem is solved twice. We shall use a balancing argument
depending on the value of h. (Note that this is done to analyze the running time.
There is no explicit use of h in the algorithm.)

There are
(n

h

)
induced subgraphs of G with h vertices, which implies Ph(n)≤

(n
h

)
.

Moreover the upper bound Ph(n) = O(1.3803n−h) still holds. Altogether

Ph(n) = O(min{1.3803n−h,

(
n
h

)
}).

By setting h = αn and using the binary entropy function and Lemma 3.13, and bal-
ancing the two terms, one obtains that, for each h, Ph(n) ≤ 1.3803n−αn < 1.3426n,
where α > 0.0865 satisfies

1.38031−α =
1

αα(1−α)1−α

Theorem 10.7. The running time of the exponential space algorithm obtained by
applying memorization to algorithm mis5 is O(1.3426n).

In the above algorithm the memorization technique was applied to a branching
algorithm for which the running time was achieved by simple analysis. It is natural
to ask whether memorization can also be combined with a Measure and Conquer
analysis. Indeed this is possible and the approach is quite similar, though there is a
subtle difference to be taken into account.

To illustrate how to apply memorization to a branching algorithm for which the
running time was achieved by Measure and Conquer analysis we reconsider the
branching algorithm for the MINIMUM SET COVER algorithm presented in Chap. 6.
We rely on the results of the Measure and Conquer analysis of algorithm msc to
apply memorization.

10.2 Time for Space: Memorization 169

Let us recall some important features of the Measure and Conquer analysis of
algorithm msc of Chap. 6. The measure k = k(S) of an instance S of the MINIMUM
SET COVER problem (MSC) is

k(S) = ∑
i≥1

wi ni + ∑
j≥1

v j m j,

where ni is the number of subsets S ∈ S of cardinality i and m j is the number of
elements u ∈ U of frequency j. Using the following weights

wi =





0.377443 if i = 2,

0.754886 if i = 3,

0.909444 if i = 4,

0.976388 if i = 5,

and vi =





0.399418 if i = 2,

0.767579 if i = 3,

0.929850 if i = 4,

0.985614 if i = 5,

the Measure and Conquer analysis in Chap. 6 established a running time ofO(1.2353|U |+|S|)
for algorithm msc.

Now let us explain how memorization can be applied to the branching algorithm
msc. LetP be the collection of those subproblems generated during the execution of
the algorithm on which the algorithm branches. In particular, none of these subprob-
lems contains a set of cardinality one nor an element of frequency one. Let Ph(k) be
the maximum number of subproblems of P of size h, 0 ≤ h ≤ k. By basically the
same analysis as in in Sect. 6.3, one obtains Ph(k)≤ 1.2353k−h ≤ 1.2353k′−h, where
k′ := |S|+ |U|.

Now we need to discuss the crucial difference between simple analysis and Mea-
sure and Conquer when it comes to memorization. In simple analysis the measure
of the input is the number of vertices k, and exactly this is used in memorization
when subproblems are stored and analysed by cardinality k. When relying on a
Measure and Conquer analysis we need to convert the measure h of a subproblem
S′ into the cardinality i of the set S′ to be stored in the database. To do this let us
consider a subproblem of size h. Observe that it can be encoded via a pair (S ′,U ′),
where S ′ ⊆ S and U ′ ⊆ U . Since the problem considered does not contain any set
of cardinality one nor any element of frequency one and by the monotonicity of the
weights, we have that each set and each element of the subproblem has weight at
least min{v2,w2}. Consequently

|S ′|+ |U ′| ≤ bh/min{α2,β2}c= bh/0.377443c=: h′.

Having translated measure into cardinality we may proceed as in the case of simple
analysis.

Since due to the memorization no subproblem is solved more than once, Ph(k) is
also upper bounded by

Ph(k)≤ ∑
i≤h′

(
k′

i

)
.

170 10 Time Versus Space

Observe that, the number of different weights being a constant, the number of pos-
sible distinct feasible values of h is a polynomial in k. Putting things together,

|P| ≤∑
h

min

{
1.2353k′−h, ∑

i≤h′

(
k′

i

)}

= O∗(∑
h′>k′/2

1.2353k′−h′min{v2,w2}+ ∑
h′≤k′/2

min
{

1.2353k′−h′min{v2,w2},
(

k′

h′

)}
)

= O∗(1.1871k′ + max
h′≤k′/2

min
{

1.2353k′−h′min{v2,w2},
(

k′

h′

)}
).

Applying Stirling’s formula,

max
h′≤k′/2

min
{

1.2353k′−h′min{v2,w2},
(

k′

h′

)}
= O(1.2353k′−0.01996k′) = O(1.2302k′).

Hence, |P|= O(1.2302k′). At each branching step the algorithm removes at least
one set. Thus the total number of subproblems is O∗(|P|). Moreover, the cost of
each query to the database is polynomial in k.

Theorem 10.8. The exponential space algorithm for the MINIMUM SET COVER
problem established by applying memorization to algorithm msc has running
time O(1.2302(|S|+|U |)). The corresponding exponential space algorithm for the
MINIMUM DOMINATING SET problem has a running time of O(1.23022n) =
O(1.5132n).

Notes

Savitch’s proof that non-deterministic polynomial space is equal to deterministic
polynomial space appeared in [195]. The Divide & Conquer approach for the TRAV-
ELLING SALESMAN PROBLEM was proposed by Gurevich and Shelah in 1987
[108]. As was shown by Bodlaender, Fomin, Koster, Kratsch and Thilikos [31] and
Björklund and Husfeldt [25], this approach can be used for many other problems.

The algorithm for graph coloring is due to Björklund and Husfeldt [25]. A poly-
nomial space graph coloring algorithm of running time O(5.283n) is due to Bod-
laender and Kratsch [32]. Theorem 10.3 is due to Koivisto and Parviainen [139]. It
is stated in a much more general setting than presented in this book.

The first use of memorization in branching algorithms is due to Robson [185].
This technique is now a standard tool in speeding up branching algorithms [36,
84, 212, 87, 143]. Another technique to speednup branching algorithms by using
exponential space is based on treewidth and is used in [80].

Some open problems on exponential space requirements of exact algorithms are
discussed in [221].

Chapter 11
Miscellaneous

In this chapter we collect several unrelated results. The algorithm solving the BAND-
WIDTH MINIMIZATION problem can be seen as a combination of the branching and
the dynamic programming techniques. The second section on Branch & Recharge
provides a new angle on branching algorithms. The third section gives a brief
overview of fundamental results by Impagliazzo, Paturi, and Zane, and the Expo-
nential Time Hypothesis.

11.1 Bandwidth

Let us recall that the objective of the BANDWIDTH MINIMIZATION problem is to
find an optimal layout of a graph G = (V,E), i.e. a bijection f : V →{1, . . . ,n} such
that the width of the layout f ,

max
{u,v}∈E

| f (u)− f (v)|

is minimized. The layout f can be seen as an embedding of the vertices of G into
slots numbered from 1 to n. Thus the bandwidth of a graph is at most B, if there is
an embedding in {1,2, . . . ,n} such that the stretch | f (u)− f (v)| of each edge {u,v}
of G is at most B. Thus sometimes we will refer to integers i ∈ {1,2, . . . ,n} as slots.

Obviously, the bandwidth of any graph G on n vertices is at most n− 1. In this
section, we discuss an algorithm that for any B, 1 ≤ B ≤ n− 1, decides in time
O∗(6n) whether the bandwidth of G is at most B. Then running this algorithm for
all values of B, the BANDWIDTH MINIMIZATION problem can be solved in time
O∗(6n).

Let G be a graph on n vertices and B, 1≤ B≤ n−1, be an integer. Let us assume
that n is divisible by B+1 (this assumption does not change the result but makes the
description slightly easier). If G is not connected, then its bandwidth is equal to the
maximum bandwidth of its connected components. Thus we may assume that G is

171

172 11 Miscellaneous

a connected graph. We partition the set of slots {1,2, . . . ,n} into segments

{1, . . . ,B+1},{B+2, . . . ,2B+2}, . . . ,{n−B, . . . ,n}.

With every slot i ∈ {1,2, . . . ,n} we associate two values

x(i) = ((i−1) mod (B+1)) +1

and
y(i) = d i

B+1
e.

In other words, x(i) is the position of i in its segment, and y(i) is the number of the
segment to which i belongs.

For example, for B = 2 and n = 9, we have the following partition into 3 segments

1 2 3 | 4 5 6 | 7 8 9.

In this case, x(1) = 1, y(1) = 1, x(6) = 3, y(5) = 2, etc.
We say that the permutation

π1 π2 · · · πn

of slots is the lexicographical ordering of slots if for i≤ j,

(x(πi),y(πi))� (x(π j),y(π j)).

For our example with set of slots {1,2, . . . ,9} and B = 2, the lexicographical order-
ing of slots is

1 4 7 2 5 8 3 6 9.

Now we are ready to describe the algorithm. The algorithm proceeds in two
phases. In the first phase it creates O∗(3n) subproblems and in the second phase
it solves each of the subproblems in time O∗(2n).

The goal of the first phase is to break a possible layout intoO∗(3n) subproblems,
such that for each of the subproblems the approximate position of every vertex is
known. More precisely: The first phase starts by computing all possible assignments
of the vertices of the graph to the segments. The crucial observation is that for ev-
ery layout of width at most B, every pair of adjacent vertices is either assigned to
the same segment or to adjacent ones. Indeed, if two adjacent vertices are placed
into different non adjacent segments, then the stretch of the edge connecting these
vertices is at least B + 2. Thus if a vertex of a graph is assigned to a segment with
number i, then its neighbors can only be placed in one of the segments with num-
bers i−1, i, or i +1. The number of such assignments satisfying the condition that
adjacent vertices of G are assigned to the same or to adjacent segments is at most

n
B+1 ·3n =O∗(3n). This can be seen as follows. We select (arbitrarily) a vertex v in G
and we consider all n/(B+1) possibilities of assigning v to different segments. Then
we iteratively select an unassigned vertex u which has a neighbor w that already has

11.1 Bandwidth 173

been assigned to some segment. If no such vertex u exists then all vertices have been
assigned to segments as G is connected. Since u and w are adjacent, there are only
three possible segments to which u can be assigned. For each such an assignment
we also perform a check leaving only those assignments σ assigning exactly B + 1
vertices to each of the segments. We also remove assignments containing edges with
endpoints in non-adjacent segments. Assignments generated in the first phase will
be called segment assignments.

To describe the second phase of the algorithm we need the following definition.
For a fixed segment assignment σ : V → {1,2, . . . ,n/(B+1)}, we say that a subset
A⊆V is lexicographically embeddible in {1,2, . . . ,n} if

a) for each edge {u,v} ∈ E, conditions u ∈ A and v 6∈ A yield that σ(v) ≤ σ(u). In
other words, v can be assigned either to the same segment as u, or to the adjacent
segment preceding the slot containing u;

b) there is a mapping γ : A→ {1,2, . . . ,n} agreeing with σ , which means that for
every vertex v ∈ A, γ(v) belongs to the segment containing σ(v), and such that
the slots occupied by γ(v), v ∈ A, are the first |A| slots in the lexicographical
ordering of slots.

In Fig. 11.1, we give examples of lexicographically embeddible sets. For graph G in
Fig. 11.1 and B = 2, the mapping σ(a) = σ(b) = σ(f) = 1, σ(c) = σ(g) = σ(h) =
2, and σ(d) = σ(e) = σ(i) = 3, is the segment assignment. The layout γ agrees with
σ and its width is at most B. The sets /0⊂ {a} ⊂ {a,g} ⊂ {a,d,g} ⊂ {a,d, f ,g} ⊂
{a,c,d, f ,g}⊂{a,c,d, f ,g, i}⊂{a,b,c,d, f ,g, i}⊂{a,b,c,d, f ,g,h, i}⊂{a,b,c,d,e, f ,g,h, i}
are lexicographically embeddible. The set P = {a,c,d,g} is not lexicographically
embeddible because the first four slots in the lexicographical ordering are 1,4,7,2
but every mapping agreeing with σ must use two slots from the second segment
{4,5,6} for c and g. Thus there is no mapping satisfying condition b) of the defini-
tion of lexicographically embeddible sets. The set Q = {a,b,g,h} is also not lexico-
graphically embeddible because c 6∈ Q but σ(c) > σ(b) and thus σ does not satisfy
condition a).

Lemma 11.1. Let σ be a segment assignment. Then the following are equivalent

• There is layout γ : V →{1,2, . . . ,n} agreeing with σ and of width at most B
• There is sequence /0 = A0⊂A1⊂ ·· · ⊂An =V such that for each i∈ {1,2, . . . ,n},
|Ai|= i, and Ai is lexicographically embeddible in {1,2, . . . ,n}.

Proof. Let γ be a layout of width at most B agreeing with σ . We define the set Ai,
1 ≤ i ≤ n, as the set of vertices occupying the first i slots in the lexicographical
ordering of slots. Let u ∈ Ai, v 6∈ Ai, be a pair of adjacent vertices, and let k be the
slot occupied by u and ` be the slot occupied by v in the layout γ . Layout γ agrees
with σ , and thus y(k) = σ(u), y(`) = σ(v). The vertices of Ai occupy the first i
slots in the lexicographical ordering, and thus in every segment with number at least
σ(u), the first y(k)− 1 slots are occupied by vertices of Ai. Therefore, there are at
least B slots between k and the first unoccupied slot of the segment σ(u)+1. Since

174 11 Miscellaneous

a c eb d

f g h i

a b f c g h d e i

a bf cg h d ei

1 2 3 4 5 6 7 8 9

11.1. BANDWIDTH 185

a b c d e

f g h i

a b f c g h d e i

a bf cg h d ei

1 2 3 4 5 6 7 8 9

Figure 11.1: For the graph G in this Figure and B = 2, the mapping σ(a) =
σ(b) = σ(f) = 1, σ(c) = σ(g) = σ(h) = 2, and σ(d) = σ(e) = σ(i) = 3, is
the segment assignment.

• For each edge {u, v} ∈ E, conditions u ∈ A and v "∈ A yield that
σ(v) ≤ σ(u). In other words, v can be assigned either to the same slot
as u, or to the adjacent slot preceding the slot containing u;

• There is a mapping γ : A → {1, 2, . . . , n} “agreeing” with σ, which
means that for every vertex v ∈ A, γ(v) belongs to the segment con-
taining σ(v), such that the slots occupied by γ(v), v ∈ A, are the first
|A| slots in the lexicographical ordering of slots.

To give an example here.
a
b
c
d
e
f
g
h
i

184 CHAPTER 11. MISCELLANEOUS (DK + FF)

With every slot i ∈ {1, 2, . . . , n} we associate two values

x(i) = (i− 1) mod (B + 1) + 1

and

y(i) = # i

B + 1
$.

In other words, x(i) is the position of i in its segment, and y(i) is the number
of the segment i belongs to.

For example, for B = 2 and n = 9, we have the following partition into 3
segments

1 2 3 | 4 5 6 | 7 8 9.

In this case, x(1) = 1, y(1) = 1, x(6) = 3, y(5) = 2, etc.
We say that permutation

π1 π2 · · · πn

of slots is the lexicographical ordering of slots if for i ≤ j,

(x(πi), y(πi)) & (x(πj), y(πj)).

For our example with set of slots {1, 2, . . . , 9} and B = 2, the lexicographical
ordering is

1 4 7 2 5 8 3 6 9.

Now we are ready to describe the algorithm. We start by computing
all possible assignments of the vertices of the graph to segments. In every
assignment of the vertices of the graphs to slots {1, 2, . . . , n} with bandwidth
at most B, every pair of adjacent vertices is either assigned to the same
segment or to adjacent ones. Indeed, if two adjacent vertices are placed
into different non adjacent segments, then the stretch of the edge connecting
these vertices is at least B + 1. Thus if a vertex of a graph is assigned to a
segment with number i, then its neighbors can be placed only in one of the
segments with numbers i− 1, i, or i + 1. The number of such assignments is
at most n/(B+1)3n = O∗(3n). This can be seen as follows. If we select some
spanning rooted tree of G, and try to assign its vertices according breadth-
first search starting from the root. There are n/(B +1) possible assignments
of the root to segments but for every other vertex v of the tree there are at
most 3 segments to which v can be assigned.

For each such an assignment we also perform a “sanity” check leaving only
those assignments σ assigning exactly B +1 vertices to each of the segments.
We also remove assignments containing edges with endpoints in non-adjacent
segments. We will call such assignments by segment assignments.

Let us fix one of such segment assignments σ : V → {1, 2, . . . , n/(B+1)}.
We say that a subset A ⊆ V is lexicographically embeddible in {1, 2, . . . , n} if

Fig. 11.1 A Graph, its segment assignment and the corresponding embedding

|k− `| ≤ B, we conclude that v can be assigned only to segment σ(u) or σ(u)−1,
and thus σ(v)≤ σ(u).

For a given sequence /0 = A0 ⊂ A1 ⊂ ·· · ⊂ An = V of sets lexicographically em-
beddible in {1,2, . . . ,n}, we define the layout γ of width at most B as follows. For
v = Ai \Ai−1, we put γ(v) = k, where k is the ith position in the lexicographical
ordering of slots. Let u,v be adjacent vertices with k = γ(u) < γ(v) = `. If k and `
belong to the same segment, then `− k ≤ B. If y(k) = y(`)−1, then there is i, such
that v ∈ Ai and u 6∈ Ai. Hence, x(k) > x(`), and thus `− k ≤ B. ut

Now we want to use Lemma 11.1 to compute a layout γ of width at most B
which agrees with segment assignment σ . For every vertex subset A ⊆ V , we de-
cide whether A is lexicographically embeddible in {1,2, . . . ,n} by making use of
dynamic programming.

Every set A = {v} of cardinality one is lexicographically embeddible in {1,2, . . . ,n}
if and only if σ assigns v to the first segment and all neighbors of v are also assigned
to the first segment. This check can clearly be performed in polynomial time. Let
A be a set of cardinality at least two that is lexicographically embeddible and let γ

be the corresponding mapping. Then for the vertex v ∈ A assigned by γ to the slot
with maximum (in the lexicographical ordering of occupied slots) position, the set
A \ {v} is also lexicographically embeddible. Hence a set A of cardinality at least

11.2 Branch & Recharge 175

two is lexicographically embeddible in {1,2, . . . ,n} if and only if there is v∈ A such
that

• A\{v} is also lexicographically embeddible;
• Every vertex u 6∈A adjacent to v, is assigned to a slot with number σ(v) or σ(v)−

1.

By making use of this observation, we perform dynamic programming over all sub-
sets of V to compute all lexicographically embeddible subsets of V . This compu-
tation requires O∗(2n) steps and space. Finally, if the set V is lexicographically
embeddible, V = An ⊃ An−1 ⊃ ·· · ⊃ A1 ⊃ A0 = /0. Then by Lemma 11.1, these sets
can be used to construct a layout of width at most B.

Since we try O∗(3n) assignments, we have that in total the running time of the
algorithm is O∗(2n ·3n) =O∗(6n) and we conclude with the following theorem.

Theorem 11.2. The BANDWIDTH MINIMIZATION problem is solvable in timeO∗(6n)
using exponential space.

Exercise 11.3. Improve the running time of the algorithm of Theorem 11.2 to
O∗(5n).

11.2 Branch & Recharge

In Chap. 6 a Measure & Conquer analysis of branching algorithms has been pre-
sented. In this section a branching algorithm is established which solves an enu-
meration problem for generalized domination. To analyse the running time of the
algorithms weights are attributed to the vertices of the graph and these weights are
redistributed over the graph by a recharging mechanism. This recharging is used
to guarantee that all branchings have essentially the same branching vector, which
leads to an easy time analysis. This approach allows us to construct and analyse
a branching algorithm for a class of problems while the branching algorithms in
previous chapters are problem dependent.

(σ ,ρ)-Dominating Set Enumeration Problem. Let σ and ρ be two nonempty sets
of nonnegative integers. In the (σ ,ρ)-DOMINATING SET ENUMERATION PROBLEM
(Enum-(σ ,ρ)-DS) we are given an undirected graph G = (V,E). The task is to
enumerate all (σ ,ρ)-dominating sets S⊆V of G, i.e. S is a vertex subset satisfying
that |N(v)∩S| ∈ σ for all v ∈ S and |N(v)∩S| ∈ ρ for all v ∈V \S.

The table in Fig. 11.2 shows a few previously defined and studied graph invari-
ants which can be expressed in this framework.

We consider the Enum-(σ ,ρ)-DS problem assuming that σ is successor-free,
i.e. does not contain a pair of consecutive integers, and that both σ and ρ are finite.
These conditions are satisfied, for example, for perfect codes and strong stable sets
(see Fig. 11.2).

176 11 Miscellaneous

σ ρ (σ ,ρ)-dominating set
{0,1,2, . . .} {1,2,3, . . .} dominating set
{0} {0,1,2, . . .} independent set
{0} {1} perfect code
{0} {0,1} strong stable set
{0} {1,2,3, . . .} independent dominating set
{1} {1} total perfect dominating set

Fig. 11.2 Examples of (σ ,ρ)-dominating sets

We present an algorithm enumerating all (σ ,ρ)-dominating sets using a Branch
& Recharge approach. The upper bound of the running time of the branching algo-
rithm immediately implies a combinatorial upper bound on the number of (σ ,ρ)-
dominating sets.

Theorem 11.4. If σ is successor-free and both sets σ and ρ are finite then all the
(σ ,ρ)-dominating sets of an input graph G = (V,E) without isolated vertices can
be enumerated in time O∗(cn), where c = cp,q < 2 is a constant depending only on
p = maxσ and q = maxρ . Moreover, every isolate-free graph G contains O∗(cn)
(σ ,ρ)-dominating sets, where c = cp,q < 2 (is the same constant).

To see that one may assume max{p,q}> 0, notice that if σ = ρ = {0} then for
every isolate-free graph the empty set is the unique (σ ,ρ)-dominating set.

Now we describe the details of the branching algorithm. The recursive algorithm
enum-sigma-rho described in Fig. 11.3 is the principal part of the branching al-
gorithm solving Enum-(σ ,ρ)-DS for an input graph G = (V,E). The overall enu-
meration algorithm first computes an (arbitrary) breadth-first search (BFS) order-
ing v1,v2, . . . ,vn of the input graph G. Then we call enum-sigma-rho(G, /0, /0, [])
where [] is an empty list. This algorithm outputs a list L containing all (σ ,ρ)-
dominating sets. (The list is organized in such a way that it does not contain multi-
ples and also concatenation does not create multiples.) A simple check of the output
list L removes all sets S which are not (σ ,ρ)-dominating sets and outputs the list of
all (σ ,ρ)-dominating sets.

Similar to Measure & Conquer analysis of graph algorithms, weights are used to
analyse the branching algorithm. To analyse the branching algorithm enum-sigma-rho
one first assigns a weight of 1 to each vertex of the input graph. Thus the input
graph has (total) weight w(G) = ∑v∈V w(v) = n. In every instance of a subproblem
(G,S,S,L), the weight of a vertex of the graph G is a real in [0,1]. Furthermore the
total weight of the graph of a subproblem is smaller than the weight of the original
problem. Finally if a vertex is assigned to S or S then its weight is set to 0. This
set-up is similar to the analyses in Chaps. 2 and 6.

Now the new idea of the analysis is to guarantee the branching vector (1,1 + ε)
for all branchings, where ε = 1

max{p,q} > 0 and p = maxσ , q = maxρ . Because of
ε > 0 this immediately implies a running time ofO∗(cn), where c < 2 is the positive
real root of the characteristic polynomial x1+ε − xε −1.

11.2 Branch & Recharge 177

Algorithm enum-sigma-rho(G,S,S,L).
Input: A graph G = (V,E), disjoint vertex subsets S, S, and a list L of candidate vertex subsets.
Output: List L of all (σ ,ρ)-dominating sets D in G satisfying S⊆ D and S∩D = /0.

if there is no free vertex then L := L∪{S}
else

let v be the last free vertex in the BFS ordering of V
if v is the first vertex in the BFS ordering then

L := L∪{S,S∪{v}}
Halt

else
if ∃ free vertex x s.t. x adjacent to v and |N(x)∩S|= max{p,q} then

S := S∪{v}
else

if ∃x ∈ S s.t. v is its unique free neighbor then
if |N(x)∩S| ∈ σ then S := S∪{v}
if |N(x)∩S|+1 ∈ σ then S := S∪{v}
if {|N(x)∩S|, |N(x)∩S|+1}∩σ = /0 then Halt

if ∃x s.t. |N(x)∩S|> max{p,q} then Halt
if v is (still) free then

concatenate the lists enum-sigma-rho(G,S,S∪{v},L) and
enum-sigma-rho(G,S∪{v},S,L)

else enum-sigma-rho(G,S,S,L)

Fig. 11.3 Algorithm enum-sigma-rho computes a list L containing all (σ ,ρ)-dominating
sets of a graph G (and possibly some more vertex sets) when called for G, S = /0, S = /0 and
empty list L.

How can this be achieved? Firstly algorithm enum-sigma-rho contains only
one branching rule. Suppose the algorithm branches on the free vertex v and w(v) <
1. Recharging guarantees that the weight of v is increased such that w(v) = 1 before
the branching on vertex v is performed. How recharging is done will be explained
later. If the algorithm branches on a vertex v, then vertex v is either selected, i.e.
chosen in the solution S⊆V , or discarded, i.e. not chosen in the solution S⊆V and
thus taken into S. When branching on a vertex v, guaranteed to have weight 1, then
the weight of the graph decreases by at least 1 when v is discarded, and it decreases
by at least 1+ ε when v is selected in the so far generated candidate S for a (σ ,ρ)-
dominating set. In each case the weight of G decreases by 1 since the weight of v is
set to 0. In case of selection a free neighbor of v sends a weight of ε , i.e. its weight
is decreased by ε , and the weight of G is decreased by 1+ ε .

It remains to describe how the weight of the vertex v, chosen to branch on since
it is the last free vertex in the BFS ordering of G, can be reset to 1 if w(v) > 1. Let
us emphasize that this recharging is done without changing the weight of the graph.
The procedure recharge is described in Fig. 11.4. Notice that this procedure takes
as input the vertex v whose weight has to be increased to 1, the current weight
function w : V → [0,1] of the graph G and a directed graph H on the same vertex set

178 11 Miscellaneous

as G storing all exchanges of weights such that there is a directed edge from u to v
in H iff u sent a weight of ε to v, in the execution producing the current instance.

Procedure recharge(v,S,S,w,H)

if w(v) < 1 then
let {w1, . . . ,wt}= {x : {v,x} ∈ E(H)}
for i := 1 to t do let ui be another free neighbor (in G) of wi
for i := 1 to t do

w(ui) := w(ui)− ε

E(H) := (E(H)∪{{ui,wi}})\{{v,wi}}
w(v) := 1

Fig. 11.4 Procedure recharge

Note that in the procedure recharge the vertices w1, . . . ,wt are distinct, while
u1, . . . ,ut need not be. If some u is the chosen free neighbor of several, say k, vertices
from w1, . . . ,wt , then its weight drops by kε and also k edges starting at u are added
to H. It can be shown that each wi has another free neighbor in G. To guarantee that
recharging works correctly and is always possible it is crucial that σ is successor-
free. The process of recharging a vertex v is illustrated in Fig. 11.5.

w1 w2

w3

w4

w5

v

u3

u5

u1

u4

u2

ε

ε

ε

ε

ε

w1 w2

w3

w4

w5

v

u3

u5

u1

u4

u2

ε

ε

ε

ε

ε

the process of

recharging v

Fig. 11.5 Recharging vertex v

On the left side of Fig. 11.5, a vertex v sent a weight of ε to each of its neighbors
w1, w2, w3, w4 and w5, at the time when wi was assigned to S. Since σ is successor-
free, each wi, i ∈ {1, . . . ,5}, has a free neighbor uk, k ∈ {1, . . . ,5} (otherwise, v
would be forced by a reduction rule and thus the algorithm would not branch on
v). The value of ε ensures that each free vertex uk has a weight no smaller than ε

(otherwise, such a vertex would have more neighbors in S than allowed by σ and ρ).
On the right side of Fig. 11.5, the vertex v is recharged. For each k, a weight of ε is
sent from uk to one or more wi. The redistribution of the weights ensures w(v) = 1.

The correctness of the recharging procedure and the fact that the weight of the
vertex v to branch on can always be reset to 1 by redistribution of weights (without

11.3 Subexponential Algorithms and ETH 179

changing the weight of the graph) can be shown by a careful analysis of the distri-
bution of the weights on the vertices of the graph and its changes. For more details
and proofs we refer to the original paper [81].

Finally let us show that now the running time of the branching algorithm can
be established easily. Recall that the weight of an instance (G,w,S,S,H,L) is
w(G) = ∑v∈V w(v). In each branching on a vertex v the (total) weight of the graph G
decreases by 1 when discarding v, and it decreases by 1+ε when selecting v. Hence
the only branching rule of the algorithm has branching vector (1,1+ε). The running
time of each execution of enum-sigma-rho (without recursive calls) is polyno-
mial, and so the total running time of the algorithm isO∗(T) where T is the number
of leaves of the search tree. Note that each (σ ,ρ)-dominating set corresponds to one
leaf of the search tree.

Let T [k] be the maximum number of leaves of the search tree that any execu-
tion of our algorithm may generate on a problem instance of weight k. Due to the
branching vector we obtain:

T [k]≤ T [k−1]+T [k−1− ε].

Thus the number of (σ ,ρ)-dominating sets (which is bounded from above by T [n])
in an isolate-free graph on n vertices is at most cn, and the running time of our
algorithm that enumerates all of them is O∗(cn), where c is the largest real root of
the characteristic polynomial

x1+ε − xε −1.

The table shows the base of the exponential function bounding the running time
of our algorithm for some particular values of ϕ = max{p,q}.

ϕ 1 2 3 4 5 6 7 100
c 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9932

Exercise 11.5. An efficient dominating set of a graph G is a (σ ,ρ)-dominating set
with σ = {0} and ρ = {1}. The ENUM-({0},{1})-DS problem can be solved
in time O(1.6181n) as shown above. Construct and analyse a (significantly) faster
branching algorithm solving this enumeration problem.

11.3 Subexponential Algorithms and ETH

The hypothesis P 6= NP implies only that no NP-complete problem can be solved
in polynomial time. However this does not exclude the possibility of solving, say,
MAXIMUM INDEPENDENT SET (MIS) in time 2O(

√
n). For most of the algorithms

we have discussed so far, the worst case upper bound on the running time was
of order 2O(n) and it is natural to ask whether such behaviour is common for all
NP-complete problems. Of course not. For example, it is possible to show that the

180 11 Miscellaneous

treewidth of a planar graph on n vertices is O(
√

n). Combining this fact with the
algorithms on graphs of bounded treewidth from Chap. 5, we obtain that many prob-
lems like MAXIMUM INDEPENDENT SET or MINIMUM DOMINATING SET which
are still NP-complete on planar graphs, are solvable on these graphs in timeO(2

√
n).

However for many natural NP-complete problems on general classes of graphs, sets,
or formulas, we do not know subexponential algorithms.

Before proceeding further, we need to define precisely what we mean by a subex-
ponential algorithm. We say that a function f : R→R is a subexponential function,
if f (n) ∈ 2o(n). In other words, for every ε > 0 there is n0 such that for every n≥ n0,
| f (n)| ≤ 2εn.

We should be careful when defining subexponential algorithms. It seems natural
to define a subexponential time algorithm as an algorithm that for any input I of
length |I| of a problem Π outputs the correct answer in time 2o(|I|) or in other words,
in time subexponential of the input length. However there is a problem with such
definition.

Let us illustrate the problem with the following example. The MAXIMUM CLIQUE
problem is to find a clique of maximum size in a given graph G. This problem is

equivalent to MIS: G has a clique of size k if and only if its complement G has
an independent set of size k. We do not know any algorithm solving MIS in time
subexponential in the number of vertices of the graph, and thus we know no such
algorithm for solving MAXIMUM CLIQUE. However, the following lemma shows
that if we parameterize the running time of the algorithm for MAXIMUM CLIQUE
by the number of edges, then there is a subexponential time algorithm for MAXI-
MUM CLIQUE.

Lemma 11.6. The MAXIMUM CLIQUE problem on graphs with m edges is solvable
in time 2O(

√
m).

Proof. Let us assume that G is a connected graph. We choose a vertex v of minimum
degree. If the degree of v is at least

√
2m, then because

2m = ∑
v∈V
|N(v)| ≥ n

√
2m,

we have that n≤
√

2m. Then the running time of the brute force algorithm trying all
possible vertex subsets is n2O(n) = n2O(

√
m).

If the degree of v is less than
√

2m, let us consider the following simple branching
algorithm finding a clique C of maximum size in G. Pick a vertex v of minimum
degree and branch on two subproblems, in one v is a vertex of C and in the other
subproblem v is not a vertex of C. In the first subproblem, we use brute force to
search the neighbourhood of v for a clique of maximum size and thus branch on all
possible subsets of N(v). In the second case we call the algorithm recursively.

We argue by induction on m that the number of steps of the algorithm is at most
n2
√

2m. For m = 0, G has only one clique and the size of this clique is 1. To solve the
subproblem corresponding to the case v ∈ C, we use brute force to select a clique
C′ of maximum size in N(v). Then C = C′ ∪{v}. Since |N(v)| <

√
2m, there are

11.3 Subexponential Algorithms and ETH 181

at most 2
√

2m steps in this case. If v 6∈ C, then by the induction assumption, the
problem is solvable in at most (n−1)2

√
2m steps. Thus the total number of steps of

the algorithm is
2
√

2m +(n−1)2
√

2m = n2
√

2m

and its running time is 2O(
√

m). ut

The conclusion here is that every time we speak about subexponential algorithms,
we also should mention what is the corresponding parameterization. An interesting
fact that will be proved below is that for many problems the existence of a subexpo-
nential algorithm parameterized by the number of vertices, by the number of edges,
by the number of variables, or by the number of clauses is “equivalently unlikely”.

First we explain what we mean by “unlikely”. In the world of polynomial al-
gorithms we have a widely believed hypothesis P6=NP, which is equivalent to the
hypothesis that 3-SAT is not solvable in polynomial time. Despite many attempts,
there is no known algorithm solving 3-SAT with n variables in time 2o(n). The fol-
lowing hypothesis is stronger than the P6=NP hypothesis.

Exponential Time Hypothesis (ETH): There is no algorithm solving 3-SAT in time
2o(n), where n is the number of variables of the input CNF formula.

With the current state of the art in exact algorithms, ETH seems to be very rea-
sonable. Can we prove that subject to ETH there are other problems that cannot be
solved in subexponential time? The difficulty here is that almost all known classical
polynomial time reductions cannot be used to prove this type of statement. For ex-
ample, the standard reduction to MIS maps an instance of 3-SAT with n variables
and m clauses to a graph withO(n+m) vertices. This graph can have Ω(n3) vertices
and this type of reduction only shows that MIS is not solvable in time 2o(3√n). This
reduction would be subexponential time preserving if we parameterize the problems
by clauses and e dges but it is not subexponential with a more natural parameteriza-
tion by variables and vertices.

We want to prove that some problems are equivalent subject to solvability in
subexponential time. The idea is that since we are not restricted by polynomial time
anymore, we can use subexponential time reductions between problems. First we
need the following simple technical lemma.

Lemma 11.7. Let f : [0,+∞)→ R be a non-negative non-decreasing function. The
following are equivalent

i) f (n) ∈ 2o(n);
ii) There is a function h : R→ R, such that for every ε > 0, f (n)≤ h(ε) ·2εn.

Proof. i)⇒ ii). For every ε > 0, there is nε such that for every n≥ nε , f (n)≤ 2εn.
We define h(ε) = 2nε . Then f (n) ≤ h(ε) · 2εn. Indeed, for n ≥ nε , f (n) ≤ 2εn and
because f (n) is a non-decreasing, f (n)≤ 2nε = h(ε) for n≤ nε .

ii)⇒ i). For ε > 0, let us choose δ = ε/2 and n0 ≥ log2 h(δ)/δ . Then because
f (n)≤ h(δ) ·2δn, we have that for every n > n0, h(δ) ·2δn ≤ 2δn0 ·2δn ≤ 2εn. ut

182 11 Miscellaneous

Theorem 11.8. For every k ≥ 3, k-SAT can be solved in time 2o(n) if and only if it
can be solved in time 2o(m), where n is the number of variables and m is the number
of clauses of the input k-CNF formula F.

In the heart of the proof of Theorem 11.8 lies the Sparsification Lemma of Im-
pagliazzo, Paturi, and Zane [120]. The proof of the Sparsification Lemma is based
on a clever branching on variables contained in many clauses. The proof of the
lemma is quite technical and we do not give it here.

Lemma 11.9. (Sparsification Lemma) Let k ≥ 2. There is a computable function
g : N→N such that for every ` ∈ N and every formula F ∈ k-CNF with n variables,
there is a formula F ′ =

∨
i∈[t] Fi such that:

• F ′ is equivalent to F;
• t ≤ 2n/`;
• each Fi is a subformula of F in which each variable appears at most g(`) times.

Furthermore there is an algorithm that, given F and `, computes F ′ in time
2n/`|F |O(1).

Now using Lemmata 11.7 and 11.9, we prove Theorem 11.8.

Proof (Proof of Theorem 11.8). Suppose that there is an algorithm solving k-SAT
on instances with m clauses and n variables in time 2o(n). Because every instance is
an k-CNF, m≥ n/k. Hence 2o(n) = 2o(m) for every fixed k.

For the other direction, let us assume that k-SAT is solvable in time 2o(m). We
want to use the Sparsification Lemma to show that for every fixed `, k-CNF can
be solved in time O(2n/` p(n + m)) for every ` ∈ N, where p is a polynomial. This
together with Lemma 11.7 will imply that k-CNF can be solved in time 2o(n) p(n+
m). Because for every fixed k≥ 3, 2o(n) p(n+m) = 2o(n), this will complete the proof
of the theorem.

Since k-SAT can be solved in time 2o(m), by Lemma 11.7, we have that it can be
solved in time O(h(s)2m/s) for every s ∈ N. Let ` ∈ N and F be a k-CNF formula
with m clauses and n variables. We apply the Sparsification Lemma with `′ = 2` and
obtain in time 2n/`′ |F |O(1) an equivalent formula F ′ =

∨
i∈[t] Fi with t ≤ 2n/`′ and at

most n ·g(`′) clauses. Now we solve each of the subformulas Fi using an algorithm
for k-SAT running in time h(s)2m/s|Fi|O(1) for every s ∈ N. We choose s = `′ ·g(`′),
and then the total running time of the algorithm is

T (n+m) = 2n/`′ |F |O(1) + ∑
i∈[t]

h(`′ ·g(`′))2
n·g(`′)
`′ ·g(`′) |Fi|O(1)

≤ 2n/`′ |F |O(1) +2n/`′h(`′ ·g(`′))2
n
`′ |F |O(1).

The fact that |Fi|O(1) ≤ |F |O(1) follows from the fact that Fi is a subformula of F . By
putting h′(`) = h(`′ ·g(`′)), we have that

T (n+m)≤ h′(`)2n/`(n+m)O(1),

11.3 Subexponential Algorithms and ETH 183

and thus by Lemma 11.7, T (n + m) = 2o(n) p(n + m) for some polynomial p. This
concludes the proof of the theorem. ut

By making use of Theorem 11.8, one can prove that many problems do not have
subexponential algorithms unless ETH fails. Let us prove the following result as an
example.

Corollary 11.10. Unless ETH fails, there is no algorithm solving MIS on instances
with n vertices and m edges in time 2o(n) or 2o(m).

Proof. Without loss of generality we can assume that the input graph G is con-
nected. Thus n ≤ m− 1. We take the following standard example of polynomial
time many-one (or Karp) reduction from 3-SAT to MIS (see, e.g. Chap. 7 in Sipser’s
textbook [206]) which for a given 3-CNF formula F with n variables and m clauses
constructs a graph G with 2n+m vertices and O(n+m) edges such that F is satis-
fiable if and only if G has an independent set of size n+m.

An algorithm finding a maximum independent set in G in time 2o(n) also works
in time 2o(m) and thus can be used to decide in time 2o(m) whether F is satisfiable.
But by Theorem 11.8, this yields that 3-SAT is solvable in time 2o(n) and thus ETH
fails.

Impagliazzo, Paturi, and Zane [120] developed a theory which can be used to
show that a problem does not have subxponential time algorithm unless ETH fails.
The important notion in this theory is the notion of SERF reducibility. The idea be-
hind SERF reducibility is that to preserve subexponential time it is important that
the relevant parameters do not increase more than linearly but the time complexity
of the reduction is less important. Let P1 be a problem with complexity parameter
m1 and P2 be a problem with complexity parameter m2. For a many-one reduction
f from P1 to P2 to preserve subexponential time, we want m2(f (x)) = O(m1(x)),
where f (x) is an instance of P2 obtained from an instance x of P1. This is also some-
times called strong many-one reduction. Many of the standard reductions between
NP-complete problems are of this nature at least for some right choice of complex-
ity parameters. For an example most of the reductions from k-SAT are of this nature
if we use the number of clauses as our complexity parameters, but not if we use the
number of variables. This is exactly the point where Theorem 11.8 becomes so im-
portant. Another feature is that we allow the reduction to take subexponential time.
Now we formally define a subexponential reduction family (SERF).

A subexponential reduction family (SERF) is a collection of Turing reductions
Mε from P1 to P2 such that for each ε > 0:

1. Mε(x) runs in time poly(|x|) 2εm1(x);
2. If Mε(x) queries P2 with input x′ then m2(x′) = O(m1(x)) and |x|= |x′|O(1).

If such a reduction family exists we say that P1 is SERF-reducible to P2. The Strong
many to one reduction is a special case of SERF-reducibility.

In this terminology, the Sparsification Lemma shows that k-SATwith the number
of variables as the complexity parameter is SERF-reducible to k-SAT with the num-
ber of clauses as the complexity parameter. Many classical reductions are strong

184 11 Miscellaneous

many-one reductions, and therefore many problems including k-COLORING (find-
ing a colouring of a graph in k colours), MINIMUM VERTEX COVER, MAXIMUM
CLIQUE, and HAMILTONIAN PATH parameterized by the number of vertices, or k-
MINIMUM SET COVER (find a minimum covering of a set by sets of size at most
k) parameterized by the number of elements do not have subexponential algorithms
unless ETH fails.

Notes

The first algorithm for BANDWIDTH MINIMIZATION breaking the trivial O∗(n!)
bound is attributed to Feige and Kilian in [75]. The running time of the Feige-Kilian
algorithm is O∗(10n). The algorithm presented in this chapter is due to Cygan and
Pilipczuk [55]. Fomin, Lokhstanov and Saurabh used a similar approach to obtain
an exact algorithm to compute an embedding of a graph into the line with minimum
distortion [92]. The fastest algorithm for the BANDWIDTH MINIMIZATION problem
has running time O(4.473n) [56].

GENERALIZED DOMINATION was introduced by Telle [214]. Fomin, Golovach,
Kratochvil, Kratsch and Liedloff presented a Branch & Recharge algorithm to enu-
merate the (σ ,ρ)-dominating sets in [81]. The successor-freeness of σ is crucial for
the Branch & Recharge algorithm presented. It is an interesting question whether
it is possible to develop a different recharging mechanism that does not need the
successor-freeness of σ .

Lemma 11.6 is from the paper of Stearns and Hunt [208]. The Exponential Time
Hypothesis (ETH) is due to Impagliazzo, Paturi, and Zane [120]. In [120] ETH is
stated in a slightly weaker form. For k≥ 3, Impagliazzo, Paturi, and Zane define the
numbers

sk = inf{δ : there is a 2δn algorithm for solving k-SAT}
and
(ETH): For every fixed k ≥ 3, sk > 0.

Impagliazzo and Paturi show that sk increases infinitely often assuming ETH
[119]. ETH discussed in this chapter is a stronger assumption than ETH of Impagli-
azzo, Paturi, and Zane. The differences between the two hypotheses is that for ETH
to fail ours requires the existence of a uniform algorithm solving k-SAT in subexpo-
nential time, while the definition of Impagliazzo, Paturi, and Zane does not exclude
the possibility that for different δ different algorithms are selected. The version of
ETH in this chapter is commonly used now, see e.g. the book of Flum and Grohe
[78]. ETH establishes interesting links between exact algorithms and Parameterized
Complexity (see Chap. 16 of Flum and Grohe [78]).

The Sparsification Lemma and SERF-reducibility are due to Impagliazzo, Paturi,
and Zane [120]. Independently, Johnson and Szegedy obtained a sparsification result
for MIS [126]. An improvement of the Sparsification Lemma is given by Calabro,
Impagliazzo and Paturi in [45].

11.3 Subexponential Algorithms and ETH 185

Another, much stronger hypothesis, is that sk → 1 when k→ ∞. Pǎtraşcu and
Williams [171] provide some evidence for this hypothesis.

Despite many attempts, the best known deterministic algorithms for SAT run in
time

2n(1− 1
O(log(m/n))) · poly(m),

see, e.g. [60].

Chapter 12
Conclusions, Open Problems and Further
Directions

We conclude with a number of open problems. Some of them are of a fundamental
nature and some of them can serve as starting points for newcomers in the field.

Fundamental questions
Every problem in NP can be solved by enumerating all solution candidates. The

question is whether such trivial enumeration can be avoided for every problem in
NP. In other words, is brute-force search the only approach to solve NP problems
in general? A positive answer to this question implies that P 6= NP. On the other
hand, the assumption P 6= NP does not yield a negative answer. Recent work of
Williams demonstrates that: “... carrying out the seemingly modest program of find-
ing slightly better algorithms for all search problems may be extremely difficult (if
not impossible)” [219].

Most of the exact algorithms are problem dependent—almost every specific
problem requires specific arguments to show that this problem can be solved faster
than brute-force search. In the world of polynomial time algorithms and param-
eterized complexity we possess very powerful tools allowing us to establish effi-
cient criteria to identify large classes of polynomial time solvable or fixed parame-
ter tractable problems. It would be desirable to obtain generic tools allowing us to
identify large classes of NP-complete problems solvable faster than by brute-force
search.

Every algorithmic theory becomes fruitful when accompanied by complexity the-
ory. In the current situation we are only able to distinguish between exponential and
subexponential running times (subject to Exponential Time Hypotheses). A chal-
lenge here is to develop a theory of exponential lower bounds. For example, is it
possible to prove (up to some plausible assumption from complexity like P6=NP,
FPT6=W[1], ETH, etc.) that there is no algorithm solving 3-SAT on n variables in
time 1.000000001n?

More concrete questions
Three fundamental NP-complete problems, namely, SAT, TSP and GRAPH COL-

ORING can be solved within the same running time O∗(2n). Obtaining for any of

187

188 12 Conclusions, Open Problems and Further Directions

these problems an algorithm of running time O∗((2− ε)n) for any ε > 0 would be
exciting.

Can it be that for every ε > 0 the existence of an O∗((2− ε)n) algorithm for
one of these three problems yields an O((2− δ)n) algorithm for the other two, for
some δ > 0? Recently, Björklund [22] announced a randomized algorithm solving
HAMILTONIAN PATH in time O(1.66n).

Many permutation and partition problems can be solved in time O∗(2n) by dy-
namic programming which requires exponential space. An interesting question is
whether there are O∗(2n) time and polynomial space algorithms for TSP, GRAPH
COLORING, and TREEWIDTH.

Some permutation problems like PATHWIDTH or TREEWIDTH can be solved
in time O∗((2− ε)n) (and exponential space). What can we say about DIRECTED
FEEDBACK ARC SET, CUTWIDTH and HAMILTONIAN CYCLE?

The running time of current branching algorithms for MIS with more and more
detailed analyses seems to converge somewhere near O∗(1.2n). It appears that ob-
taining an algorithm running in time O∗(1.1n) will require completely new ideas.
Similarly the question can be asked whether MDS is solvable in timeO(1.3n). MIN-
IMUM DIRECTED FEEDBACK VERTEX SET requires us to remove the minimum
number of vertices of a directed graph such that the remaining graph is acyclic. The
problem is trivially solvable in time O∗(2n). The trivial algorithm was beaten by
Razgon with an algorithm running in O(1.9977n) time [178]. It seems that improv-
ing even to O∗(1.8n) is a difficult problem.

SUBGRAPH ISOMORPHISM is trivially solvable in timeO∗(2n logn). Is it possible
to solve this problem in time 2O(n)? A similar question can be asked about GRAPH
HOMOMORPHISM. In CHROMATIC INDEX (also known as EDGE COLORING) the
task is to color edges with the minimum number of colors such that no two edges of
the same color are incident. The only non-trivial algorithm we are aware of reduces
the problem to (vertex) graph coloring of the line graph. This takes time O∗(2m). Is
CHROMATIC INDEX solvable in time 2O(n)?

Enumerating the number of certain objects is a fundamental question in combina-
torics. Sometimes such questions can be answered using exact algorithms. Consider
the following general problem: “For a given property π , what is the maximum num-
ber of vertex subsets with property π in a graph on n vertices?” For example, the
theorem of Moon-Moser says that when the property π is “being a maximal clique”,
then this number is 3n/3. But for many other natural properties, we still do not know
precise (even asymptotically) bounds. For example, for minimal dominating sets the
correct value is between 1.5704n and 1.7159n [88], for minimal feedback vertex sets
between 1.5926n and 1.7548n [79]. For minimal feedback vertex sets in tournaments
the old bounds of Moon [160]—1.4757n and 1.7170n—were recently improved by
Gaspers and Mnich to 1.5448n and 1.6740n [102]. For minimal separators we know
that the number is between 1.4423n and 1.6181n [95], for potential maximal cliques
between 1.4423n and 1.7347n [96].

References

1. Achlioptas, D., Beame, P., Molloy, M.: Exponential bounds for DPLL below the satisfia-
bility threshold. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), pp. 139–140. SIAM (2004)

2. Aigner, M.: A course in enumeration, Graduate Texts in Mathematics, vol. 238. Springer,
Berlin (2007)

3. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time
of DPLL algorithms on satisfiable formulas. J. Automat. Reason. 35(1-3), 51–72 (2005).

4. Alon, N., Spencer, J.: The Probabilistic Method, third edn. John Wiley (2008)
5. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: Pro-

ceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP 2009), Lecture Notes in Comput. Sci., vol. 5555, pp. 71–82. Springer (2009)

6. Angelsmark, O., Jonsson, P.: Improved algorithms for counting solutions in constraint sat-
isfaction problems. In: Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming (CP 2003), Lecture Notes in Comput. Sci., vol. 2833,
pp. 81–95. Springer (2003)

7. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to
partial k-trees. Disc. Appl. Math. 23(1), 11–24 (1989)

8. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

9. Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of
finite simple groups. In: Proceedings of the 24th Annual Symposium on Foundations of
Computer Science (FOCS 1983), pp. 162–171. IEEE (1983)

10. Bax, E., Franklin, J.: A finite-difference sieve to count paths and cycles by length. Inf.
Process. Lett. 60(4), 171–176 (1996)

11. Bax, E.T.: Inclusion and exclusion algorithm for the Hamiltonian path problem. Inf. Process.
Lett. 47(4), 203–207 (1993)

12. Bax, E.T.: Algorithms to count paths and cycles. Inf. Process. Lett. 52(5), 249–252 (1994)
13. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proceedings

of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 856–857.
SIAM (1999)

14. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–
204 (2005)

15. Bellman, R.: Dynamic programming. Princeton University Press, Princeton, N. J. (1957)
16. Bellman, R.: Combinatorial processes and dynamic programming. In: Proc. Sympos. Appl.

Math., Vol. 10, pp. 217–249. American Mathematical Society, Providence, R.I. (1960)
17. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM

9, 61–63 (1962)

189

190 References

18. Berge, C.: Graphs and hypergraphs, North-Holland Mathematical Library, vol. 6. North-
Holland Publishing Co., Amsterdam (1973)

19. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. Int. J.
Found. Comput. Sci. 11(3), 397–403 (2000)

20. Bezrukov, S., Elsässer, R., Monien, B., Preis, R., Tillich, J.P.: New spectral lower bounds on
the bisection width of graphs. Theor. Comp. Sci. 320(2-3), 155–174 (2004)

21. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

22. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), to appear.
IEEE (2010)

23. Björklund, A.: Exact covers via determinants. In: Proceedings of the 27th International Sym-
posium on Theoretical Aspects of Computer Science (STACS 2010), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 5, pp. 95–106. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2010).

24. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 575–582. IEEE (2006)

25. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect
matchings. Algorithmica 52(2), 226–249 (2008)

26. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast subset con-
volution. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC 2007), pp. 67–74. ACM (2007)

27. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in
vertex-exponential time. In: Proceedings of the 49th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2008), pp. 677–686. IEEE (2008).

28. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The travelling salesman problem in
bounded degree graphs. In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming (ICALP 2008), Lecture Notes in Comput. Sci., vol. 5125, pp.
198–209. Springer (2008)

29. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion and graphs
of bounded degree. In: Proceedings of the 25th Annual Symposium on Theoretical As-
pects of Computer Science (STACS 2008), Dagstuhl Seminar Proceedings, vol. 08001, pp.
85–96. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2008)

30. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J.
Comput. 39(2), 546–563 (2009).

31. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact al-
gorithms for treewidth. In: Proceedings of the 14th Annual European Symposium on Algo-
rithms (ESA 2006), Lecture Notes in Comput. Sci., vol. 4168, pp. 672–683. Springer (2006)

32. Bodlaender, H.L., Kratsch, D.: An exact algorithm for graph coloring with polynomial mem-
ory. Technical Report UU-CS-2006-015, University of Utrecht (March 2006)

33. Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244.
Springer, New York (2008).

34. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators.
SIAM J. Comput. 31(1), 212–232 (2001)

35. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput.
Sci. 276(1-2), 17–32 (2002)

36. Bourgeois, N., Croce, F.D., Escoffier, B., Paschos, V.T.: Exact algorithms for dominating
clique problems. In: Proceedings of the 20th International Symposium on Algorithms and
Computation (ISAAC 2009), Lecture Notes in Comput. Sci., vol. 5878, pp. 4–13. Springer
(2009)

37. Bourgeois, N., Escoffier, B., Paschos, V.T.: An O*(1.0977n) exact algorithm for max inde-
pendent set in sparse graphs. In: Proceedings of the 3rd Workshop on Parameterized and

References 191

Exact Computation (IWPEC 2008), Lecture Notes in Comput. Sci., vol. 5018, pp. 55–65.
Springer (2008)

38. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: A bottom-up method and fast
algorithms for max independent set. In: Proceedings of the 12th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2010), Lecture Notes in Comput. Sci., vol.
6139, pp. 62–73. Springer (2010)

39. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Maximum independent set in
graphs of average degree at most three in O(1.08537n) average degree. In: Proceedings of
the 7th Annual Conference on Theory and Applications of Models of Computation (TAMC
2010), Lecture Notes in Comput. Sci., vol. 6108, pp. 373–384. Springer (2010)

40. Broersma, H., Fomin, F.V., van ’t Hof, P., Paulusma, D.: Fast exact algorithms for hamil-
tonicity in claw-free graphs. In: Proceedings of the 35th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2009), Lecture Notes in Comput. Sci., vol.
5911, pp. 44–53 (2009)

41. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT.
Theor. Comp. Sci. 329(1-3), 303–313 (2004)

42. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring.
Operations Research Letters 32(6), 547–556 (2004)

43. Byskov, J.M.: Exact algorithms for graph colouring and exact satisfiability. Ph.D. thesis,
University of Aarhus, Denmark (2004)

44. Byskov, J.M., Madsen, B.A., Skjernaa, B.: New algorithms for exact satisfiability. Theoret.
Comput. Sci. 332(1-3), 515–541 (2005).

45. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause density
for SAT. Proceedings of the 21st Annual IEEE Conference on Computational Complexity
(CCC 2006) pp. 252–260 (2006).

46. Cameron, P.J.: Combinatorics: topics, techniques, algorithms. Cambridge University Press,
Cambridge (1994)

47. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements.
Journal of Algorithms 41(2), 280–301 (2001)

48. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved upper
bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)

49. Chung, F.R.K., Graham, R.L., Frankl, P., Shearer, J.B.: Some intersection theorems for or-
dered sets and graphs. J. Combin. Theory Ser. A 43(1), 23–37 (1986)

50. Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6(4), 643–662
(1977)

51. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Sym-
bolic Comput. 9(3), 251–280 (1990)

52. Cormen, T.H., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, second edn.
The MIT Press, Cambridge, Mass. (2001)

53. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation 85, 12–75 (1990)

54. Courcelle, B.: The monadic second-order logic of graphs III: Treewidth, forbidden minors
and complexity issues. Informatique Théorique 26, 257–286 (1992)

55. Cygan, M., Pilipczuk, M.: Faster exact bandwidth. In: Proceedings of the 34th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG 2008), Lecture Notes in
Comput. Sci., vol. 5344, pp. 101–109. Springer (2008)

56. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. In: Proceedings of the 36th In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2009), Lecture
Notes in Comput. Sci., vol. 5555, pp. 304–315. Springer (2009)

57. Dahllöf, V., Jonsson, P., Beigel, R.: Algorithms for four variants of the exact satisfiability
problem. Theoret. Comput. Sci. 320(2-3), 373–394 (2004).

58. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae.
Theor. Comp. Sci. 332(1-3), 265–291 (2005)

192 References

59. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Ragha-
van, P., Schöning, U.: A deterministic (2− 2/(k + 1))n algorithm for k-SAT based on local
search. Theor. Comp. Sci. 289(1), 69–83 (2002)

60. Dantsin, E., Hirsch, E.A.: Worst-case upper bounds. In: Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, chap. 12, pp. 403–424. IOS Press (2009)

61. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGraw-Hill (2008)
62. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm.

ACM 5, 394–397 (1962)
63. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215

(1960)
64. Dı́az, J., Serna, M., Thilikos, D.M.: Counting H-colorings of partial k-trees. Theor. Comput.

Sci. 281, 291–309 (2002)
65. Diestel, R.: Graph theory, Graduate Texts in Mathematics, vol. 173, third edn. Springer-

Verlag, Berlin (2005)
66. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer-Verlag, New York (1999)
67. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating

set. Theor. Comput. Sci. 326(1-3), 57–67 (2004)
68. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a

graph. Information and Computation 113(1), 50–79 (1994)
69. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Proceed-

ings of the 7th Workshop on Algorithms and Data Structures (WADS 2001), Lecture Notes
in Comput. Sci., vol. 2125, pp. 462–470. Springer, Berlin (2001)

70. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of
Graph Algorithms and Applications 7(2), 131–140 (2003)

71. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 781–790. SIAM (2004)

72. Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Trans. Algorithms 2(4), 492–509 (2006).

73. Eppstein, D.: The traveling salesman problem for cubic graphs. Journal of Graph Algorithms
and Applications 11(1), 61–81 (2007)

74. Feder T., Motwani, R.: Worst-case time bounds for coloring and satisfiability problems. J.
Algorithms 45(2), 192-201 (2002).

75. Feige, U.: Coping with the NP-hardness of the graph bandwidth problem. In: Proceedings
of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000), Lecture Notes in
Comput. Sci., vol. 1851, pp. 10–19. Springer (2000)

76. Feller, W.: An introduction to probability theory and its applications. Vol. I, third edn. John
Wiley & Sons Inc., New York (1968)

77. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An
exact algorithm for the maximum leaf spanning tree problem. In: Proceedings of the 4th
International Workshop on Parameterized and Exact Computation (IWPEC 2009), Lecture
Notes in Comput. Sci., vol. 5917, pp. 161–172. Springer (2009)

78. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer-Verlag, Berlin (2006)

79. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set
problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008).

80. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining
branching and treewidth. Algorithmica 54(2), 181–207 (2009)

81. Fomin, F.V., Golovach, P.A., Kratochvı́l, J., Kratsch, D., Liedloff, M.: Branch and recharge:
Exact algorithms for generalized domination. In: Proceedings of the 10th Workshop on
Algorithms and Data Structures, (WADS 2007), Lecture Notes in Comput. Sci., vol. 4619,
pp. 507–518. Springer (2007)

82. Fomin, F.V., Golovach, P.A., Kratochvı́l, J., Kratsch, D., Liedloff, M.: Sort and search: Exact
algorithms for generalized domination. Inf. Process. Lett. 109(14), 795–798 (2009)

References 193

83. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – a case study. In:
Proceedings of the 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP 2005), Lecture Notes in Comput. Sci., vol. 3580, pp. 191–203. Springer (2005)

84. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact
(exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

85. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n) indepen-
dent set algorithm. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2006), pp. 18–25. SIAM (2006)

86. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n.
Algorithmica 52(2), 153–166 (2008)

87. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of
exact algorithms. J. ACM 56(5) (2009)

88. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.: Bounding the number of minimal
dominating sets: a measure and conquer approach. In: Proceedings of the 16th Annual In-
ternational Symposium on Algorithms and Computation (ISAAC 2005), Lecture Notes in
Comput. Sci., vol. 3827, pp. 573–582. Springer (2005)

89. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure
and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms
5 (1) (2008). Article 9

90. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and mini-
mum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

91. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating
set problem. In: Proceedings of the 30th Workshop on Graph Theoretic Concepts in Com-
puter Science (WG 2004), Lecture Notes in Comput. Sci., vol. 3353, pp. 245–256. Springer
(2004)

92. Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion em-
bedding. In: Proceedings of the 35th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2009), Lecture Notes in Comput. Sci., vol. 5911, pp. 112–121.
Springer (2009)

93. Fomin, F.V., Mazoit, F., Todinca, I.: Computing branchwidth via efficient triangulations and
blocks. Disc. Appl. Math. 157(12), 2726–2736 (2009)

94. Fomin, F.V., Thilikos, D.M.: Branchwidth of graphs. In: M.Y. Kao (ed.) Encyclopedia of
Algorithms. Springer (2008)

95. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. In: Pro-
ceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP 2008), Lecture Notes in Comput. Sci., vol. 5125, pp. 210–221. Springer (2008)

96. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Pro-
ceedings of the 27th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2010), Leibniz International Proceedings in Informatics, vol. 5, pp. 383–394.
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2010)

97. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In:
Proceedings of the 7th Latin American Theoretical Informatics Symposium (LATIN 2006),
Lecture Notes in Comput. Sci., vol. 3887, pp. 491–501. Springer (2006)

98. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009).
99. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings

with applications. In: Proceedings of the 3rd International Conference on Algorithmic As-
pects in Information and Management (AAIM 2007), Lecture Notes in Comput. Sci., vol.
4508, pp. 47–57. Springer (2007)

100. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York (1979)

101. Gaspers, S.: Exponential time algorithms: Structures, measures, and bounds. Ph.D. thesis,
University of Bergen (2008)

102. Gaspers, S., Mnich, M.: On feedback vertex sets in tournaments. In: Proceedings of the 18th
European Sympsium on Algorithms (ESA 2010), Lecture Notes in Comput. Sci., vol. 6346,
pp. 267–277. Springer (2010)

194 References

103. Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and
everything in between. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), pp. 606–615. SIAM (2009)

104. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics: A foundation for computer
science, second edn. Addison-Wesley Publishing Company, Reading, MA (1994)

105. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for
MAX-2-SAT with an application to MAX-CUT. Disc. Appl. Math. 130(2), 139–155 (2003)

106. Grandoni, F.: Exact algorithms for hard graph problems. Ph.D. thesis, Università di Roma
“Tor Vergata” (2004)

107. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maximum r-regular in-
duced subgraph problems. In: Proceedings of the 26th International Conference Foundations
of Software Technology and Theoretical Computer Science, (FSTTCS 2006), Lecture Notes
in Comput. Sci., pp. 139–151. Springer (2006)

108. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path problem. SIAM
J. Comput. 16(3), 486–502 (1987)

109. Halin, R.: S-functions for graphs. J. Geometry 8(1-2), 171–186 (1976)
110. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. London

Math. Soc. 17, 75–115 (1918)
111. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal

of SIAM 10, 196–210 (1962)
112. Hirsch, E.A.: New worst-case upper bounds for SAT. J. Automat. Reason. 24(4), 397–420

(2000)
113. Hlinený, P., il Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their

applications. Comput. J. 51(3), 326–362 (2008)
114. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing

Co., Boston, MA, USA (1997)
115. Hoffman, A.J., Wolfe, P.: History. In: The traveling salesman problem: A guided tour of

combinatorial optimization, Wiley-Intersci. Ser. Discrete Math., pp. 1–15. Wiley, Chichester
(1985)

116. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: Randomized algorithms for 3-SAT.
Theory Comput. Syst. 40(3), 249–262 (2007).

117. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J.
ACM 21, 277–292 (1974)

118. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Proceed-
ings of the 29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT 2010), Lecture Notes in Comput. Sci., vol. 6110, pp.
235–256. Springer (2010)

119. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. System Sci. 62(2),
367–375 (2001).

120. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. Comput. System Sci. 63(4), 512–530 (2001)

121. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423
(1978)

122. Iwama, K.: Worst-case upper bounds for k-SAT. Bulletin of the EATCS 82, 61–71 (2004)
123. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In: 13th An-

nual International Conference on Computing and Combinatorics (COCOON 2007), Lecture
Notes in Comput. Sci., vol. 4598, pp. 108–117. Springer (2007)

124. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p. 328. SIAM (2004)

125. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE
Trans. Computers 35(9), 847–851 (1986)

126. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set?
In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pp. 927–928. SIAM (1999)

References 195

127. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper.
Res. Lett. 1(2), 49–51 (1982)

128. Kawabata, T., Tarui, J.: On complexity of computing the permanent of a rectangular matrix.
IECIE Trans. on Fundamentals of Electronics 82(5), 741–744 (1999)

129. Kleinberg, J., Tardos, E.: Algorithm design. Addison-Wesley, Boston, MA, USA (2005)
130. Kleine Büning, H., Lettman, T.: Propositional logic: deduction and algorithms, Cambridge

Tracts in Theoretical Computer Science, vol. 48. Cambridge University Press, Cambridge
(1999)

131. Klinz, B., Woeginger, G.J.: Faster algorithms for computing power indices in weighted voting
games. Math. Social Sci. 49(1), 111–116 (2005).

132. Kloks, T.: Treewidth, Computations and Approximations, Lecture Notes in Comput. Sci., vol.
842. Springer (1994)

133. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set al-
gorithm. In: IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 2009), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 4, pp. 287–298. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2009).

134. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of sparse graphs
with applications to exact algorithms. SIAM J. Discrete Math. 23(1), 407–427 (2009).

135. Knuth, D.E.: The art of computer programming, Vol. 3: Seminumerical algorithms, third edn.
Addison-Wesley (1998)

136. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman
problem. In: Proceedings of the ACM annual conference (ACM 1977), pp. 294–300. ACM
Press (1977)

137. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning problems via
inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), pp. 583–590. IEEE (2006)

138. Koivisto, M.: Partitioning into sets of bounded cardinality. In: Proceedings of the 4th Inter-
national Workshop on Parameterized and Exact Computation (IWPEC 2009), Lecture Notes
in Comput. Sci., vol. 5917, pp. 258–263. Springer (2009)

139. Koivisto, M., Parviainen, P.: A space—time tradeoff for permutation problems. In: Pro-
ceedings of the 21th ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp.
484–493. ACM and SIAM (2010)

140. Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for max-2-
sat. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2006), pp. 11–17. SIAM (2006)

141. Kowalik, L.: Improved edge-coloring with three colors. Theor. Comput. Sci. 410(38-40),
3733–3742 (2009)

142. Kratochvı́l, J., Kratsch, D., Liedloff, M.: Exact algorithms for (2, 1)-labeling of graphs. In:
Proceedings of the 32nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2007), Lecture Notes in Comput. Sci., vol. 4708, pp. 513–524. Springer
(2007)

143. Kratsch, D., Liedloff, M.: An exact algorithm for the minimum dominating clique problem.
Theor. Comput. Sci. 385(1-3), 226–240 (2007)

144. Kulikov, A.S.: An upper bound O(20.1625n) for exact-3-satisfiability: a simpler proof. Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293(Teor. Slozhn. Vychisl. 7),
118–128, 183 (2002).

145. Kulikov, A.S., Fedin, S.S.: Solution of the maximum cut problem in time 2|E|/4. Rossiı̆skaya
Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskiı̆ Institut im. V. A.
Steklova. Zapiski Nauchnykh Seminarov (POMI) 293(Teor. Slozhn. Vychisl. 7), 129–138,
183 (2002)

146. Kulikov, A.S., Kutskov, K.: New upper bounds for the maximum satisfiability problem.
Diskret. Mat. 21(1), 139–157 (2009).

147. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comp. Sci.
223(1-2), 1–72 (1999)

196 References

148. Kullmann, O.: Fundaments of branching heuristics. In: Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, chap. 7, pp. 205–244. IOS Press (2009)

149. Lawler, E.L.: A comment on minimum feedback arc sets. IEEE Transactions on Circuits and
Systems 11(2), 296–297 (1964)

150. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett.
5(3), 66–67 (1976)

151. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles : domina-
tion, variantes et généralisations. Ph.D. thesis, University of Metz (2007)

152. Liedloff, M.: Finding a dominating set on bipartite graphs. Inf. Process. Lett. 107(5), 154–
157 (2008).

153. van Lint, J.H., Wilson, R.M.: A course in combinatorics, second edn. Cambridge University
Press, Cambridge (2001)

154. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of 42th ACM
Symposium on Theory of Computing (STOC 2010), pp. 321–330. ACM (2010)

155. Miller, R.E., Muller, D.E.: A problem of maximum consistent subsets. IBM Research Rep.
RC-240, J.T. Watson Research Center, Yorktown Heights, New York, USA (1960)

156. Minc, H.: Permanents. Cambridge University Press, New York, NY, USA (1984)
157. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge University Press, New York, NY, USA (2005)
158. Monien, B., Preis, R.: Upper bounds on the bisection width of 3- and 4-regular graphs. J.

Discrete Algorithms 4(3), 475–498 (2006)
159. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Disc. Appl. Math.

10(3), 287–295 (1985)
160. Moon, J.W.: On maximal transitive subtournaments. Proc. Edinburgh Math. Soc. (2) 17,

345–349 (1971)
161. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)
162. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: Improving on

Steiner tree and related problems. In: Proceedings of the 36th International Colloquium
on Automata, Languages and Programming (ICALP 2009), Lecture Notes in Comput. Sci.,
vol. 5555, pp. 713–725. Springer (2009)

163. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ.
Carolin. 26(2), 415–419 (1985)

164. Niedermeier, R.: Invitation to fixed-parameter algorithms, Oxford Lecture Series in Mathe-
matics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

165. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms. Academic Press, Inc. (1978)
166. Nikolenko, S.I.: Hard satisfiability formulas for DPLL-type algorithms. Zap. Nauchn. Sem.

S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293(Teor. Slozhn. Vychisl. 7), 139–148, 183
(2002).

167. Oum, S.i.: Computing rank-width exactly. Inf. Process. Lett. 109(13), 745–748 (2009)
168. Oum, S.i., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory

Ser. B 96(4), 514–528 (2006)
169. Papadimitriou, C.H.: On selecting a satisfying truth assignment (extended abstract). In: Pro-

ceedings of the 32nd annual Symposium on Foundations of Computer Science (FOCS 1991),
pp. 163–169. IEEE (1991).

170. Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and applications of graphs, Lecture
Notes in Math., vol. 642, pp. 426–441. Springer, Berlin (1978)

171. Pǎtraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proceedings of
the 21th ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1065–1075.
SIAM (2010)

172. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for
k-SAT. J. ACM 52(3), 337–364 (2005).

173. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago J. Theor. Comput. Sci.
1999, Article 11 (1999).

174. Petrov, N.N.: Some extremal search problems on graphs. Differentsial’nye Uravneniya 18(5),
821–827 (1982)

References 197

175. Raible, D., Fernau, H.: A new upper bound for max-2-sat: A graph-theoretic approach. In:
Proceedings of the 33rd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2008), Lecture Notes in Comput. Sci., vol. 5162, pp. 551–562. Springer
(2008)

176. Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUM DOMINATING SET. Tech-
nical Report zaik-469, Zentrum für Angewandte Informatik Köln, Germany (2004)

177. Razgon, I.: Exact computation of maximum induced forest. In: Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT 2006), Lecture Notes in Comput. Sci.,
vol. 4059, pp. 160–171. Springer (2006)

178. Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977n). In: Proceed-
ings of the 10th Italian Conference on Theoretical Computer Science, (ICTCS 2007), pp.
70–81. World Scientific (2007)

179. Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover
for graphs with maximum degree 3. J. Discrete Algorithms 7(2), 191–212 (2009)

180. Riege, T., Rothe, J., Spakowski, H., Yamamoto, M.: An improved exact algorithm for the
domatic number problem. Inf. Process. Lett. 101(3), 101–106 (2007)

181. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Combin. Theory Ser.
B 36, 49–64 (1984)

182. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal
of Algorithms 7(3), 309–322 (1986)

183. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. The-
ory Ser. B 41(1), 92–114 (1986)

184. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Com-
bin. Theory Ser. B 52(2), 153–190 (1991)

185. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3), 425–
440 (1986)

186. Rolf, D.: Improved bound for the PPSZ/Schöning-algorithm for 3-SAT. J. Satisfiability,
Boolean Modeling and Computation 1(2), 111–122 (2006)

187. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact al-
gorithm for dominating set. In: Proceedings of the 25th Annual Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2008), LIPIcs, pp. 657–668. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2008)

188. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. In: Proceedings
of the 3rd International Workshop on Parameterized and Exact Computation (IWPEC 2009),
Lecture Notes in Comput. Sci., vol. 5018, pp. 214–225. Springer (2008)

189. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree de-
compositions using generalised fast subset convolution. In: Proceedings of the 17th Annual
European Symposium on Algorithms (ESA 2009), Lecture Notes in Comput. Sci., vol. 5757,
pp. 566–577. Springer (2009)

190. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and con-
quer. In: Proceedings of the 17th Annual European Symposium on Algorithms (ESA 2009),
Lecture Notes in Comput. Sci., vol. 5757, pp. 554–565. Springer (2009)

191. Rosen, K.: Discrete Mathematics and its applications. McGraw-Hill (1999)
192. Rota, G.C.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)
193. Rudin, W.: Real and complex analysis, third edn. McGraw-Hill Book Co., New York (1987)
194. Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs, No. 14.

Published by The Mathematical Association of America (1963)
195. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities.

J. Comput. System. Sci. 4, 177–192 (1970)
196. Scheder, D.: Guided search and a faster deterministic algorithm for 3-SAT. In: Proceedings

of the 8th Latin American Symposium on Theoretical Informatics (LATIN 2008), Lecture
Notes in Comput. Sci., vol. 4957, pp. 60–71. Springer (2008)

197. Schiermeyer, I.: Efficiency in exponential time for domination-type problems. Discrete Appl.
Math. 156(17), 3291–3297 (2008)

198 References

198. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing (Arch.
Elektron. Rechnen) 7, 281–292 (1971)

199. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In:
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS
1999), pp. 410–414. IEEE (1999)

200. Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica 32(4), 615–623 (2002)

201. Schöning, U.: Algorithmics in exponential time. In: Proceedings of the 22nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2005), Lecture Notes in
Comput. Sci., vol. 3404, pp. 36–43. Springer (2005)

202. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete
problems. SIAM J. Comput. 10(3), 456–464 (1981)

203. Scott, A.D., Sorkin, G.B.: Linear-programming design and analysis of fast algorithms for
Max 2-CSP. Discrete Optimization 4(3-4), 260–287 (2007)

204. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J.
Combin. Theory Ser. B 58(1), 22–33 (1993)

205. Sipser, M.: The history and status of the P versus NP question. In: Proceedings of the 24th
annual ACM Symposium on Theory of Computing (STOC 1992), pp. 603–618. ACM (1992).

206. Sipser, M.: Introduction to the Theory of Computation. International Thomson Publishing
(1996)

207. Stanley, R.P.: Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathe-
matics, vol. 49. Cambridge University Press, Cambridge (1997)

208. Stearns, R.E., Hunt III, H.B.: Power indices and easier hard problems. Math. Systems Theory
23(4), 209–225 (1990).

209. Stepanov, A.: Exact algorithms for hard counting, listing and decision problems. Ph.D. thesis,
University of Bergen (2008)

210. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
211. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: Proceedings of the 4th

International Workshop on Parameterized and Exact Computation (IWPEC 2009), Lecture
Notes in Comput. Sci., vol. 5917, pp. 324–335. Springer (2009)

212. Sunil Chandran, L., Grandoni, F.: Refined memorization for vertex cover. Inf. Process. Lett.
93(3), 125–131 (2005)

213. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput.
6(3), 537–546 (1977)

214. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic Journal of Comput-
ing 1, 157–171 (1994)

215. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In:
Proceedings of the 41st annual ACM Symposium on Theory of Computing (STOC 2009),
pp. 455–464. ACM (2009).

216. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comp. Sci. 348(2-3), 357–365 (2005)

217. Williams, R.: Algorithms and resource requirements for fundamental problems. Ph.D. thesis,
Carnegie Mellon University (2007)

218. Williams, R.: Applying practice to theory. SIGACT News 39(4), 37–52 (2008)
219. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Pro-

ceedings of 42th ACM Symposium on Theory of Computing (STOC 2010), pp. 231–240.
ACM (2010)

220. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: Combinatorial Op-
timization - Eureka, you shrink!, Lecture Notes in Comput. Sci., vol. 2570, pp. 185–207.
Springer (2003)

221. Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156(3),
397–405 (2008).

222. Yates, F.: The Design and Analysis of Factorial Experiments. Harpenden (1937)

Appendix: Fundamental Notions on Graphs

A graph is a pair G = (V,E) of sets such that E is a set of 2-elements subsets
of V . The elements of V are the vertices and the elements of E are the edges of G.
Sometimes the vertex set of a graph G is referred to as V (G) and its edge set as E(G).
In this book graphs are always finite, i.e. the sets V and E are finite, and simple,
which means that not two elements of E are equal. Unless specified otherwise, we
use parameters n = |V | and m = |E|. An edge of an undirected graph with endpoints
u and v is denoted by {u,v}; the endpoints u and v are said to be adjacent, and one
is said to be a neighbor of the other. In a directed graph an edge going from vertex
u to vertex v is denoted by (u,v). Sometimes we write edge {u,v} or (u,v) as uv.

The complement of undirected graph G = (V,E) is denoted by G; its vertex set
is V and its edge set is E = {{u,v} : {u,v} /∈ E,u 6= v}. For any non-empty subset
W ⊆V , the subgraph of G induced by W is denoted by G[W]; its vertex set is W and
its edge set consists of all those edges of E with both endpoints in W . For S⊆V we
often use G\S to denote the graph G[V \S]. We also write G\ v instead of G\{v}.
The neighborhood of a vertex v is N(v) = {u ∈ V : {u,v} ∈ E} and the closed
neighborhood of v is N[v] = N(v)∪{v}. For a vertex set S ⊆V we denote by N(S)
the set

⋃
v∈S N(v) \ S. We denote by d(v) the degree of a vertex v. The minimum

degree of a graph G is denoted by δ (G). The maximum degree of a graph G is
denoted by ∆(G). A graph G is called r-regular if all vertices of G have degree r. A
3-regular graph is also called a cubic graph.

A walk of length k is a non-empty graph W = (V,E) of the form

V = {v0,v1, . . . ,vk} E = {v0v1,v1v2, . . . ,vk−1vk}.

A walk is a path, if the vi are all distinct. If P = v0v1 . . .vk is a path, then the graph
obtained fro P by adding edge xkx0 is called a cycle of length k. A Hamiltonian path
(cycle) in a graph G is a path (cycle) passing through all vertices of G. We denote
by d(v,w) the distance between v and w in the graph G, which is the shortest length
of a path between v and w. For any integer k ≥ 1 and any vertex v of G, we denote
by Nk(v) the set of all vertices w satisfying d(v,w) = k.

199

200 Notions on Graphs

A graph G is connected if for every pair u,v of its vertices there is a path between
u and v. A tree T is a connected graph without cycles. A forest F is a graph without
cycle; thus all the connected components of F are trees. A spanning tree T of a
graph G is a tree such that V (T) = V (G) and E(T)⊆ E(G).

An independent set I of a graph G = (V,E) is a subset of the vertex set V such that
the vertices of I are pairwise non-adjacent. The maximum size of an independent
set of a graph G is denoted by α(G). A clique C of a graph G = (V,E) is a subset
of the vertex set V such that the vertices of C are pairwise adjacent. By ω(G) we
denote the maximum clique-size of a graph G. Let us remark that α(G) = ω(G).
A dominating set D of a graph G = (V,E) is a subset of the vertex set V such that
every vertex of V \D has a neighbor in D. By γ(G) we denote the minimum size of
a dominating set of a graph G.

A coloring of a graph G assigns a color to each vertex of G such that adjacent
vertices receive distinct colors. The chromatic number of G denoted by χ(G) is the
minimum k such that there is coloring of G using k colors. A domatic partition of a
graph G is a partition of the vertex set of G into dominating sets V1,V2, . . . ,Vk. The
domatic number of a graph G denotes the minimum number of dominating sets in
any domatic partition of G.

A vertex cover C of a graph G = (V,E) is a subset of the vertex set V such that C
covers the edge set E, i.e. every edge of G has at least one endpoint in C. An edge
cover C of a graph G = (V,E) is a subset of the edge set E such that C covers the
vertex set V , i.e. every vertex of G is endpoint of at least one of the edges in C. A
matching M of a graph G = (V,E) is a subset of the edge set E matching!perfect
such that no two edges of M have a common endpoint. A perfect matching is a
matching M covering all vertices of the graph, i.e. every vertex is endpoint of an
edge in M.

Two graphs G = (V,E) and H = (W,F) are isomorphic, denoted by G ∼= H,
if there is a bijection I : V → W such that for all u,v ∈ V holds {u,v} ∈ E ⇔
{ f (u), f (v)} ∈ F . Such a bijection I is called an isomorphism. If G = H, it is called
an automorphism. A mapping h : V →W is a homomorphism from graph G = (V,E)
to graph H = (W,F) if for all u,v ∈V : {u,v} ∈ E implies { f (u), f (v)} ∈ F .

For more information on Graph Theory we refer to the textbooks by Bondy and
Murty [33], Diestel [65] and Berge [18].

Index

(σ ,ρ)-dominating set enumeration problem,
175

3-SAT, 181
R, 41
α(G), 200
O, 1
O∗, 1
γ(G), 200
inj(F,G), 70
sub(F,G), 70
ω(G), 200
aut(F,F), 70
inj(F,G), 70
sub(F,G), 70
f -width, 136
k-CNF formula, 19
k-SAT, 182
k-SAT, 19, 182
k-cover, 60
k-partition, 43, 61, 64, 132
k-satisfiability problem, 19, 182
treewidth, 77
BANDWIDTH MINIMIZATION, 48, 89, 171
BIN PACKING, 59
CHROMATIC INDEX, 188
COLORING, 68, 165
CUTWIDTH, 188
EXACT SAT, 40
EXACT SATISFIABILITY, 155
EXACT SET COVER, 40
GRAPH COLORING, 188
HAMILTONIAN PATH, 184
MAXIMUM CLIQUE, 180
MAXIMUM CUT, 79, 158
MAXIMUM INDEPENDENT SET, 3, 7, 23, 81,

121, 180
MINIMUM BISECTION, 81

MINIMUM DOMINATING SET, 81, 113, 122,
180

MINIMUM SET COVER, 36, 113, 184
PATHWIDTH, 188
SATISFIABILITY, 3
SUBGRAPH ISOMORPHISM, 188
TRAVELLING SALESMAN, 4, 161
TREEWIDTH, 188
FVS, 106
MDS, 37, 40, 49, 188
MIS, 7, 23, 103, 167, 188
MSC, 36, 60, 113
Max-2-SAT, 30
Max-Cut, 79
SAT, 188
TSP, 4, 41, 53, 161, 170, 188
XSAT, 30, 40, 155

algorithm
mif, 110
2-table, 154
enum-sigma-rho, 176
k-sat3, 142
k-sat4, 144
k-sat5, 149
mis4, 121
mis5, 167
cost, 33
k-sat1, 21
k-sat2, 22
mis1, 7
mis2, 26
mis3, 102
tsp, 5

autark, 22
automorphism, 200

201

202 Index

bandwidth, 89, 171
Bin Packing, 59
binary branching vector, 17
binary entropy function, 39
Boolean variable, 19
Branch & Reduce, 13
branch-width, 136, 137, 139
branching, 13
branching algorithm, 13
branching factor, 16
branching rule, 13
branching vector, 15

addition, 18

carving-width, 136, 137
characteristic function, 62, 131
chromatic number, 35, 61, 133
clause, 19
clique, 200
CNF, 19
CNF formula, 19
CNF subformula, 19
coloring, 61, 165

optimal, 35
coloring problem, 35
conjunctive normal form, 19
connected

vertex subset, 96
connected vertex set, 41
convex function, 41
convolution, 125
Cops and Robber game, 92
covering product, 134
cutwidth, 33
cycle, 199

degree, 41
Directed Hamiltonian s, t-path, 56
distance, 199
domatic number, 36, 65, 68, 133
dominating set, 37
domination number, 37

edge cover, 114, 200
entropy function, 39, 40
Enum-(σ ,ρ)-DS, 175
ETH, 181, 184
Exponential Time Hypothesis (ETH), 181, 184

Fast Fourier Transform, 130
FFT, 130
Fibonacci numbers, 46
forest, 200
frequency, 114

graph, 199
bipartite, 37, 43, 54, 81
chordal, 91

Hamiltonian cycle, 199
Hamiltonian path, 56, 188, 199
Hamming distance, 141
homomorphism, 69

independent set, 7, 23, 200
intersecting covering product, 135
isomorphic graphs, 200
isomorphism, 200

Jensen’s inequality, 41, 42

lexicographical order, 44, 153
literal, 19

Möbius inversion, 126
Möbius transform, 126
Markov’s inequality, 145
matching, 43, 114, 200

perfect, 54, 80
maximum degree, 41
Maximum Independent Set, 103, 167
Measure & Conquer, 13
memorization, 167
minimal separator, 92
minimum distortion, 184
minimum dominating set, 81
Minimum Set Cover, 60
mirror, 25

neighborhood
closed, 42

node
forget, 86
introduce, 86
join, 86

packing, 90
packing product, 134
partition

lexicographically ordered, 44
path, 199
path decomposition, 77

nice, 78
pathwidth, 33, 78

bound for sparse graphs, 85
permanent, 53
potential maximal clique, 92, 124
problem

2-TABLE, 153
k-SATISFIABILITY (k-SAT), 19
BANDWIDTH MINIMIZATION, 89

Index 203

BIN PACKING, 59
BINARY KNAPSACK, 156
COLORING, 35
DIRECTED FEEDBACK ARC SET, 33
DOMATIC NUMBER, 36, 133
EXACT HITTING SET, 40
EXACT SAT (XSAT), 40
EXACT SET COVER, 40
FEEDBACK VERTEX SET (FVS), 106
MAXIMUM CLIQUE, 180
MAXIMUM CUT (Max-Cut), 79
MAXIMUM INDEPENDENT SET (MIS), 7
MINIMUM BISECTION, 81
MINIMUM DIRECTED FEEDBACK VERTEX

SET, 188
MINIMUM DOMINATING SET (MDS), 37
MINIMUM SET COVER (MSC), 36
OPTIMAL LINEAR ARRANGEMENT, 34
PACKING, 90
SATISFIABILITY (SAT), 19
SUBGRAPH ISOMORPHISM, 68
SUBSET SUM, 155
TRAVELLING SALESMAN (TSP), 4
HAMILTONIAN PATH, 56

quasiconvex analysis, 13

RAM
log-cost, 5, 57, 125
unit-cost, 5, 57

RAM (random-access machine), 5
rank-width, 136, 137
ranked zeta transform, 127
recurrence, 9
reduction rule, 13

SAT, 19
satisfiability problem, 19
schedule, 32
scheduling problem, 32
search tree, 8, 14
self-reduction, 57
Shearer’s Lemma, 41
spanning forest, 133
spanning subgraph, 133
spanning tree, 133
Stirling’s Formula, 39
Subgraph Isomorphism, 48, 68
subset convolution, 38, 125
subset sum, 155

topological ordering, 33
transform

Möbius, 63
zeta, 63

travelling salesman problem, 41
tree, 200
tree decomposition, 77

nice, 86
rooted, 86

triangulation, 91
truth assignment, 19
Tutte polynomial, 134

vertex cover, 200

walk, 56, 199

Yates, 138

zeta transform, 126

	Preface
	Introduction
	Preliminaries
	Dynamic Programming for TSP
	A Branching Algorithm for Independent Set

	Branching
	Fundamentals
	k-Satisfiability
	Independent Set

	Dynamic Programming
	Basic Examples
	Permutation Problems
	Partition Problems

	Set Cover and Dominating Set
	TSP on Graphs of Bounded Degree
	Partition into Sets of Bounded Cardinality

	Inclusion-Exclusion
	The Inclusion-Exclusion Principle
	Some Inclusion-Exclusion Algorithms
	Computing the Permanent of a Matrix
	Directed Hamiltonian Path
	Bin Packing

	Coverings and Partitions
	Coverings and Graph Coloring
	Partitions
	Polynomial Space Algorithms

	Counting Subgraph Isomorphisms

	Treewidth
	Definition and Dynamic Programming
	Graphs of Maximum Degree 3
	Counting Homomorphisms
	Computing Treewidth
	Computing the Treewidth Using Potential Maximal Cliques
	Counting Minimal separators and Potential Maximal Cliques

	Measure & Conquer
	Independent Set
	Feedback Vertex Set
	An Algorithm for Feedback Vertex Set
	Computing a Minimum Feedback Vertex Set

	Dominating Set
	The Algorithm msc
	A Measure & Conquer Analysis

	Lower Bounds

	Subset Convolution
	Fast zeta Transform
	Fast Subset Convolution
	Applications and Variants
	f-width and Rank-width

	Local Search and SAT
	Random Walks to Satisfying Assignments
	Searching Balls and Cover Codes

	Split and List
	Sort and Search
	Maximum Cut

	Time Versus Space
	Space for Time: Divide & Conquer
	Time for Space: Memorization

	Miscellaneous
	Bandwidth
	Branch & Recharge
	Subexponential Algorithms and ETH

	Conclusions, Open Problems and Further Directions
	References
	Appendix: Graphs
	Index

